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Abstract

This paper revisits the relationship between software
architecture and requirements focusing on the case of self-
adaptive systems. The authors present their view of the
state-of-the-art, including their own work, on both areas
and their contribution towards the development of self-
adaptive systems. The authors support the claim that there is
no fundamental distinction between architectural decisions
and architecturally significant requirements and discuss how
these claims are specifically appropriate for the case of self-
adaptive systems. A discussion of the approach described
and challenges for the case of adaptive systems are also
presented.
Keywords: architecture, requirements, dynamically adaptive
systems.

1. Introduction

For a long time the relationship between software ar-
chitecture and requirements has been subject to deliber-
ation. Several venues have hosted the exchange of ideas
on the topic: e.g. the panel on the topic of Role of
Software Architecture in Requirements Engineering at the
first IEEE International Conference on Requirements En-
gineering (ICRE’94) and the workshop series “Software
Requirements to Architecture” (STRAW 2001 and 2003).
The relationship between Requirements and Architecture
was also acknowledged byNuseibeh& Easterbrook in
[15]. These research efforts have produced different results
with different visions of the relationship between require-
ments and architecture. For example,Grünbacher et al.
[10] presented an approach to provide a systematic way
of reconciling requirements and architectures.Jackson et
al. [11] uses problem frames to allow architectural struc-
tures to be considered as part of the problem domain. In
contrast to efforts that emphasize the gap that needs to be
bridged between requirements and architecture, Nuseibeh
[14] emphasizes “the equal status we give to requirements
and architectures”. He acknowledges a process that allows
both requirements engineers and software architects to work
concurrently and iteratively to specify the artifacts to be
produced.

More recently,de Boerandvan Vliet [7] argue that there
is no fundamental distinction between architectural decisions
and architecturally significant requirements. According to
de Boerand van Vliet even though, software architectures
and requirements engineering have different perspectives
[s]“oftware architecture is not merely the domain of the
architect. Each architecturally significant requirementsis al-
ready a decision that shapes the architecture”[7]. Similarly,
van Lamsweerde[17] claims that when using goal-oriented
requirements engineering (GORE) high-level architectural
judgements are made in that process. We claim in this
paper that the arguments presented in [7] and [17] are
particularly appropriate for the case of self-adaptive systems.
Furthermore, and as in [7], we also agree the need to identify
research areas in which tighter collaboration between the
software architecture and requirements engineering research
communities would lead to advantages and faster progress
for both.

In this paper we present a systematic, incremental ap-
proach to deriving software architectures and their recon-
figurations from system goals. Our approach is grounded
on goal-based models with the intent of guiding software
architects in their design task when developing self-adaptive
systems. Specifically, our work on goal-based modelling
supports the mapping between system goals and their impact
in the architecture and its reconfiguration during runtime
adaptations. The approach allows us to articulate different
research challenges in terms of capturing, maintaining and
adapting the requirements of a self-adaptive system and their
impact on the software architecture after the system itselfhas
been deployed and is operational.

2. State-of-the-art

The need of self-adaptation as a crucial enabling ca-
pability for many applications has stimulated researchers
from both requirements engineering and software archi-
tecture research areas to propose different approaches. In
the context of requirements engineering,Berry et al. [3]
have proposed four levels of analysis that encompasses a
framework of discourse for requirements of self-adaptive
systems. A notable body of work has applied goal-based
modeling notations, such as i* [9], to the discovery and



specification of requirements of self-adaptive systems. Goal-
based models have proven to be effective for the specifica-
tion of the adaptation selections that a self-adaptive system
must perform and the specification of monitoring and change
between adaptive behaviours [5, 17]. The ability to reason
about partial goal satisfaction is a particular strength ofgoal-
based modelling

Architecting self-adaptive systems has also produced a
large body of work. A recent roadmap paper which discusses
the state-of-the-art in software architecture for self-adaptive
systems is given in [13]. This roadmap paper presents among
many others the work ofOreizy et al. that introduced an
architecture-based approach to self-adaptive software and
evolution management;Dashofy, van der Hoekand Taylor
propose the use of architecture-based evolution management
for run-time adaptation using ArchStudio;Garlan et al
have proposed the Rainbow framework that uses software
architectures and a reusable infrastructure to support self-
adaptation of software systems.

