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ABSTRACT 

This paper describes software to facilitate research on 

the automatic derivation of hierarchical (Schenkerian) 

musical structures from a musical surface. Many MIR 

tasks require information about musical structure, or 

would perform better if such information were available. 

Automatic derivation of musical structure faces two sig-

nificant obstacles. Firstly, the solution space of possible 

structural analyses of a piece is very large. Secondly, 

pieces can have more than one valid structural analysis, 

and there is little firm agreement among music theorists 

about how to distinguish a good analysis. To circumvent 

the first of these obstacles, software has been developed 

which derives a tractable ‘matrix’ of possibilities from a 

musical surface (i.e., MIDI-like note-time information). 

The matrix is somewhat like the intermediate results of a 

dynamic-programming algorithm, and in a similar way it 

is possible to extract a particular structural analysis from 

the matrix by following the appropriate path from the 

top level to the surface. It therefore provides a tool to 

facilitate research on the second obstacle by allowing 

candidate ‘goodness’ metrics to be incorporated into the 

software and tested on actual music. 

1. THE SIGNIFICANCE OF STRUCTURAL 

INFORMATION 

Many tasks in Music Information Retrieval (MIR) re-

quire information about musical structure, or would per-

form better if such information were available. A prime 

example is the retrieval of segments which are musically 

similar. There can be no doubt that, in Classical music, a 

theme and its variations are similar in some sense, yet 

the details of both the sound and the actual sequences of 

notes can be very different. The melody might be heav-

ily ornamented or simplified, and sometimes a com-

pletely different melody is used within broadly the same 

harmonic sequence. Exactly the same applies in the case 

of jazz improvisation on an existing piece, most readily 

seen in ‘jazz standards’. The similarity in these cases is 

not in surface features but in the underlying musical 

structure. While descriptions of structure may be rela-

tively arcane, requiring knowledge of complex music 

theory, its perception appears to be commonplace: naïve 

listeners are aware of the similarity between a theme and 

its variation or an original tune and its rendition by a 

jazz ensemble. 

Software to derive a structural analysis automatically 

would therefore be a very useful tool in MIR. Software 

to derive elements of musical structure, such as metre, 

harmony or grouping, does exist, but not to give a de-

scription of the harmonic-melodic pattern of notes. Sig-

nificant obstacles exist to developing such software, 

some music-theoretic and some technical, which will be 

discussed in the following two sections. Thereafter some 

recently implemented software which goes part-way 

towards automatic derivation of musical structure, and 

facilitates systematic research on Schenkerian reduction, 

is described.
1
 

2. STRUCTURE IN MUSIC THEORY 

By ‘musical structure’ I mean a description of the pat-

terns of notes which occur in a piece of music, suffi-

ciently accurate to allow the reconstruction of enough of 

the actual sequences of notes in the piece to be recog-

nised by most listeners familiar with the original piece. 

Furthermore, it must contain information about the con-

figurations of notes which is not immediately present in 

the sequences of notes themselves, and pieces which 

have different sequences of notes but similar configura-

tions should sound more similar than pieces with equally 

different sequences of notes but different configurations. 

For Western tonal music, including Classical music in 

the period c.1650 to c.1900, plus significant quantities 

of later music, most film music, popular music and jazz, 

a number of frameworks for the description of musical 

structure have been proposed in music theory. (Frame-

works proposed for atonal music, some early music and 

some non-Western music are not widely accepted.) The 

most widely influential framework in music theory is 

undoubtedly that proposed by the Austrian theorist 

                                                           
1
 A fuller description of this project and example software can be 

found at http://www.lancs.ac.uk/staff/marsdena/research/schenker 

Portions of non-extended version © 2007 Austrian Computer Soci-

ety (OCG) reproduced with permission. The original paper was 

presented at the ISMIR conference in Vienna, September 2007. 
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Heinrich Schenker [10]. A more systematic theory, very 

different in form but using many of the same ideas, has 

been proposed by Lerdahl & Jackendoff [6], provoking 

significant interest among computer scientists.  

