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Abstract

This paper gives an overview of our current research on
force-controlled compliant motion. The goal is to build an
Autonomous Compliant Motion (ACM) system of the next
generation, i.e., with more autonomous sensing components
and a less explicit, constraint-driven task specification. The
ideas developed in the ACM context are useable for other
areas too.

1. Introduction

We define an Autonomous Compliant Motion (ACM)
system as a force-controlled robot, equipped with
“high-level” sensor processing and task specification
software modules. Our research of the previous decade
developed “low-level” modules: the task specification
is explicit, servo-oriented, and sub-optimal, [2]; the
sensor processing consists of classical Kalman Filters
estimating the contact formation’s unknown geomet-
ric parameters on which the task specification relies
(i.e., contact point positions and orientation of the con-
tact normals), [5]. The limitations of this approach are
(i) its lack of flexibility due to the explicit need for a
task specification at servo level, and (ii) its validity for
“small” uncertainties only.

This paper explains how we are currently working to
tackle these limitations. The basic lines of this research
are:

• the extension of the explicit task specification
based on the “Task Frame Formalism” to an
implicit, constraints-based specification. (Sec-
tion 2.)

• the introduction of Bayesian estimators that
are better able to cope with the inherentnon-
linearities of the compliant motion problem.
(Section 3.)

• the development of anOpen Sourcerobot control
software library, in order to be able to share, co-
develop and compare advanced robotics research

developments. (Section 5.)

2. Task specification

Up to now, the classical way to achieve on-line, con-
tinuous force feedback in a compliant motion task is
to use some variant of Mason’sCompliance Frameor
Task Frame, [11]. A typical example is contour fol-
lowing, Fig. 1. In the scope of this article, we don’t go
into the details of the Task Frame Formalism (TFF),
[2], but only focus on the limitations of the approach:

• The human task programmer must fully specify
the six degrees of freedom of the task, at the servo
level. We call thisexplicit programming.

• The TFF implicitly relies on the fact that the bases
for the force and velocity controlled subspaces
can be given by vectors along or about the axes
of the Task Frame. This limits the compliant mo-
tion tasks that can be specified to the so-calledor-
thogonally decoupledtasks. One simple exam-
ple of a non-orthogonally decoupled task is the
contact configuration with two vertex-plane con-
tact, Fig. 2: the force and velocity bases change
continuously during the motion and this time-
dependence can, in general, not be specified ex-
plicitly and off-line by the human programmer.

• The TFF is not suitable for “intelligent” ACM,
because it has no previsions foractive sensing
and constraint satisfaction: the robot controller
should be allowed to deviate from the uncon-
strained path in order to (i) collect missing infor-
mation about the geometry of the contact environ-
ment, and (ii) avoid collisions and singularities.

We experience that these drawbacks of the TFF
more and more often severely limit our research on
ACM: the autonomy of the ACM systemneedsmore
flexibility, in sensing, modelling and control. Hence,
we started to design the “next generation” of compliant
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Figure 1:2D contour following. The task frame’sX axis is tangential to the contour;Y is the outward pointing normal. The
right-hand side of the figure shows our textual specification for this task.

X

Y
Z

X

Y

Z

Figure 2: The double vertex-face contact formation as an
example of a non-orthogonally decoupled compliant motion
task. Each of the two contacts can be given a Task Frame
specification, but the coupling between both is time-varying,
and hence not programmable by one single Task Frame spec-
ification as in Fig. 1.

motion task specification formalism. The basic idea
behind the new task specification is to change the cur-
rent explicitly procedural formalism in the following
directions:

• the explicitnessof the specification: instead of
programming the task by givingsetpointsfor all
force, velocity or tracking directions of the Task
Frame, the programmers should be able to use
a geometric model or a task template in which
they indicategoal configurations(i.e., contact for-
mations and locations), and a set ofconstraints
or performance indicesthat the on-line controller
should take into account. These indices arescalar
functions that quantify all aspects of the robot
and/or the task. For example: the cost of allowed
deviations from the unconstrained path, clearance
around robot singularities and collisions, informa-
tion gathering by on-line estimation, weighting of
multiple estimation processes and sensing mod-
els, etc.