There have also been research efforts that combine both
requirements and architectures to study the case of self-
adaptive systems. Partially based on the research initiatives
presented above,Kramer and Magee [13] describe their
vision of self-management at the architectural level, where a
self-managed software architecture automatically configures
the interaction of its components to be compatible with
an overall architectural specification and to achieve the
specified goals of the system.Floch et al. [8] promote
the use of architecture models to support the development
of adaptive applications for mobile applications. In contrast
to traditional event-action rules,Floch et al. propose the
use of goal-based policies expressed as utility functions
leaving to the system the decisions on the actions required to
implement those policies. Partial results of our own research
using requirements and architecture and that are explained
in more detail in Section 3 are shown in [9, 16]. The
approaches ofKramerandMagee, Floch et al., and our own
work carry the notion of the need to achieve the specification
of goals in such a way that it is intelligible by the system
itself and not only by humans. This last is an important point
we visit again at the end of the paper when discussing the
challenges.

It is common to find in the literature the explicit dis-
tinction between requirements and architecture. A decisive
factor used in academia to distinguish both concepts en-
compasses “what” vs “how” and “problem” vs “solution”.
Industry is more pragmatic and that factor is usually related
with “what” is determined “before” and “after” the contract
is signed by the client. What is relevant to this paper, as
our focus is on self-adaptive systems, is that the criteria
described above encompasses the belief of “already fixed
or agreed” vs “what remains to be done” [7]. “A self-
adaptive system is able to modify its behavior according to
changes in its environment” [5]. Requirements engineering

for self-adaptive systems must deal with uncertainty [5, 18]
because the information about future execution environments
is incomplete, and therefore the requirements for the be-
havior of the system may change (at runtime) according
to the changing environment. One of challenges that self-
adaptation poses is that we cannot anticipaterequirements
for the whole set of possible conditions and their consequent
impacts on thearchitecture.

3. Goal-based requirements specification for
self-adaptive systems

Our requirements specification approach is goal-driven
and characterizes the environment as a finite set of stable
states subject to events that cause transitions between states.
A self-adaptive system can be modeled as a collection of
target systems[20], each of which correspond to, and operate
within, a state of the environment [9]. The concerns mod-
elled correspond to levels of analysis that represent particular
concerns of a self-adaptive system: the behaviour of the set
of target systems, the requirements for how the self-adaptive
system adapts from one target system to the next, and the
requirements for the adaptive infrastructure. We make each
concern the focus of a different model, or group of models,
that we use to visualize and analyze the system require-
ments.Level 1 is analogous to the analysis needed for a
conventional, non-adaptive system. A separate level 1 model
is needed for each stable state of the environment for each
target system. Level 1 models must specify the variables
in the environment to monitor that represent the triggers
for adaptation.Level 2 is concerned with decision making
and has no direct analogue in conventional systems. Level
2 helps the analyst focus on understanding the requirements
for adaptation by defining adaptation scenarios. The analyst
must identify the values of the monitored environment vari-
ables that prompt transitions between stable states, specify
the target systems that represent the start and end points of
adaptations and specify the form of the adaptation.Level
3 analysis is concerned with identification of the adaptive
infrastructure in order to enable self-adaptation. Level 3is
not relevant for this paper.

We have successfully applied our approach toGridStix
[12], an adaptive flood warning system and is documented
in [9]. We describe only a subset of the the models for the
case study. A fuller description is found in [9, 16]. The first
task at level 1 was to identify the high-level, global goals
of GridStix: the main goalPredict Flooding, and three goals,
or softgoalsthat describe required qualities,Fault Tolerance,
Energy Efficiency andPrediction Accuracy. Next, states of the
river environment were identified, each of which could be
treated as a discrete domain for a target system. InGridStix,
these represented a three-fold classification of the river state:
S1: Normal or quiescent, where depth and flow rate are both
within bounds that indicate no risk of flood;S2: Alert where



the depth was within acceptable bounds but the flow rate
had increased significantly, possibly presaging the onset of
the next state;S3: Emergency.

The next stage in the analysis was aimed at discovering
the application requirements for each target system. This
necessitated development of an i* strategic rationale model
(SR model) for each of the three target systems. SR mod-
els help the analyst reason about the requirements needed
to address each environment variability. To illustrate this,
consider the SR models forNormal state in Figure 1. The
notation used is i*, target systems are depicted as agents
represented by dashed circles, which depict the scope of
the agents’ responsibilities. The global goals and softgoals
are Flow rate and Depth which are modeled as resources
in the i* notation. Inside the agent boundaries, each target
system is depicted as a set of tasks (the haxagones) that help
to satisfy thePredict Flooding goal. The solid arrows arcs
representmeans endsrelationships, while the arcs with bars
at one end represent task decompositions. An open arrow arc
represents a quantitative assessment of the extend to which
a task contributes to the satisfaction of a soft goal. It can be
annotated as hurt or help.