While the theory of Lerdahl & Jackendoff has the ad-

vantage of systematic description, it does not, in my 

view, give a sufficiently detailed description of a musi-

cal structure. It describes a structure of melody plus 

harmonic support rather than a full contrapuntal struc-

ture. I therefore choose to base a structural description 

on Schenkerian theory. (These issues are discussed more 

fully in [8], where a computational structural representa-

tion based on Schenkerian theory is described.) Fur-

thermore, Schenkerian theory has the advantage of hav-

ing a large quantity of published analyses which can take 

the place of a ‘ground truth’ in the testing of MIR soft-

ware. 

Schenkerian theory describes musical structure in 

terms of hierarchical levels (‘foreground’, ‘middle-

ground’ and ‘background’ in Schenkerian terms), and 

analyses are expressed in ‘graphs’ which demonstrate 

how a piece of music is constructed by the progressive 

elaboration of a simple fundamental structure. This is 

illustrated in Figure 1, which shows an analysis of the 

first two bars of Mozart’s Rondo K.494. (A proper 

Schenkerian analysis would conflate several of these 

levels, leaving detail for the reader to infer, and the nota-

tion would use noteheads without slurs for higher levels. 

Figure 1 is intended to be easier to read but to give the 

same information.) Slurs here are not performance direc-

tions but show aspects of the analysis. The slur between 

A4 and F4 crotchets at the start of the fifth stave, for 

example, indicates that these two notes join together to 

form a single chord at the next higher level. 

There has been previous study of the possibility of 

implementing Schenkerian analysis by computer. 

Kassler [3-5] demonstrated that systematisation of 

Schenkerian theory was possible and proceeded as far as 

a system able to derive an analysis from a middleground. 

Extension of this to derive an analysis from a musical 

surface has not yet been reported, I suspect in part be-

cause of the problem of the size of the solution space, 

discussed below. More recently Mavromatis & Brown 

[9] have demonstrated the mathematical possibility of 

implementing Schenkerian theory as a context-free 

grammar, but personal communication from Mavromatis 

indicates that this too has foundered on the problem of 

the size of the solution space. Gilbert & Conklin [1] get 

round this by using a probabilistic grammar to derive 

melodic reductions. Other computer-based work involv-

ing aspects of Schenkerian theory has not attempted to 

generate analyses from actual pieces, (e.g., [11]). Hama-

naka, Hirata & Tojo [2] have implemented a system to 

make reductions according to the theory of Lerdahl & 

Jackendoff, using their theory of preference rules. Hu-

man intervention is required to adjust parameters to di-

rect reduction towards an acceptable result, but the au-

thors reported progress at ISMIR 2007 towards auto-

matic adjustment of parameters. 

This paper presents the first computer software sys-

tem which derives quasi-Schenkerian analyses of uncon-

strained polyphonic pieces of music purely on the basis 

of pitch and time information. However, as is made clear 

below, there is still considerable work to be done before 

analyses can be practically derived from full pieces, and 

before any confidence can be placed in the actual analy-

ses derived. In the first case, the time taken to derive 

analyses is currently too great, but it is the second issue 

which is the real area for research. As mentioned above, 

music theory does not yet supply unequivocal criteria to 

guide the process of analysis towards a good solution 

which reflects the structure heard. (Analysts typically 

rely on their own hearing and musical judgement.) By 

creating a system which generates sets of analyses, em-

pirical research to determine appropriate criteria is now 

possible. 

3. SIZE OF THE SOLUTION SPACE 

In [8], I demonstrate that a Schenkerian analysis of a 

piece can be represented as a directed acyclic graph 

which tends towards resembling a tree. Each note of the 

surface of a piece is a terminal node of this graph. The 

‘roots’ are the notes of the highest level reduction. Si-

multaneous voices tend to be analysed in parallel trees, 

but interactions between voices are represented by links 

between trees, causing the analysis to become properly a 

directed graph instead of simply a collection of trees. If 

we temporarily disregard the constraints which make a 

graph valid in Schenkerian terms and assume that all 

trees are binary, the number of possible analyses of a 

piece is at least as many as the number of binary trees 

possible with n terminal nodes, where n is the maximum 

number of notes in any voice in the piece. This is the 

Figure 1. ‘Schenkerian’ analysis of Mozart K.494 
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‘Catalan number’ Cn: (2n)!/(n+1)!n!. Thus we can ex-

pect the solution space for Schenkerian analyses of a 

piece to grow factorially with the size of that piece.  

