
Policy-driven Network Simulation: a Resilience Case Study

Alberto Schaeffer-Filho
School of Computing and

Communications
Lancaster University,

Lancaster, UK
asf@comp.lancs.ac.uk

Paul Smith
School of Computing and

Communications
Lancaster University,

Lancaster, UK
p.smith@comp.lancs.ac.uk

Andreas Mauthe
School of Computing and

Communications
Lancaster University,

Lancaster, UK
andreas@comp.lancs.ac.uk

ABSTRACT
Networks must be resilient to challenges such as malicious
attacks or network overload and adapt their operation in an
autonomous manner. Network simulations enable the test-
ing of complex network scenarios (which would be difficult to
emulate using actual hardware) in an inexpensive manner.
However, it is difficult to evaluate resilience strategies that
involve the interplay between a number of detection and re-
mediation mechanisms that must be activated on demand
according to events observed in the network (as opposed to
hardcoded protocols). In this paper we propose the notion of
a policy-based resilience simulator based on the integration
of a network simulator and a policy management framework.
This permits the evaluation of resilience strategies consisting
of mechanisms whose behaviour can be adapted during run-
time − e.g. setting flags, dropping connections, triggering
or stopping monitoring sessions, etc. We employ policies
to specify the required adaptations, which are de-coupled
from the hard-wired implementations of the simulated com-
ponents, according to conditions observed during run-time
in the simulation. We can thus observe how real policies
affect the operation and the behaviour of simulated compo-
nents, and then evaluate the effectiveness of resilience strate-
gies before they are deployed in the network infrastructure.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design

General Terms
Design, Experimentation

Keywords
Network simulation, resilience, policy management, adapta-
tion, survivability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1. INTRODUCTION
Next generation networks must be resilient to challenges,

such as malicious attacks and operational overload, and adapt
their operation accordingly. Resilience is the ability of the
network to maintain acceptable levels of operation in the
face of a challenge [21]. Resilience strategies typically in-
volve a complex interplay between detection and remedi-
ation mechanisms that must be activated on demand ac-
cording to events observed in the network. For example, a
number of detection mechanisms could be progressively em-
ployed to construct an understanding of the root cause of
a challenge, which could in-turn lead to the invocation of
more-specific and improved remediation mechanisms. Fur-
thermore, these mechanisms may span multiple autonomous
systems, requiring careful configuration. In order to define
such configurations of mechanisms for resilience we have
advocated the use of policies [19]. Policies can separate
the hard-wired implementation of network components from
their management strategy, and thus permit the easy modi-
fication of a strategy without requiring changes in the under-
lying implementation of the system. This ability to flexibly
define a resilience strategy is a necessity, considering the
changing nature of challenges that a network may face over
time, such as new forms of attacks.

An approach to evaluate network operation, mechanisms
and protocols before they are deployed in the network is
to conduct simulations that indicate the impact on the be-
haviour of network components. However, it is difficult
to evaluate complex resilience strategies that configure and
manage multiple mechanisms dynamically subject to condi-
tions observed in the network during run-time (as opposed to
hardcoded protocols). Borne from a requirement to evaluate
policy-based resilience strategies (which are expressed using
policies that configure resilience mechanisms) we have devel-
oped a toolset that couples policy management and network
simulation. Policies specify the required adaptations based
on conditions observed during run-time in the simulation it-
self. This toolset allows us to assess how different sets of
resilience policies affect the operation and performance of
the simulated components dynamically.

The primary contribution of this paper is to present a way
how to integrate a policy framework and network simulation,
and based on this introduce the toolset we have developed.
One of the direct benefits of integrating a network simulator
with a policy framework is that we can understand how real
policies affect the operation of resilience mechanisms run-
ning within the simulation environment, and then evaluate
resilience strategies before they are implemented and de-

ployed in the network infrastructure (e.g. in routers). This
enables the evaluation of complex resilience strategies with-
out the need of a real testbed deployment of mechanisms,
which typically involves high costs of hardware and effort.
Finally, such a toolset is also necessary due to the possible
scale of the types of challenges we want to simulate, which
tend to affect multiple autonomous systems, and that would
be difficult to reproduce using a real testbed.

