Circadian control of isoprene emissions from oil palm (Elaeis guineensis)

Wilkinson, Michael J. and Owen, Susan M. and Possell, Malcolm and Hartwell, James and Gould, Peter and Hall, Anthony and Vickers, Claudia and Hewitt, C. N. (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal, 47 (6). pp. 960-968. ISSN 0960-7412

[thumbnail of Wilkinson_et_al__2006.pdf]
Preview
PDF (Wilkinson_et_al__2006.pdf)
Wilkinson_et_al__2006.pdf

Download (295kB)

Abstract

The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

Item Type:
Journal Article
Journal or Publication Title:
Plant Journal
Additional Information:
The definitive version is available at www.blackwell-synergy.com
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1110
Subjects:
?? isopreneoil palmdiurnal variabilitycircadian clockcircadian gatingphosphoenolpyruvate carboxylase kinaseorganic-compound emissionsgene-expressiontemperature-compensationnitrate reductaseleaf developmentplant volatilesarabidopsisclockleavesplant sciencecel ??
ID Code:
4405
Deposited By:
Deposited On:
11 Mar 2008 14:10
Refereed?:
Yes
Published?:
Published
Last Modified:
31 Dec 2023 00:19