Even if we were to have a way of knowing in advance 

the right tree structure, another cause of ‘combinatorial 

explosion’ will make the solution space for Schenkerian 

analyses grow exponentially with the size of a piece. In a 

piece of music with more than one voice, one needs to 

know at each point which current note proceeds to which 

following note, i.e., one needs to know the assignment of 

notes to voices. Even when this is explicit in the score, it 

might not correspond to the appropriate assignment for 

the structure of a piece. J.S. Bach’s pieces for solo violin 

and solo cello, for example, famously present a number 

of structural voices within a single line of music. The 

number of possible assignments of notes to voices grows 

exponentially with the length of a piece. 

It is very likely that the constraints of Schenkerian 

theory impose a sufficiently powerful restriction to ren-

der the solution space tractable (otherwise how would 

Schenkerian analyses ever be made?), but in the present 

state of knowledge we cannot express these constraints 

with sufficient rigour and confidence to allow the design 

of a tractable Schenkerian-analysis system. The aim of 

the research project reported in this paper is to imple-

ment a practical tool which facilitates the systematic 

study of Schenkerian analysis so that these constraints 

can be discovered and tested. The ultimate objective is 

to use the results of this research to implement automatic 

structure-deriving software which completes its task 

with sufficient efficiency and accuracy for MIR tasks 

such as segmentation and the discovery of pattern and 

similarity. 

4. SOFTWARE DESIGN 

The approach taken in this project is similar to ‘dynamic 

programming’: a matrix of local, partial solutions is de-

rived such that a complete solution can be constructed 

by taking a particular path through the matrix, joining 

partial solutions to make a complete solution. The sur-

face of a piece is first divided into a sequence of ‘seg-

ments’ such that notes only begin or end at the begin-

nings or ends of segments. Notes which span several 

segments are divided into a sequence of notes connected 

by ties. A segment thus consists of a set of notes (which 

might be tied to other notes in preceding or following 

segments) occupying a certain span of time. Each seg-

ment has a duration (though it is only relative durations 

which are important in the current design of the system). 

Each note has a pitch (represented in a 12-note scale), 

and either has or does not have a preceding tie. Each 

segment is assumed to contain a rest, whether or not the 

segment also contains notes and whether or not a rest is 

explicitly notated in the score. Segments are associated 

with constraints which describe their required harmony 

and any required preceding or following ‘context’ notes, 

as described below. 

4.1. Elaborations 

According to tonal theory, only certain elaborations are 

possible: repetitions, passing notes, appoggiaturas, 

neighbour notes, suspensions, consonant skips, etc. The 

precise vocabulary of elaborations will vary according to 

the musical repertoire. All have a number of characteris-

tics in common, however. (1) One or more ‘parent’ 

notes occupying a certain time span at a higher level are 

replaced by a sequence of two or more ‘child’ notes at a 

lower level. (The term ‘note’ here also admits the possi-

bility of a silent note, i.e., a rest.) (2) An elaboration can 

depend on the presence of a preceding or following 

‘context’ note (e.g., the preparation of a suspension or 

the resolution of a neighbour note). (3) The pitch and 

timing of the child notes are completely determined by 

the pitch and timing of the parent note(s), plus their to-

nal, harmonic and metrical context, and any required 

context note.  A candidate set of elaborations is de-

scribed formally (though within a different framework) 

in [7] and informally in [8]. 