This paper is structured as follows: Section 2 describes
our approach for policy-based resilience. Section 3 discusses
the most important design decisions in the policy-driven net-
work simulator. Section 4 outlines our requirements and the
network simulators available, and describes our implemen-
tation. Section 5 describes a case-study evaluation of the
prototype. Finally, Section 6 presents the concluding re-
marks.

2. POLICY-BASED RESILIENCE
Although a wide range of resilience mechanisms can be

used, such as traffic classifiers and intrusion detection sys-
tems, these may span multiple autonomous systems and it
is often not clear how they should be orchestrated to realise
resilience requirements and adapt their behaviour dynami-
cally. Moreover, a number of mechanisms could be progres-
sively employed to construct an understanding of the state
of the network, for example, using multi-stage detection of
traffic anomalies, in order to invoke a more-specific and tai-
lored remediation mechanism. The use of policies to define
configurations of mechanisms that can ensure the resilience
of networked systems has been previously advocated in [19].

2.1 Resilience Mechanisms
Effective strategies for resilience require appropriate co-

ordination of detection and remediation mechanisms. De-
tection mechanisms are used to identify the occurrence of a
challenge. Characteristics of the challenges to be detected
determine which mechanisms can be used, and where they
should be placed (e.g., in border routers or close to potential
attack targets). More than one detection algorithm could be
used, for example, having an always-on, low-cost anomaly
detection algorithm, alongside an offline, more computation-
ally expensive traffic classifier to diagnose the root cause of
an anomaly. Remediation mechanisms can be activated in
response to detected challenges. They are intended to main-
tain acceptable levels of service in the presence of challenges.
Example remediation mechanisms can include Pushback [10]
of bad traffic (e.g. DDoS attacks) and rate limiting over-
whelming but legitimate traffic (e.g. flash crowds).

Simulating resilience strategies requires the implementa-
tion of a range of plausible challenges [3], and corresponding
detection and remediation mechanisms. Reference imple-
mentations for a number of anomaly detection and classifi-
cation algorithms described in the literature are available in
the Java-ML toolkit [8]; we expect to integrate these mech-
anisms in our simulation models.

2.2 Policy Management
Policies allow the de-coupling of the hard-wired imple-

mentation of system components from their management
strategy. This permits the modification of the management
strategy of networked resources during run-time. Event trig-
gered condition-action (ECA) rules can be used to define
the adaptation strategy of the system [18]. For example,

the policy illustrated in Figure 1 can be used to reconfig-
ure the behaviour of a rate limiting mechanism based on
the occurrence of a high risk event (raised, for example, by
an anomaly detection component) and additional contextual
information, e.g. current link utilisation. Instead of having
the management strategy hardcoded into network compo-
nents, policies separate the management from the compo-
nent implementation. By having detection and remediation
mechanisms in the simulation controlled by policies, we can
specify their management strategy dynamically.

1 on AnomalyDetectorMO . highRisk (l ink , src , dst)
2 i f (LinkMonitorMO . g e tU t i l i s a t i o n () >= 75%)
3 do RateLimiterMO . l im i t (l ink , 60%)

Figure 1: Policy configuring rate limiter upon high
risk event (pseudo-syntax).

Policies are written in terms of managed objects (MOs).
The policy in the example above requires three MOs: (a) an
anomaly detector MO implementing a detection algorithm,
which raises a highRisk event when an anomaly is identified
(providing details such as the link where the anomaly was
detected, and the src and dst addresses associated with the
anomalous IP flow); (b) a link monitor MO which can be
used to obtain further information about the state of the
network, such as current utilisation; and (c) a rate limiter
MO which can be dynamically configured to mitigate the
anomaly, e.g. limiting the link capacity while the cause of
the anomaly is investigated (which can be done by more ex-
pensive classification algorithms). Each MO must provide a
management interface, which defines the scope for the speci-
fication of the policies that control the corresponding object.

3. DESIGN ISSUES
Our work is based on the integration of two standard

toolsets in the area of network research: a network simu-
lator, which permits the evaluation of networks and proto-
cols under specific test scenarios, and a policy management
framework. We discuss in the following the main issues in
the design of the resilience simulator.