In general, the task coordinator has to take into
account indices with quite different origins simul-
taneously, which puts certain requirements of in-
variance and arbitrary choices on the mathemat-
ical representations of these indices. In our cur-
rent research [16], we are carefully surveying and
designing indices to be invariant and expressed
in consistent physical units, in order to allow
combination of indices for different subsystems
in a coordinate-independent and “plug-and-play”
manner. Obviously, the most appropriate frame-
work to study this problem is differential geome-
try, because of its inherent emphasis on invariance
and coordinate independence.



• the behaviourof the task control. The above-
mentioned indices are needed because, in gen-
eral, the users’ specification determines only a
subset of the available degrees-of-freedom of the
robot. (Most of the indices will be defined by de-
fault; but users can of course override defaults
when needed.) The instantaneous setpoints for
the robot’s servo are calculated on line, as the
outcome of avariational problemthat takes all
explicit and implicit specifications into account
in its “cost function.” This approach is similar
to, for example, impedance control or behaviour-
based control, where the specification also deter-
mines the way in which the system has tointer-
act with its environment, and not the interaction
forces/velocities themselves.

Our current research focuses on simplifying the
general variational problem on a hybrid system
model of compliant motion, such that the task
controller can execute the algorithm on-line. No
experimental validation has been realised yet.

• the time horizonof the task: most current im-
plementations of control of redundant systems
use pseudo-inverses of the Jacobian matrix of the
robot in one way or another. This approach is
instantaneous, in the sense that the setpoints are
determined with a “horizon” limited to the next
sample instant.

Our current research wants to shift the horizon
of the setpoint generation to much more than
the next sample instant: in order to achieve,
for example, good active sensing and singular-
ity avoidance, the task controller should look for
“global” optima instead of the local optimum of
the pseudo-inverse. Of course, how global the
optimization can be performed depends, among
other things, on the (lack of) information the task
coordinator has about the system.

• the software engineeringof the task: the above-
mentioned TFF extensions require a software
framework that is adapted to the higher flexibil-
ity and modularity of the task control. Section 5.
goes deeper into this topic.

3. Non-linear state estimation

Kalman Filters are currently the most popular on-line
estimators, because their linear system equations allow
for efficient implementations. However, many prob-
lems in compliant motion are quite nonlinear; for ex-
ample, all coordinate transformations of rigid body

representations are non-linear, except for pure transla-
tions. We tackle this nonlinearity problem (Sect. 3.1.)
through various Bayesian methods (Sect. 3.2.), that are
not limited to linear physical systems. The engineering
challenge is to find efficient on-line implementations
and clear interfaces to the task specification and active
sensing modules of the ACM system (Sect. 4.).

3.1. Understanding non-linearities

Non-linearities come in many forms, and “disturb”
the estimation process in many different places. One
part of our research is to dissect the effects of non-
linearities into a small set of separate causes, in order
to be aware of (and to avoid when possible) most of
the ad hocsolutions that have been given in the lit-
erature. There is first of all the well-known insight
that Extended Kalman Filters introduce extra uncer-
tainties because the they linearize the non-linear equa-
tions. However, we have identified some much less-
known problems:

• Non-linearities in theprocess equations. Most
on-line estimators use Gaussians to represent un-
certainty, i.e., the mean is thestate estimateand
the covariance is the quantification ofuncertainty.
A dynamic system increases the uncertainty dur-
ing its evolution. Estimators use the state and co-
variance update formulas of the classical Kalman
Filter. However, Jensen’s well-known inequality
shows that

f(Ep(X)) 6= Ep(f(X)),

wheref is the non-linear process update trans-
formation on the coordinates of the stochastic
variableX (e.g., the squared error), andEp is
the expected value with respect to the density
p(x) dx. This means that representing informa-
tion by Gaussians isnot lossless under the process
update. Note that, for example, Kalman Filters
don’t requirethe uncertainty to be represented by
Gaussians, but their information processing uses
mean and variance only, and these parameters
fully determine a Gaussian distribution.