Some elaborations can produce a sequence of three or 

more children (e.g., passing notes) and some can have 

more than one parent (e.g., an unfolding). To simplify 

the representation and derivation of reductions, elabora-

tions here are required to have no more than two chil-

dren and just one parent. Situations where more than one 

child should occur are represented as more than one 

elaboration with intermediate stages represented as a 

special kind of note standing in place of a sequence of 

notes moving by ‘step’ in a specified pattern (a chro-

matic or diatonic scale, or an arpeggio). Unfoldings are 

simply ignored in the current state of the system, since 

exactly the same reduction arises from combined appli-

cations of ‘shortening’ and ‘delay’ elaborations whereby 

a parent note is elaborated to a sequence of a note fol-

lowed by a rest or a rest followed by a note. These 

measures therefore do not prevent the representation of 

reductions which would otherwise be representable in 

the system described in [8], but they mean that all trees 

will be binary. 

Given any pair of notes at the lower level, and knowl-

edge of the preceding and following notes, it is possible 

to determine which elaborations could produce those 

notes and what the parent note would be. Often this de-

pends on a particular harmonic context. For example, to 

reduce the sequence of pitches C4 to E5 as a ‘consonant 

skip’ requires both the notes to be consonant. Further-

more, although this is not explicitly stated in texts on 

Schenkerian theory, it would appear that the harmony of 

the ‘parent’ segment must be the same as the harmony of 

one or other of the ‘child’ segments. A set of constraints 

is therefore associated with each segment, specifying (a) 

which pitch classes must be consonant, (b) which pitches 

must be present in a preceding segment (as ‘prepara-

tions’), and (c) which pitches must be present in a suc-

ceeding segment (as ‘resolutions’). Only certain sets of 

putatively consonant pitch classes can make valid har-
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monies. In the present version of the system this is all 

triads, and all dominant, minor and diminished sevenths. 

4.2. Reduction procedure 

The reduction matrix is filled from bottom to top, and 

right to left (i.e., backwards through the score). This is 

because knowledge of the presence of preceding and 

following context notes is required at each step. It is 

only the suspension elaboration which requires a preced-

ing context, and normally this occurs as a tied note 

which must therefore be present immediately beforehand 

in the actual score. (In fact there are occurrences of ‘re-

mote’ preparations for suspensions in actual music, but 

these are not common.) Following context notes for 

neighbour notes or passing notes, however, might be 

‘remote’ and not arise in an immediately following seg-

ment until a higher level of the analysis. Proceeding 

right-to-left ensures that all candidate higher-level fol-

lowing segments are determined before a reduction is 

made. Preceding surface segments exist already, so any 

preceding required context notes are already known to 

be present. 

The essential analysis procedure is to take all pairs of 

consecutive segments and derive from them all possible 

valid reductions of that pair of segments. A possible 

reduction is one in which (1) every note of each segment 

is a child of some elaboration, (2) the harmonic con-

straints of all elaborations make a valid harmony, and 

(3) any required context notes are simultaneously pre-

sent in some possible immediately preceding and follow-

ing segment. 

Two consecutive notes can be reduced to a single 

parent if they belong to the same musical voice. How-

ever, the arrangement of notes in voices is not generally 

explicit in some music, notably not in piano music. Thus 

the reduction procedure should perhaps consider all pos-

sible arrangement of voices between each pair of seg-

ments. To do so, however, would result in extremely 

large numbers of possibilities to be considered, even 

with small numbers of notes in each segment. Crossing 

of voices is possible in music, but extremely rare, so 

currently the software considers only possibilities with 

no crossing, and it also has the facility to restrict the 

joining or splitting of voices (when two or more voices 

proceed to or follow from the same note) to further re-

duce the number of possibilities to be considered. (The 

effect of these restrictions is a topic for future research.) 

The result of this step is a set of new segments, all 

occupying a span of time which is the sum of the spans 

of the two ‘child’ segments. The number of segments in 

this set can be large, but it is limited because segments 

are only distinguished by the notes they contain, and 

there is only a finite (and relatively small) set of possible 

notes. The procedure is then applied recursively to all 

resulting segments until the top level, where segments 

cover the entire span of the piece. The result is a triangu-

lar matrix of sets of segments which constitutes a confla-

tion of all possible reductions of the piece. To derive a 

complete reduction, one need only select one top-level 

segment and then recursively select pairs of children, 

forming a binary tree whose leaves are the segments on 

the surface of the piece. 