3.1 Integration Techniques
In [11], a number of techniques to allow the integration

between a network simulator environment and external third
party applications are discussed:

Socket connection: proxies within the simulation main-
tain socket connections to third party applications,
which can be easily integrated without changes to the
third party application. However, this technique may
cause CPU scheduling issues since simulations run faster
and consume more CPU. Synchronisation issues may
become a problem because the simulation and the ap-
plication run in their own time domain (simulation
time is typically faster than real-time).

Source code integration: code integration is straightfor-
ward for simple applications and cause no time dis-
tortions. However, this may be technically difficult
for larger applications because of dependencies that
must be resolved in the build environment. Moreover,
threads in the third party application may still suffer
from CPU scheduling issues and cause problems such
as access violations.

Shared libraries: is based on the integration between the
simulation tool and the binary code of the third party
application. It is similar to source code integration
but avoids problems related to the building process,
because the build environments for the simulator and
for the third party application are kept separated. It
still suffers from the threading and timing problems.

Our integration is based on proxies, similar to the socket
connection method, but using RMI objects instead (dis-
cussed in Section 4). Typically, this technique can be used
if the third party application does not need data from lower
layer protocols [11]. We expect that CPU scheduling and
synchronisation issues can be mitigated because, in contrast
to the applications in [11], we do not exchange packet-level
information (large quantity, fast processing) with the pol-
icy framework. Instead, exchanges are limited to selected
control events and corresponding management commands,
and thus synchronisation issues are reduced. Alternatively,
a new event scheduler may be implemented to slow down
the simulation speed to real time, as in [1].

To mitigate CPU scheduling problems, a higher process
priority may be assigned to the third party application as
suggested in [11], which is also much easier to achieve com-
pared to changing priorities of specific threads as required
by the other techniques1. Despite the restrictions associated
with the socket technique, it allows us to quickly integrate
the policy framework and the simulation environment.

3.2 Adaptive Simulation Behaviour
Our methodology for the specification of adaptive simu-

lations is divided into the following steps: firstly, purpose-
specific detection and remediation components with their
corresponding callback functions must be implemented so
they can be used alongside standard simulation objects, e.g.
a library of remediation mechanisms may include a custom
rate limiter component, as well as a customised Webserver
component implementing a number of adaptive actions. Sec-
ondly, these components running in the simulation must ex-
port their callback functions through management interfaces
accessible to external applications, e.g. a policy decision
point (PDP). Thirdly, communication between simulated
objects and the external policy framework must be imple-
mented via adapter objects, which need to abstract invo-
cation details (e.g. using sockets, RMI, RPC) and forward
commands to objects inside the simulation. Fourthly, an
event broker is needed to resolve and forward event notifica-
tions from inside the simulation to the policy engine. Finally,
policies are used to define resilience strategies by determin-
ing which adaptive actions must be invoked in response to
events raised in the simulation. The overall architecture is
illustrated in Figure 2.

4. IMPLEMENTATION
We created an environment to evaluate policy-based re-

silience strategies such as those in [19]. Our prototype is

1We leave aside issues related to access violations and con-
currency; in the examples we have been working on, policies
cause only atomic changes, e.g. setting flags, which do not
incur access violations. In more complex examples, we may
need to circumvent this problem through artefacts of a spe-
cific tool, such as OMNeT++’s macros Enter_Method and
Enter_Method_Silent, or synchronized blocks in SSFNet.

Figure 2: Resilience simulator architecture.

based on the integration of a network simulator and the
Ponder2 framework [22].

4.1 Candidate Network Simulators
For the policy-based resilience simulator, we have consid-

ered the use of the most popular network simulators, in-
cluding NS-2 [13], NS-3 [14], OMNeT++ [15], SSFNet [20]
and OPNET [16]. The choice of a network simulator is con-
strained by a number of requirements. Firstly, the simulator
needs to be extended and instrumented, not only in terms of
protocol models, but also through the implementation of the
necessary communications to allow the policy framework to
interface with the simulation. Secondly, the availability of a
large number of network models will allow faster modelling
of networks, and their resilience strategies. Thirdly, the sim-
ulator should also have good scalability, speed and perfor-
mance to allow faster and larger simulations. Finally, we are
interested in experimenting with multi-level approaches to
resilience, consisting of mechanisms for resilience that will
reside in layers 1-7. Therefore, the simulator should be gen-
eral, and allow the modelling of communication networks,
distributed, parallel systems, as well as P2P networks.

