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Abstract More recentlyde Boerandvan Vliet[7] argue that there
is no fundamental distinction between architectural decs
This paper revisits the relationship between softwareand architecturally significant requirements. According t
architecture and requirements focusing on the case of selfde Boerandvan Vliet even though, software architectures
adaptive systems. The authors present their view of thand requirements engineering have different perspectives
state-of-the-art, including their own work, on both areas[s]“oftware architecture is not merely the domain of the
and their contribution towards the development of self-architect. Each architecturally significant requiremeigsl-
adaptive systems. The authors support the claim that tisere ready a decision that shapes the architectufé]. Similarly,
no fundamental distinction between architectural deeisio van Lamsweerd§l7] claims that when using goal-oriented
and architecturally significant requirements and discussh requirements engineering (GORE) high-level archited¢tura
these claims are specifically appropriate for the case df sel judgements are made in that process. We claim in this
adaptive systems. A discussion of the approach describgsaper that the arguments presented in [7] and [17] are
and challenges for the case of adaptive systems are alsparticularly appropriate for the case of self-adaptivéays.

presented. Furthermore, and as in [7], we also agree the need to identify
Keywords: architecture, requirements, dynamically adaptive research areas in which tighter collaboration between the
systems. software architecture and requirements engineering refsea

communities would lead to advantages and faster progress
1. Introduction for both.

In this paper we present a systematic, incremental ap-

For a long time the relationship between software arproach to deriving software architectures and their recon-
chitecture and requirements has been subject to delibefigurations from system goals. Our approach is grounded
ation. Several venues have hosted the exchange of ideas goal-based models with the intent of guiding software
on the topic: e.g. the panel on the topic of Role ofarchitects in their design task when developing self-adapt
Software Architecture in Requirements Engineering at thesystems. Specifically, our work on goal-based modelling
first IEEE International Conference on Requirements Ensupports the mapping between system goals and their impact
gineering (ICRE'94) and the workshop series “Softwarein the architecture and its reconfiguration during runtime
Requirements to Architecture” (STRAW 2001 and 2003).adaptations. The approach allows us to articulate difteren
The relationship between Requirements and Architectureesearch challenges in terms of capturing, maintaining and
was also acknowledged bijuseibeh& Easterbrookin  adapting the requirements of a self-adaptive system and the
[15]. These research efforts have produced different t®sul impact on the software architecture after the system itesedf
with different visions of the relationship between require been deployed and is operational.
ments and architecture. For exampl@riinbacher et al.
[10] presented an approach to provide a systematic wa®. State-of-the-art
of reconciling requirements and architecturdackson et
al. [11] uses problem frames to allow architectural struc- The need of self-adaptation as a crucial enabling ca-
tures to be considered as part of the problem domain. Ipability for many applications has stimulated researchers
contrast to efforts that emphasize the gap that needs to Beom both requirements engineering and software archi-
bridged between requirements and architecture, Nuseibelecture research areas to propose different approaches. In
[14] emphasizesthe equal status we give to requirementsthe context of requirements engineeriBgrry et al. [3]
and architectures He acknowledges a process that allows have proposed four levels of analysis that encompasses a
both requirements engineers and software architects tk worframework of discourse for requirements of self-adaptive
concurrently and iteratively to specify the artifacts to besystems. A notable body of work has applied goal-based
produced. modeling notations, such as i* [9], to the discovery and



specification of requirements of self-adaptive systemalGo for self-adaptive systems must deal with uncertainty [§, 18
based models have proven to be effective for the specificabecause the information about future execution envirorisnen
tion of the adaptation selections that a self-adaptiveesyst is incomplete, and therefore the requirements for the be-
must perform and the specification of monitoring and changéavior of the system may change (at runtime) according
between adaptive behaviours [5, 17]. The ability to reasorio the changing environment. One of challenges that self-
about partial goal satisfaction is a particular strengthazl-  adaptation poses is that we cannot anticipatguirements
based modelling for the whole set of possible conditions and their consegjuen

Architecting self-adaptive systems has also produced ampacts on therchitecture
large body of work. A recent roadmap paper which discusses
the state-of-the-art in software architecture for selygtive 3. Goal-based requirements specification for
systems is given in [13]. This roadmap paper presents amongelf-adaptive systems
many others the work 0Oreizy et al.that introduced an
architecture-based approach to self-adaptive softwate an Our requirements specification approach is goal-driven
evolution managemenBbashofy, van der Hoeland Taylor ~ and characterizes the environment as a finite set of stable
propose the use of architecture-based evolution managemestates subject to events that cause transitions betwees.sta
for run-time adaptation using ArchStudigarlan et al A self-adaptive system can be modeled as a collection of
have proposed the Rainbow framework that uses softwarkarget systemg0], each of which correspond to, and operate
architectures and a reusable infrastructure to suppdrt selwithin, a state of the environment [9]. The concerns mod-
adaptation of software systems. elled correspond to levels of analysis that representquaati