The analysis procedure can be explained further by 

reference to Figure 2, which reflects the analysis of the 

end of the example shown in Figures 1 & 3. Cells a1 to 

a3 reflect the last three segments of the example. The 

segments of cell b1 are derived by finding all possible 

ways of combining the segments of a1 and a2 so that 

consecutive notes form permissible progressions whose 

harmonic and tonal constraints are consistent. The tied 

notes C5 in a2 can only combine with the C5 in a1, but 

the G5 and E5 can combine in three different ways, re-

sulting in G5, E5 or both G5 and E5 at the level above. 

Thus cell b1 contains three segments, all of them con-

taining the note C5 while E5 and G5 appear in two each. 

Cell b2 is derived from combining a2 and a3, and con-

tains the segment which is the only permissible way of 

combining these notes into a single chord. Cell c1 is 

derived from combining both a1 with b2 and b1 with a3. 

There are several possible ways of combining these 

segments, but they all result in just three segments, all of 

which contain F5 while C5 and A4 are contained in two 

each. 

The basic size of the matrix (the number of sets of 

segments) is obviously related to the square of the length 

of the music analysed, so the space requirement of the 

reduction algorithm can be expected to be of order 

O(n
2
). However, the number of pairs of spans to be con-

sidered, when deriving the new segments for a new 

longer span, increases at each higher level of the matrix, 

and the time requirement is of order O(n
3
). The real con-

straint on tractability, however, is the number of seg-

ments in each set. The upper limit on this number is 2 

raised to the power of the total number of different notes 

which might make up a segment. This is the number of 

different notes in the music analysed, which is not (nec-

essarily) related to the length of the music, and further-

more is limited by the number of different notes possible 

in any piece of music, which is fixed by the instru-

ment(s) on which it is to be played. Thus this does not, 

in principle, increase the order of complexity of the al-

gorithm. However, the number of possible segments is 

c1: F5    or F5    or F5 

 C5 A4 C5 

   A4 

 b2: F5 

 _C5 

 A4 

b1: G5    or E5    or G5 

 C5 C5 E5 

   C5 

 

a1: G5 

 C5 

a2: E5 

 _C5 

a3: F5 

 A4 

Figure 2. Extract from analytical matrix, covering the 

last three segments of the example in Figure 3. 
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extremely large. For example, an eighteenth-century 

piano has 61 notes, and so there are approximately 

2.3*10
18
 possible combinations of different notes which 

could appear in segments. Many of these are harmoni-

cally impossible and/or impossible to play, but the num-

ber of harmonically possible and playable segments is 

still extremely large. The time taken by the analysis pro-

cedure is related to the square of the average number of 

segments for each span, so a truly tractable analysis pro-

cedure depends on keeping this number small.  

Schenkerian analyses, however, generally consist of 

just a small number of voices (typically three, four or 

five). Thus one possible route to making the reduction 

procedure more efficient is to restrict the size of segment 

which can be produced by reduction. Secondly, splitting 

and joining of voices (where more than one note is com-

bined with a single preceding or following note) is pos-

sible but rare, and so a more efficient reduction proce-

dure will result from restricting such splitting and join-

ing. Thirdly, although the metre of a piece probably 

cannot be derived with certainty prior to reduction, cer-

tain rhythmic combinations are extremely rare. Thus a 

further simplification of the reduction procedure restricts 

reduction to those segments whose durations are related 

by relatively simple ratios. All three of these restrictions 

have been implemented in the revised version of the 

software as parameters set prior to reducing. Setting the 

parameters to large values effectively removes the re-

striction. 