Since our goal is to model resilience in general commu-
nication networks, purpose-specific tools such as the WSN
simulator TOSSIM [9] are not considered. OPNET is a com-
mercial tool and the source code of its simulation kernel
is not publicly available. Since we are required to extend
the simulator to facilitate the communication with the pol-
icy framework, we abandoned this option. Likewise, NS-2
has been consistently reported to have poor scalability and
a large memory footprint compared to other simulators [2,
24], and for this reason we discarded this option as well. The
remaining candidates are discussed:

NS-3 : uses C++ and can be optionally combined with Py-
thon scripts. NS-3 is a major revision of NS-2, which is
targeted for scalability, extensibility, modularity, em-
ulation and clarity of design, focusing on layers 2-4
of the protocol stack [7]. However, NS-3 lacks an ex-
tensive library of models, and NS-2 models need to
be ported to NS-3 manually. One of the goals of NS-
3 is to support simulations that integrate well with
virtual machines, network testbeds and implementa-
tion code [7]. NS-3 is reported to have a good perfor-
mance [24].

OMNeT++: uses C++ to model behaviour and NED (Net-
work Description Language) to describe topology. Un-
like NS-2, these are highly decoupled. To enable large
simulations, models are hierarchical and built from
reusable components [23]. OMNeT++ has a modular,
extensible architecture, in which multiple simple mod-
ules, e.g. protocols, are combined into a compound
module, e.g. host node. OMNeT++ allows a lim-
ited amount of dynamic behaviour in the simulations
through parametric topologies, e.g. number of nodes
can be reconfigured during runtime. OMNeT++ is
reported to have a good overall performance [24].

SSFNet: is a standard for discrete-event simulation with
implementations in C++ and Java. SSFNet uses DML
for topology description and configuration, which is
a text-based format similar to XML. DML is equiva-
lent to OMNeT++’s NED, however, according to [23],
DML has less expressiveness and features to support
large-scale models built from reusable components. In
[12], the C++ implementation of SSFNet is reported
to present a good compromise between execution speed
and memory requirements when compared to other
simulators. However, development of the SSFNet sim-
ulator and models was discontinued in 2004.

We considered NS-3, OMNeT++ and SSFNet equally suit-
able for our requirements. Due to our previous experience
with SSFNet and our familiarity with its API, including an
API for setting up DDoS attack scenarios2, the implemen-
tation presented in this section is based on this simulator.
However, we will port this prototype to an OMNeT++ im-
plementation as part of our future work, since OMNeT++
is considered one of the most used simulators for research in
the area of communication networks [4].

4.2 Ponder2 Policy Framework
Ponder2 comprises a general-purpose object management

system. It implements a policy execution framework that
supports the enforcement of ECA and authorisation poli-
cies [22]. Policies are written in terms of managed objects,
which are stored in a local domain service. Ponder2 pro-
vides built-in factories for the creation of core managed ob-
jects, however, the infrastructure is extensible and allows
the creation of user-defined managed objects, e.g. adaptors
for interfacing with remote resources. Managed objects are
programmed in Java. Several protocols are supported to
facilitate communication with remote resources, e.g. RMI,
HTTP3. A command interpreter supports a high-level con-
figuration language called PonderTalk, which allows the in-
vocation of actions on these managed objects. Based on our
previous investigations [17], Ponder2 was considered to be
more extensible and with better infrastructure support when
compared to other policy frameworks.

4.3 Prototype Implementation
SSFNet is used for modelling and simulation of Internet

protocols and networks at and above the network layer. Pro-
tocols are composed hierarchically to define components in

2http://www.ssfnet.org/javadoc/SSF/App/DDoS/package-
summary.html
3Adaptors also simplify the integration between the Java-
based implementation of Ponder2 and C++ implementa-
tions of simulators such as OMNeT++.

the network. Each protocol is implemented by a class which
extends SSFNet’s ProtocolSession. DML files are used to
define how protocols are composed for each network com-
ponent. Resilience mechanisms are instrumented versions of
classes extending ProtocolSession at different layers of the
protocol stack. The instrumentation depends on the mech-
anism and protocol layer, e.g. a HttpServerRemediation

class may offer callbacks for redefining the response delay
for the server, whereas a RateLimiter may offer callbacks
for changing the bit rate limit for a router.