A key feature of i* is that it supports reasoning about
softgoal trade-offs early in the analysis. The key aspect to
note here is that the SR models allow the identification
of tasks that specify the means by which goals are to
be accomplished. These tasks corresponds to architectural
relevant concerns (as also is the spanning tree explained
below). According to the context, tasks may satisfy some
softgoals better than others. As the river changes, the trade-
offs between softgoals change and this impacts on the best
combination of tasks (architectural decisions) to accomplish
the Predict Flooding goal.

Construction of the Level 1 models revealed a conflict
among the softgoals identified.Energy efficiency is not easily
reconciled withPrediction accuracy andFault tolerance. For
S1, see Figure 1,Energy efficiency was considered to have a
higher priority thanPrediction accuracy andFault tolerance.
This was resolved by using single-node flow measurement
which provides a less accurate prediction capability than
processing an array of sensor data, but is more energy-
efficient. When the river is quiescent, single-node flow
measurement was judged to provide adequate forewarning
of a change in river state. Similarly, with the river quiescent,
there is little risk of node failure so resilience was also
traded off against low energy consumption. This was the
rationale for specifying a relatively efficient shortest path
network topology. These softgoal trade-offs are reflected by
the hurt andhelp relationships with the softgoals.

A different balance of trade-offs was used among the
softgoals forS2 and S3. In S3:Emergency for example,
the water depth has increased to the point where nodes
are threatened by submersion or debris so a fewest-hop
spanning tree (Use FH topology) is specified for the network

Figure 1. Behaviour model of environment variant Nor-
mal (from [9])

topology. Fewest-hop networks are more resilient, though
less energy-efficient, than shortest-path network topologies.
The result of this choice was to strengthenFault tolerance
at the expense ofEnergy efficiency. Similarly, multi-node
digicam was chosen for this target system. See Figure 2).

Figure 2. Behaviour model of environment variant
Emergency (from [9])

Note how the trade-off between the conflicts of soft-
goals has required architectural decisions. Using SP or FH
topology for the spanning tree or single-node or multi-node
digicam for the image flow calculation respectively have
proven to have different architectural impacts on the ongoing



system.
Similarly for S2: Alert a balance of trade-offs was used

and the resultant strategy is shown in Figure 3).

Figure 3. Behaviour model of environment variant Alert
(from [9])

TheLevel 2 models identified and modeled adaptation sce-
narios that specify transitions between steady-state systems
S1, S2, andS3. Figure 4 depicts the adaptation scenario for
adapting fromS1 to S2 as the river state transitions between
the domainsNormal andAlert.

In addition to specifying the source and target systems,
each adaptation scenario must address three concerns that
determine when and how to adapt: what data to monitor ;
what changes in the monitored data trigger the adaption; and
how the adaptation is effected. Each of these three concerns
is conceptualized as the responsibility of a role of the adapta-
tion infrastructure:Monitoring mechanism, Decision-making
mechanism and Adaptation mechanism, respectively. The
Decision-making mechanism, depending upon the source
systemS1, determines when GridStix needs to adapt from
S1 to S2. This adaptation was specified to occur on a
significant increase in river flow but before any significant
depth increase. TheAdaptation mechanism had to satisfy
the goalEffect adaptation by performing the taskReplace
single-node flow processing with distributed flow processing
andReplace SP tree with FH tree, which defined, at a high-
level, the difference between theS1 andS2 behavior models.

Mapping from goals to architectural design

The Level 1 goal-based models described above have
guided the design of the architectural-based models for each
target systems. Similarly, the goal-based models associated
with the transitions (models at Level 2) have guided the
construction of models of the dynamic fluctuation of the
environment and contexts, and their impact on the variation

of the architecture of the applications during execution. Such
architectural models have been constructed using the model-
based tool Genie [1, 2]. Figure 5 shows a Genie model that
specifies the transitions between the target systems (bottom
right-hand corner).

Each transition (arc) describes when and how to dynami-
cally switch from one target system to another (see details of
the adaptation policies).The architectural concernsRouting
Protocol and Image Processing will encompass the network
topologies (SP and FH) and the singlenode processing
(denoted as SC) andmultiple-node digicam (denoted as MC).
Each target system shows a pair of choices:Normal: (SP,SC),
Alert: (SP,MC), andEmergency: (FH,MC). Furthermore, from
the transition models, Genie allows the generation of dif-
ferent artifacts. e.g. the adaptation policies that will guide
the adaptation of the system during execution, and the
configurations of components associated with each target
system. These artifacts can be dynamically inserted during
runtime by the GridStix platform [12]. More information is
found in [1, 2].