There have also been research efforts that combine bottoncerns of a self-adaptive system: the behaviour of the set
requirements and architectures to study the case of selbf target systems, the requirements for how the self-adapti
adaptive systems. Partially based on the research in@&ti system adapts from one target system to the next, and the
presented aboveKramer and Magee [13] describe their requirements for the adaptive infrastructure. We make each
vision of self-management at the architectural level, wteer concern the focus of a different model, or group of models,
self-managed software architecture automatically condigu that we use to visualize and analyze the system require-
the interaction of its components to be compatible withments.Level 1 is analogous to the analysis needed for a
an overall architectural specification and to achieve theonventional, non-adaptive system. A separate level 1 mode
specified goals of the systerfloch et al. [8] promote is needed for each stable state of the environment for each
the use of architecture models to support the developmeréarget system. Level 1 models must specify the variables
of adaptive applications for mobile applications. In castr in the environment to monitor that represent the triggers
to traditional event-action ruleg;loch et al. propose the for adaptationLevel 2 is concerned with decision making
use of goal-based policies expressed as utility functiongnd has no direct analogue in conventional systems. Level
leaving to the system the decisions on the actions required 22 helps the analyst focus on understanding the requirements
implement those policies. Partial results of our own regear for adaptation by defining adaptation scenarios. The ahalys
using requirements and architecture and that are explainadust identify the values of the monitored environment vari-
in more detail in Section 3 are shown in [9, 16]. The ables that prompt transitions between stable states, fgpeci
approaches dkramerandMagee Floch et al, and our own  the target systems that represent the start and end points of
work carry the notion of the need to achieve the specificatiormdaptations and specify the form of the adaptaticsvel
of goals in such a way that it is intelligible by the system 3 analysis is concerned with identification of the adaptive
itself and not only by humans. This last is an important pointinfrastructure in order to enable self-adaptation. Levés$ 3
we visit again at the end of the paper when discussing theot relevant for this paper.
challenges. We have successfully applied our approachGiadStix

It is common to find in the literature the explicit dis- [12], an adaptive flood warning system and is documented
tinction between requirements and architecture. A deeisivin [9]. We describe only a subset of the the models for the
factor used in academia to distinguish both concepts encase study. A fuller description is found in [9, 16]. The first
compasses “what” vs “how” and “problem” vs “solution”. task at level 1 was to identify the high-level, global goals
Industry is more pragmatic and that factor is usually relate of GridStix: the main goaPredict Flooding, and three goals,
with “what” is determined “before” and “after” the contract or softgoalsthat describe required qualitiesult Tolerance,
is signed by the client. What is relevant to this paper, a€nergy Efficiency andPrediction Accuracy. Next, states of the
our focus is on self-adaptive systems, is that the criteriaiver environment were identified, each of which could be
described above encompasses the belief of “already fixetteated as a discrete domain for a target systeneridStix,
or agreed” vs “what remains to be done” [7].A self- these represented a three-fold classification of the riages
adaptive system is able to modify its behavior according taS1: Normal or quiescent, where depth and flow rate are both
changes in its environménf5]. Requirements engineering within bounds that indicate no risk of floo&2: Alert where



the depth was within acceptable bounds but the flow rate
had increased significantly, possibly presaging the onfet o
the next stateS3: Emergency.

The next stage in the analysis was aimed at discovering
the application requirements for each target system. This
necessitated development of an i* strategic rationale mode /
(SR model) for each of the three target systems. SR mod- /
els help the analyst reason about the requirements needec |/
to address each environment variability. To illustratesthi l
consider the SR models fotormal state in Figure 1. The

notation used is i*, target systems are depicted as agents A
represented by dashed circles, which depict the scope of @
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represents a quantitative assessment of the extend to whichcj Softgoal

a task contributes to the satisfaction of a soft goal. It can b

annotated as hurt or help. Figure 1. Behaviour model of environment variant Nor-
A key feature of i* is that it supports reasoning aboutmal (from [9])