We defined an abstract RMI interface that must be imple-
mented by instrumented objects to indicate that they offer
callbacks. A further management interface extends the ab-
stract interface and adds to it the management operations
that each mechanism supports. This interface is exported
by a MechanismExporter, which implements a directory ser-
vice and allows the policy framework to perform a directory
lookup and obtain a reference to selected simulated objects.
Simulated objects may also notify the policy framework of
changes in the state of the simulation via Ponder2Broker,
which resolves events generated within the simulation to
Ponder2 events. A custom RemediationAdaptor was im-
plemented to facilitate the communication between Ponder2
and SFFNet objects. Each instance of RemediationAdaptor
functions as a RMI proxy for an actual simulated object.
The implementation of the actions defined in a management
interface is the responsibility of the actual objects via the in-
strumentation of the corresponding classes in the simulator.
Figure 3 outlines the operation of our prototype4.

Figure 3: Integration between SSFNet and Ponder2.

Figure 4 shows an example policy named adaptHigh which
is triggered by the event highUtil and invokes an adap-
tive action on a server object, if the utilisation is greater
or equal to 75% (value is one of the parameters of the
event highUtil). The event can be generated by objects
in the simulation monitoring the utilisation of a particu-
lar link, and published in the policy framework via Pon-

der2Broker. When the event triggers the policy, the action
setResponseDelay is invoked on the server object. Both
the condition and the action are written as Ponder2 blocks5.
Commands sent to server are forwarded to the correspond-
ing SSFNet object executing in the simulation.

4Note that multiple instances of Ponder2 can be used if more
than one policy decision point (PDP) is necessary.
5A block is a Ponder2 construction that defines one or more
statements (within square brackets) whose execution can be
delayed until it is decided that the block should be evaluated
− e.g. when the policy is triggered by the event.

1 // event template d e f i n i t i on
2 h ighUt i l := f a c t o ry / event c r ea t e : #(”value ”) .
3

4 // po l i cy d e f i n i t i on
5 adaptHigh := fa c t o ry / e capo l i c y c r ea t e .
6 adaptHigh event : event / h ighUt i l .
7 adaptHigh cond i t i on : [: va lue | value >= 75] .
8 adaptHigh ac t i on : [s e r v e r setResponseDelay : 5 0 0 .] .
9 adaptHigh a c t i v e : t rue .

Figure 4: Policy configuring response delay on
server object (PonderTalk syntax).

5. EVALUATION
We demonstrate our prototype through a case-study that

shows how a traffic pattern that saturates the link capacity
can be controlled by policies adapting the behaviour of ob-
jects within the simulation. The topology is illustrated in
Figure 5, and is based on an example topology distributed
with SSFNet. It consists of a TCP two-stage client/server
network in which clients belong to one of two subnets, and
send requests to servers in one of 10 subnets (which con-
tain 20 servers each). Subnet 0 is of particular interest,
and contains 10 clients connected to a router via 100 Mbps
links. This router is configured to monitor and export net-

flow data using the built-in module SSF.OS.ProbeSession.
Random delay between 0 and 5 ms is associated with each
link. Each client makes one request of approximately 1 GB
from a given server. Clients in another subnet (subnet 1001)
generate additional traffic.

Figure 5: Topology specification for the case-study.

The backbone router with a 1 Gbps link capacity indicated
in the topology (router 1000:0) is instrumented with a rate
limiting mechanism and is the focus of this case-study. We
developed a rate limiter for SSFNet that allows the dynamic
change of the maximum bit rate for a given router interface.
The RateLimiter implements a management interface that
defines the method setBitrate(Float factor), which mul-
tiplies the allowed bit rate for the router by the factor given
as parameter. The simulated object is registered as a RMI
object and a reference to it is exported to Ponder2.