• Non-linearities in themeasurement update. The
state estimate is continuously updated by taking
into account the information from new measure-
ments. Most often the relationship between mea-
surements and state is non-linear. Hence, a sim-
ilar loss of information as in the previous para-
graph is introduced. However, it is useful to
make the distinction between process and mea-
surement updates, because the former involves a



mapping within one single space (configuration
space), and the latter is a mapping between two
different spaces.

• Non-linearities in thestochastic and state mani-
folds. Information about a certain system is, in the
Bayesian framework, represented by a probability
density function (PDF)p(x) dx over the the con-
figuration space of the system. Most estimators
consider only the “p(x)” part of the PDF, and for-
get about the “dx” part (density). However, coor-
dinate transformations overx introduce changes
in the density too!

Another effect in this category comes from the
fact that the configuration space isnota Euclidean
space (and hence not “flat”). And robot positions
and orientations are such non-Euclidean space!
This means, for example, that the classical con-
cept of “estimation error” is not well-defined: cal-
culating the error between the measured position
and orientationxi, and the estimatêx asxi−x̂ vi-
olates the fact that the manifold SE(3) of positions
and orientations is not a vector space, but amul-
tiplicative Lie group. The linearizationxi − x̂ is
hence only valid for “small” errors, and is a mem-
ber of the tangent space se(3) to SE(3). Hence,
traditional linearization introduces more loss of
information than most people are aware of, [14].

3.2. “Solving” non-linearities

One way of “solving” the problems with non-
linearities has been to replace the Kalman Filter equa-
tions with alternatives that aim to be more robust, e.g.,
the UKF of [9]. The idea is to replace the covariance
matrix in one space by a selection of sample points
that give the same mean and covariance matrix, then
to transform these points through the non-linearity, and
find the sample covariance matrix after the transforma-
tion. This is an extreme limit of sampling based meth-
ods, and, as we found out, one with arbitrariness in the
choice of sampling points.

Another approach is to start many similar filters,
each starting in a different part of the configuration
space and evolving to their local extremum, and/or
using a weighted average of the estimates of the in-
dividual filters. We have experimented with such an
approach too [4, 6, 10, 12, 13], with predictably bet-
ter performance. But this method is abrute forceap-
proach without using any information about the non-
linearities.

Our current research follows two other paths:

• transformation to a linear representation, in gen-

eral in a higher-dimensional space. A similar idea
has been applied in numerical linear algebra be-
fore, and consists of solving the estimation prob-
lem on a higher dimensional space; for example,
in the case of rigid body location estimation, this
higher-dimensional space is the 12-dimensional
space of the coordinates in the rotation matrix (9)
and the position vector (3) in the homogeneous
transformation matrix that represents the body’s
position and orientation. Many estimation prob-
lems happen to have an (almost) linear form when
using these coordinates; the drawbacks are that
the estimation problem is of higher dimension,
and that the estimation algorithm must make sure
to enforce the non-linear constraints that apply
between these coordinates.

• investigate more general Bayesian methods, in
the sense that they don’t rely on linearity and/or
Gaussian assumptions: the state vector contains
all information gathered in the past, modelled
with, for example,parametric models(such as
sums of Gaussians, exponential distributions, . . . )
or non-parametric models(such as grid-based
methods, Monte Carlo methods, . . . ). Some of
these methods have already been used in local-
ization algorithms for mobile robotics, e.g., [18].
They are confronted much more with the “curse
of dimensionality,” because compliant motion is
more of a six degrees-of-freedom problem than
mobile robotics, which is mainly three degrees-
of-freedom.

Our experiments in this direction give results that
are quite satisfactory as far as the estimation re-
sults go, [7], but they need more work to im-
prove (i) the computational efficiency to soft real-
time performance, and (ii) the general applicabil-
ity of the algorithms as a stand-alone component
(Sect. 5.).

