Binary clutter inequalities for integer programs

Letchford, A N (2003) Binary clutter inequalities for integer programs. Mathematical Programming, 98 (1-3). pp. 201-221. ISSN 0025-5610

Full text not available from this repository.

Abstract

We introduce a new class of valid inequalities for general integer linear programs, called binary clutter (BC) inequalities. They include the {0, 1/2}-cuts of Caprara and Fischetti as a special case and have some interesting connections to binary matroids, binary clutters and Gomory corner polyhedra. We show that the separation problem for BC-cuts is strongly NP-hard in general, but polynomially solvable in certain special cases. As a by-product we also obtain new conditions under which {0, 1/2}-cuts can be separated in polynomial time. These ideas are then illustrated using the Traveling Salesman Problem (TSP) as an example. This leads to an interesting link between the TSP and two apparently unrelated problems, the T -join and max-cut problems.

Item Type:
Journal Article
Journal or Publication Title:
Mathematical Programming
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/aacsb/disciplinebasedresearch
Subjects:
ID Code:
43705
Deposited By:
Deposited On:
11 Jul 2011 18:03
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Jan 2020 07:23