Policy-based rate limiting is defined in terms of PonderTalk
policies similar to the one in Figure 4. Although we man-
ually generated events signalling high link utilisation, we
intend to use implementations such as the one in [4] for the
detection of anomalies in the simulation, thus allowing us

Figure 6: Effects of rate limiting are visible through
packet counts monitored at the instrumented router.

to focus on the remediation mechanisms. When policies are
triggered, they evaluate the events and adapt the operation
of router 1000:0 by invoking setBitrate(Float factor).

Figure 6 illustrates the effects of policy-based rate lim-
iting. We plot the packet counts monitored at the instru-
mented router. We activated the rate limiting shortly after
4.0×102 seconds of simulated time. Its effect is a cap in the
maximum bit rate supported in the network interface of the
router, reducing packet counts from about 2.0× 103 packets
to 0.1 × 103 packets6. Finally, a new event signals that the
adaptive mechanism should be withdrawn, thus triggering a
second policy shortly after 5.0×102 seconds that reverts the
router to its original bit rate.

This illustrates how instrumented objects in the simula-
tion can be dynamically configured by management policies.
However, the toolset is meant for the evaluation of more
complex scenarios, consisting of the coordination between
a large number of mechanisms (e.g. rate limiter, flow ex-
porter, link monitor, anomaly detector, traffic classifier, etc)
employed in typical policy-based resilience strategies [19].

6. CONCLUDING REMARKS
In this paper, we leveraged our expertise in network re-

silience and policy-based management, and presented a model
for the integration of a policy framework and a network sim-
ulator. The developed toolset can be used for the simulation
and evaluation of policy-based resilience strategies. We are
interested in simulating strategies for managing a number of
mechanisms that must cooperate to enforce the resilience of
the network in response to operational challenges.

Policies permit the modification of a management strategy
(e.g. setting flags, dropping connections, changing routes,
adding extra delay to packets, triggering or stopping moni-
toring, etc) based on conditions observed during run-time in
the simulation. Based on the integration between a network
simulator and a policy framework, we can thus observe how
real policies affect the operation and the behaviour of the re-
silience mechanisms in the simulation, and then understand
and evaluate the effectiveness of multiple resilience strategies
before they are implemented and deployed in the network in-
frastructure. However, the notion of policy-driven network
simulation is not restricted to the evaluation of resilience
strategies only, and the same principles could be used to
evaluate other aspects of network management (e.g. using
policies to dynamically evaluate changes to QoS parameters
of specific components in the simulated network).

The work in [4] also advocates the integration between a
network simulator (OMNeT++) and external tools: in par-
ticular, ReaSE [6], a tool for generation of internet-specific

6Note that in order to highlight the activation of the mech-
anism we multiplied the bit rate by a very small factor.

topologies, background traffic and attack traffic, and Dis-
tack [5], a framework for attack detection that allows the im-
plementation of various detection methods. The integrated
toolchain was used for large-scale evaluation of distributed
attack detection. Our work is complementary to that, and
while the authors of [4] focused on the integration of tools
for detection of anomalies in the simulated network, we focus
on the integration between a network simulator and a policy
framework to enforce the remediation of those anomalies.

The prototype presented in this paper is based on a SSFNet
implementation and permitted us to assess the viability of
the integration. However, as future work we will port it
to OMNeT++, which is one of the most popular network
simulators in this research area. We expect that due to
our choice of a method of integration based on socket con-
nections, porting the implementation to the new simulation
platform will be greatly simplified.

7. ACKNOWLEDGMENTS
The work presented in this paper has been supported by

the EPSRC funded India-UK Advance Technology Centre
in Next Generation Networking. This work has also been
supported by the European Commission, under Grant No.
FP7-224619 (ResumeNet project). The authors would like
to thank Azman Ali for the implementation of the rate lim-
iter used in the evaluation of our prototype.

8. REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A

Flexible Overlay Network Simulation Framework. In
Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007,
pages 79–84, Anchorage, AK, USA, May 2007.

[2] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy
of manet simulators. In POMC ’02: Proceedings of the
second ACM international workshop on Principles of
mobile computing, pages 38–43, Toulouse, France,
October 2002. ACM.