Combining our three-level analysis models with adaptive
middleware platforms we have provided a model-driven
approach for the development of the adaptive application
GridStix. Traceability was achieved from highlevel goals
right through to the adaptation policies that defined the
GridStixs architecture [1]. From the goal-based models and
the architecture decisions explained above the models for
transitioning the system during execution and their policy
adaptations were derived. Our approach is an example of
how architecture decisions made during requirements spec-
ifications give early feedback and enable analysis. Our case
study shows the benefits of close collaboration between re-
quirement engineers and software architects for self-adaptive
systems. The next section discusses such issues derived from
our approach.

4. Discussion and Challenges

There is an increasing need for the requirements of a
system to span requirements engineering activities during
the development phases and runtime. So far, introduction
of new requirements are not allowed during runtime using
our approach. A self-adaptive system, who initially may
employ a set of adaptation policies or strategies to meet
the application’s initial set of requirements provides a good
example. As the application evolves the initial requirements
may change. This may be due to a more accurate set
of requirements being gleaned from the operation of the
deployed system, or new capabilities being introduced
into the system. Take for example the flood monitoring
sensor network application explained above; initially the
requirements in the development lifecycle produced a set
of 6 adaptations between three software configurations
[16]. The introduction of a new requirement (R1) may



Figure 4. Level 2: S1 to S2 Adaptation Model

Figure 5. Genie models or transitioning between target systems showing traceability from the goal-based models
to policy rules



introduce a new software configuration (a new target
system) and transitions into the application, as well as
affecting some of the other transitions. We can envisage
that it would be appropriate to reconfigure the system to
a target system of the form (fewest hops , single-node
processing) i.e. (FH,SC), a target-system that was not
foreseen and validated before. We are already working on
a new requirements language called RELAX [18, 19] for
self-adaptive systems that includes a vocabulary that enables
requirements engineers to explicitly identify requirements
that should never change as well as requirements that may
change under certain conditions. Our final aim is to address
uncertainty in requirements to support self-adaptive systems
development in a way such that the uncertainty can be
specified declaratively rather than by simply enumerating
all alternative goals and respective architectures (in contrast
to how it is currently done), some partial results are
shown in [6]. Hence, this opens up various research
challenges in terms of capturing, maintaining and adapting
the requirements of a self-adaptive system after the system
itself has been deployed and is operational. The new
operators of a new RE specification language like RELAX
should be traceable down to (dynamic) architectures at
runtime. As in requirements management of uncertainty
in architecture becomes a critical aspect of open evolution
[4]. We posit that in order to allow requirements to be
captured and dynamically changed at runtime, there are
core challenges to be met.

Challenge 1. To create a model of a system’s requirements
that is maintained at runtime in order for it to be amenable
to introspection and adaptation . Common to a reflective pat-
tern, such an approach provides the following capabilities:
a) Introspecting the current requirements of the application
allows: i) the performance of a system to be monitored
to validate and verify that the operation of a self-adaptive
system is meeting the requirements. ii) informing decisions
for changing the requirements e.g. when requirements are no
longer being satisfied, then they could be relaxed at runtime.
b) Adaptation of the application requirements. The re-
quirements of an application can be changed at runtime
through changes to the runtime model of requirements.
These changes would be reflected in the physical, deployed
architecture of the system.

Hence, further investigation is required into suitable
models for representing requirements such that they remain
available at runtime, and subsequently when changed they
reflect on the system architecture.

Challenge 2. Identification and maintenance of a causal
connection between the runtime model of requirements
and the runtime model of the software architecture of the
system. Such that changes in the software architecture can
be monitored to ensure that the requirements are not broken;

and also that changes to the requirements at runtime are
reflected in the operation of running system through dynamic
generation of changes to the software architecture artefacts.

Our vision is to enable a self-adaptive system to
dynamically reason about (i.e. during execution) its own
requirements and goals (a notion termed “requirements
reflection” by Finkelstein [5]) to evaluate and directly affect
the architecture and behaviour of the system. Software
architectures should be flexible enough to be changed at
runtime (evolve) [4] within certain constrains. What are
the architectural concepts suitable for this new vision of
requirements? What kind of constrains-aware operators can
architecture offer to be leveraged by the system to meet
new requirements at runtime? and to trade-off between the
conflicts of soft-goals (NF requirements). Such questions
seems to require tighter collaboration between requirements
engineers and software architects because of the dynamic
nature of self-adaptation.
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