softgoal trade-offs early in the analysis. The key aspect to

note here is that the SR models allow the identificationtopobgy_ Fewest-hop networks are more resilient, though
of tasks that specify the means by which goals are 1Qgsg energy-efficient, than shortest-path network topetg
be accomplished. These tasks corresponds to architeCturphe resyit of this choice was to strengtheault tolerance
relevant concerns (as also is the spanning tree explaineg i,e expense oEnergy efficiency. Similarly, multi-node

below). According to the context, tasks may satisfy sOM&jigicam was chosen for this target system. See Figure 2).
softgoals better than others. As the river changes, thetrad
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offs between softgoals change and this impacts on the best
combination of tasks (architectural decisions) to accashpl
the Predict Flooding goal.
Construction of the Level 1 models revealed a conflict | pepin e
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among the softgoals identifieEnergy efficiency is not easily
reconciled withPrediction accuracy and Fault tolerance. For
S1, see Figure 1Energy efficiency was considered to have a /
higher priority thanPrediction accuracy and Fault tolerance. /
This was resolved by using single-node flow measurement [
which provides a less accurate prediction capability than \
processing an array of sensor data, but is more energy-
efficient. When the river is quiescent, single-node flow
measurement was judged to provide adequate forewarning

of a change in river state. Similarly, with the river quiesge
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there is little risk of node failure so resilience was also < b Moo
traded off against low energy consumption. This was the e R

rationale for specifying a relatively efficient shortestttpa
network topology. These softgoal trade-offs are reflected b
the hurt and help relationships with the softgoals.

A different balance of trade-offs was used among the Note how the trade-off between the conflicts of soft-
softgoals forS2 and S3. In S3:Emergency for example, goals has required architectural decisions. Using SP or FH
the water depth has increased to the point where noddspology for the spanning tree or single-node or multi-node
are threatened by submersion or debris so a fewest-hagigicam for the image flow calculation respectively have
spanning treel(se FH topology) is specified for the network proven to have different architectural impacts on the omgoi

Figure 2. Behaviour model of environment variant
Emergency (from [9])



system. of the architecture of the applications during executiarcts

Similarly for S2: Alert a balance of trade-offs was used architectural models have been constructed using the model
and the resultant strategy is shown in Figure 3). based tool Genie [1, 2]. Figure 5 shows a Genie model that
specifies the transitions between the target systems (botto
right-hand corner).

Each transition (arc) describes when and how to dynami-
cally switch from one target system to another (see dethils o
Depth the adaptation policies).The architectural concernsting
Protocol andImage Processing will encompass the network
topologies §P and FH) and the singlenode processing
(denoted as SC) andultiple-node digicam (denoted as MC).
| Each target system shows a pair of choi¢c@smal: (SP,SC),

i Alert: (SPMC), andEmergency: (FH,MC). Furthermore, from
l the transition models, Genie allows the generation of dif-
ferent artifacts. e.g. the adaptation policies that willdgu
the adaptation of the system during execution, and the
configurations of components associated with each target
system. These artifacts can be dynamically inserted during

Use multi-node
digicam image
flow processing

e == runtime by the GridStix platform [12]. More information is
= found in [1, 2].
Figure 3. Behaviour model of environment variant Alert Combining our three-level analysis models with adaptive
(from [9]) middleware platforms we have provided a model-driven

) . . approach for the development of the adaptive application
TheLevel 2 models identified and modeled adaptation scegyigstix. Traceability was achieved from highlevel goals

narios that specify transitions between steady-stat@sst ignt through to the adaptation policies that defined the
S1, 52, ands3. Figure 4 depicts the adaptation scenario forgrigstixs architecture [1]. From the goal-based models and
adapting fronS1 to S2 as the river state transitions between o 4rchitecture decisions explained above the models for
the domainsNormal and Alert. transitioning the system during execution and their policy
In addition to specifying the source and target systemsgqaptations were derived. Our approach is an example of
each adaptation scenario must adfjress three concerns tr_l’ﬁJw architecture decisions made during requirements spec-
determine when and how to adapt: what data to monitor jications give early feedback and enable analysis. Our case
what changes in the monitored data trigger the adaption; angk,qy shows the benefits of close collaboration between re-

how the adaptation is effected. Each of these three concergirement engineers and software architects for selfadap
is conceptualized as the responsibility of a role of the &tap gy stems. The next section discusses such issues derived fro
tion infrastructure Monitoring mechanism, Decision-making our approach.

mechanism and Adaptation mechanism, respectively. The

Decision-making mechanism, depending upon the source 4. Discussion and Challenges
systemsS1, determines when GridStix needs to adapt from