[3] E. K. Çetinkaya, D. Broyles, A. Dandekar,
S. Srinivasan, and J. P. Sterbenz. A Comprehensive
Framework to Simulate Network Attacks and
Challenges. In RNDM’10: Second International
Workshop on Reliable Networks Design and Modeling,
Moscow, Russia, October 2010.

[4] T. Gamer and C. P. Mayer. Large-scale evaluation of
distributed attack detection. In Simutools ’09, pages
1–8, Rome, Italy, March 2009. ICST.

[5] T. Gamer, C. P. Mayer, and M. Zitterbart. Distack –
a framework for anomaly-based large-scale attack
detection. In SECURWARE ’08: Proceedings of the
2008 Second International Conference on Emerging
Security Information, Systems and Technologies, pages
34–40, Cap Esterel, France, August 2008. IEEE CS.

[6] T. Gamer and M. Scharf. Realistic simulation
environments for ip-based networks. In Simutools ’08,
pages 1–7, Marseille, France, March 2008. ICST.

[7] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 project goals. In WNS2 ’06: Proceeding of the
2006 workshop on ns-2: the IP network simulator,
Pisa, Italy, October 2006. ACM.

[8] Java-ML Website. Java Machine Learning Library
(Java-ML). http://java-ml.sourceforge.net/. Accessed

March 2010.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 126–137, Los Angeles,
California, USA, November 2003. ACM.

[10] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high
bandwidth aggregates in the network. SIGCOMM
Comput. Commun. Rev., 32(3):62–73, 2002.

[11] C. P. Mayer and T. Gamer. Integrating real world
applications into OMNeT++. Telematics Technical
Report TM-2008-2, Institute of Telematics,
Universität Karlsruhe (TH), Feb. 2008.

[12] D. M. Nicol. Scalability of network simulators
revisited. In Proceedings of the Communication
Networks and Distributed Systems Modeling and
Simulation Conference, Orlando, FL, January 2003.

[13] NS-2 Website. The Network Simulator - NS-2.
http://www.isi.edu/nsnam/ns/. Accessed March 2010.

[14] NS-3 Website. The NS-3 network simulator.
http://www.nsnam.org/. Accessed March 2010.

[15] OMNeT++ Website. OMNeT++.
http://www.omnetpp.org/. Accessed March 2010.

[16] OPNET Website. OPNET Modeler Accelerating
Network R&D (Network Simulation). http://
www.opnet.com/solutions/network rd/modeler.html.
Accessed March 2010.

[17] A. Schaeffer-Filho. Supporting Management
Interaction and Composition of Self-Managed Cells.
PhD thesis, Imperial College London, 2009.

[18] M. Sloman and E. Lupu. Security and management
policy specification. IEEE Network, 16(2):10–19,
Mar.-Apr. 2002.

[19] P. Smith, A. Schaeffer-Filho, A. Ali, M. Scholler,
N. Kheir, A. Mauthe, and D. Hutchison. Strategies for
network resilience: Capitalising on policies. In 4th
International Conference on Autonomous
Infrastructure, Management and Security (AIMS),
pages 118–122, Zurich, Switzerland, June 2010. LNCS.

[20] SSFNet Website. Modeling the Global Internet.
http://www.ssfnet.org/. Accessed March 2010.

[21] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya,
A. Jabbar, J. P. Rohrer, M. Schöller, and P. Smith.
Resilience and survivability in communication
networks: Strategies, principles, and survey of
disciplines. Comput. Netw., 54(8):1245–1265, 2010.

[22] K. Twidle, E. Lupu, N. Dulay, and M. Sloman.
Ponder2 - a policy environment for autonomous
pervasive systems. In POLICY ’08: Proceedings of the
2008 IEEE Workshop on Policies for Distributed
Systems and Networks, pages 245–246, Palisades, NY,
USA, June 2008. IEEE Computer Society.

[23] A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In Simutools ’08, pages 1–10,
Marseille, France, March 2008. ICST.

[24] E. Weingärtner, H. vom Lehn, and K. Wehrle. A
performance comparison of recent network simulators.
In ICC 2009: IEEE International Conference on
Communications, Dresden, Germany, June 2009.