In comparison with the timings reported in the origi-

nal extended version of this paper, revisions in the way 

that constraints are handled have considerably speeded 

up the procedure, though it does remain time-

consuming. To derive the reduction matrix for Figure 1 

with no restrictions on the size of segments, the joining 

of voices or the ratio of durations took 13 seconds. The 

four-bar example which in the original extended version 

was reported to take one and three quarters of an hour 

and 170MB of heap space now takes just one and half 

minutes and 77MB of heap space when segments are 

restricted to no more than four notes, no splitting or 

joining of voices is permitted, and durations cannot be 

divided in ratios greater than four. 

5. AN EXAMPLE 

Figure 3 shows a result of applying an earlier version of 

the software to the music example in Figure 1 (Mozart’s 

Rondo, K.494).
1
 As indicated above, the software gen-

erates a matrix containing a set of possible analyses. The 

software included a number of mechanisms for assigning 

a score to each segment (e.g., the minimum total number 

of notes in this segment and all its descendents), and a 

mechanism for pruning the matrix so that only segments 

with the best score are retained.  

                                                           
1
Demonstration software, including this example, may be viewed at  

http://www.lancs.ac.uk/staff/marsdena/schenker 

One possible way of assigning a score to a segment is 

to count the minimum number of elaborations required 

to derive this segment from the surface. (The scoring is a 

little more sophisticated than a simple count, in that 

repetitions count for less than neighbour notes, for ex-

ample.) When this is applied to the matrix of segments 

arising from analysis of the first two bars of Mozart’s 

rondo, and when only the best-scoring segments are re-

tained, only four possible complete analyses remain. 

These share the same segments at every point except the 

first segment of the second-highest level where various 

combinations of G5, F5, Bb4 and F4 are possible. Fig-

ure 3 shows the resulting analysis when the segment with 

all of these notes is chosen.  

The analyses of Figures 1 and 3 do not match, so in 

that sense the software has failed to derive the correct 

analysis of this music. On the other hand, there are only 

two fundamental errors in the analysis of Figure 3. 

Firstly, the reduction of the last two chords of the fourth 

stave produces a bad rhythm in the third stave (that ver-

sion of the software did not take rhythm into account at 

all). Secondly, the reduction of the first two chords in 

the third stave produces a bad chord in the second stave 

(the software currently did not treat seventh chords any 

differently from triads). This result can therefore be de-

scribed as promising. 

The revised version of the software only considers 

seventh chords to be valid in situations where no triad is 

possible. If a segment has been found which has a triad 

as harmony no other segment is allowed in that cell with 

a seventh chord unless it required preceding and follow-

ing context requirements are looser. The new version 

therefore avoids the second of the mistakes identified in 

Figure 3. On the other hand, it also means that a seventh 

chord is not derived for the first half of the second bar 

(because a simple dominant triad is possible), so the 

derived matrix does not include the possibility of the 

‘correct’ analysis shown in Figure 2. Clearly, further 

work is required on the appropriate way to handle sev-

enth chords. (Scoring systems have yet to be imple-

mented in this new version, so it is not currently possible 
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Figure 3. Automatic analysis of Mozart K.494 
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to present a best-scoring analysis derived by that soft-

ware.) 

6. FURTHER RESEARCH 

Scoring systems are to be the main topic of future re-

search. Work is starting with five rondo themes from 

piano sonatas by Mozart. These examples were chosen 

because they are complete and coherent musical struc-

tures, but quite short and with a simple texture. Further-

more, Schenkerian reductions of these themes exist al-

ready as a kind of ‘ground truth’. The distribution of 

scores in the universe of possible reductions derived by 

the software will be compared with the distribution of 

scores in the Schenkerian reductions with the intention 

of identifying those scores which separate the Schen-

kerian reductions from the possible but implausible. The 

scoring systems will be further tested by comparing gen-

erated analyses with actual analyses by Schenker and his 

pupils. Successful scoring systems will form the basis of 

mechanisms for pruning bad analyses from early in the 

derivation process, in the hope of arriving at a structure-

derivation system which is sufficiently reliable to form 

the basis of MIR systems.  
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