S1 to s2. This adaptation was specified to occur on @ There js an increasing need for the requirements of a

signific_ant increase in river flow but before any sign_ificantsystem to span requirements engineering activities during
depth increase. Thédaptation mechanism had to satisfy e gevelopment phases and runtime. So far, introduction
the goalEffect adaptation by performing the tasiReplace ot new requirements are not allowed during runtime using
single-node flow processing with distri.buted f!ow processir.wg our approach. A self-adaptive system, who initially may
andReplace SP tree with FH tree, which defined, at a high-  empjoy a set of adaptation policies or strategies to meet
level, the difference between tisa ands2 behavior models. 40 application’s initial set of requirements provides @do
example. As the application evolves the initial requiretaen
Mapping from goals to architectural design may change. This may be due to a more accurate set
of requirements being gleaned from the operation of the
The Level 1 goal-based models described above havdeployed system, or new capabilities being introduced
guided the design of the architectural-based models fdr eaanto the system. Take for example the flood monitoring
target systems. Similarly, the goal-based models assakciat sensor network application explained above; initially the
with the transitions (models at Level 2) have guided therequirements in the development lifecycle produced a set
construction of models of the dynamic fluctuation of theof 6 adaptations between three software configurations
environment and contexts, and their impact on the variatiofil6]. The introduction of a new requirement (R1) may
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Level 2: S1 to S2 Adaptation Model

Adaptation Policy $1to $3
<Concern>Routing Protocol</Concern>
<Events>
<Event>
<Type>FLOOD_PREDIC TED</Type>
<Event>true</Event>
</Event>
</[Events>

$2 adaptation 51 > §2 <Reconfiguration Action>

Adaptation Policy $1 to 83
<Concern>Image Processing</Concern>
<Events>
<Event>
<Type>FLOOD_PREDIC TED</Type>
<Event>true</Event>
</[Event>
</Events>

<Reconfiguration Action>

goalmodels <Name>Reconfiguration.FewestHop</Name> <Name>Reconfiguration.MC</Name>
Tl </Reconfiguration Action > </Reconfiguration Action >
Adaptation Policy $1to $2 '\ /’
. ~
<Concern>Image Processing</Concern> N
<Events> -«- Tl Flood Predicted
<Event> T
<Type>HIGH_FLOW</Type> Flood Predicted
<<Event>true/Event>
</Event= \ \
</[Events>
<Reconfiguration> $1 SPISC SP/MC FH/MC
goalmodels
<File Type>Java</File Type> 81:Normal S2:Alert $3: Emergency
<N >R i tion.MC</N >
ame>Recontiguration ame HighFl IFlood Predicted 88
</Reconfiguration> HighFlow HighFlow
</ReconfigurationRule>

IFlood Predicted && HighFlow

Figure 5. Genie models or transitioning between target systems showing traceability from the goal-based models

to policy rules




introduce a new software configuration (a new targetand also that changes to the requirements at runtime are
system) and transitions into the application, as well ageflected in the operation of running system through dynamic
affecting some of the other transitions. We can envisaggeneration of changes to the software architecture attefac
that it would be appropriate to reconfigure the system to Our vision is to enable a self-adaptive system to
a target system of the formfe(vest hops , single-node  dynamically reason about (i.e. during execution) its own
processing) i.e. (FH,SC), a target-system that was notrequirements and goals (a notion termed “requirements
foreseen and validated before. We are already working oreflection” by Finkelstein [5]) to evaluate and directlyesdt
a new requirements language called RELAX [18, 19] forthe architecture and behaviour of the system. Software
self-adaptive systems that includes a vocabulary thatlesab architectures should be flexible enough to be changed at
requirements engineers to explicitly identify requiretsen runtime (evolve) [4] within certain constrains. What are
that should never change as well as requirements that make architectural concepts suitable for this new vision of
change under certain conditions. Our final aim is to addressequirements? What kind of constrains-aware operators can
uncertainty in requirements to support self-adaptiveesyst  architecture offer to be leveraged by the system to meet
development in a way such that the uncertainty can ba&ew requirements at runtime? and to trade-off between the
specified declaratively rather than by simply enumeratingonflicts of soft-goals (NF requirements). Such questions
all alternative goals and respective architectures (irtresh  seems to require tighter collaboration between requirésnen
to how it is currently done), some partial results areengineers and software architects because of the dynamic
shown in [6]. Hence, this opens up various researchature of self-adaptation.
challenges in terms of capturing, maintaining and adapting
the requirements of a self-adaptive system after the system Acknowledgment This work was partially funded by the
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