4. Active sensing

One of the major flexibilities that are needed in an
ACM system, and that an explicit task description can-
not give, is to makeactive sensingpossible: the on-line
task coordinator must have the capability of doing ac-
tions with the sole purpose of gathering missing infor-
mation needed for a reliable execution of the task.

Our current research tackles the active sensing prob-
lem from different sides:

• software engineering of the task coordinator. (See
Sect. 5..) The goal is to allow a much more dy-



namic scheduling of different sensing, task mon-
itoring and decision processes. The task coordi-
nator is being designed as the final authority in
taking decisions about the control setpoints, but
it should rely heavily on the advice of all other
components that have relevant information.

This software engineering problem turns out to
be much less supported by proven “Software Pat-
terns” than most of the other components in an
ACM system (or any general robotics control
software for that matter), Sect. 5..

• formulation of the task specification as a varia-
tional problem on a hybrid system. (See Sect. 2.)
The search for missing information is driven by,
in general, several performance indices, that con-
tribute to the “Lagrangian” underlying the varia-
tional problem.

The hybrid nature of the ACM comes from dif-
ferent origins: the contact configurations can
change; the task coordinator can schedule several
distinct “modes” requiring a different set of con-
trol algorithms; the available sensors come and go
in and out of an “active” state in which they pro-
vide model parameters and advice; etc.

• ad hoc extensions to the TFF, to allow non-
instantaneous setpoint determination, as a special
case of “design of experiments,” [15, 17]. This
approach uses simple linear estimators, a perfor-
mance index on the covariance matrix, and a pre-
defined parameterized family of available active
sensing actions, [3].

The first two approaches have had no experimental val-
idation yet.

5. Open source robot control software

An ACM has much higher software support needs than
a TFF-based compliant motion system. The latter ba-
sically only adds a force sensing input to the motion
servo, but the former relies on several software “com-
ponents” that deliver “services”: each of the perfor-
mance indices has its own component, responsible for
calculating the value of the index whenever the task
coordinator needs it; that task coordinator also needs
support in its decision making and “global” planning;
each sensor requires more processing than in the TFF
case, because the data is now interpreted in the con-
text of a “high-level” task model; the flow of informa-
tion through the system is not hierarchical and constant
over time, because the same sensor data is used and
generated in different places; processing often occurs

asynchronously (i.e., not in sync with the generation
of the data by the physical sensors) because estimation
and task planning require more time than is available
(or needed) in the real-time of the servo control; etc.

Over the last three years or so, the progress of our
research has been hindered by the software limits of
the classical hierarchical control. Since no sufficiently
advanced robot control software can be bought from
the robot vendors, we decided to start developing the
advanced software framework ourselves. However, the
success and relevance of the Open Source software de-
velopment model made us decide to follow the road of
open co-development with other (predominantly) re-
search groups. The results is theOrocos(Open source
RObot COntrol Software) project, [1], that had its offi-
cial kick-off in September 2001.

The Orocos project is still in its infancy (i.e., it has
not yet produced much more than device driver code),
but has had a very active design period, from which
concrete frameworks are appearing for several basic
robot control components. The frameworks aim at of-
fering implementations of the “Software Patterns” [8]
that have matured in the robotics community during
the last couple of decades, and that have been identi-
fied during the design phase of the project. The project
has decided to build the frameworks for the following
areas: motion control, kinematics and dynamics, task
specification, and intelligent sensing. The emphasis is
on building components, not on implementing one sin-
gle architecture.

6. Conclusions

This paper has presented our current research efforts
towards an Autonomous Compliant Motion system.
The focus points are on: (i) more advanced estima-
tion (where “advanced” means that non-linearities and
“global” optimization are taken into account), (ii) a
next generation of task specification (based on task-
directed models instead of servo-level setpoints), and
(iii) the development of the software support (an ACM
cannot perform its task in the quite hierarchical control
frameworks of past and current robot controllers).
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