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Abstract 

Peer-to-peer file sharing has become popular for many kinds of resource location and 

distribution applications including file sharing, distributed computation, multi-media 

messaging and content distribution. Peer-to-peer approaches also have significant 

potential for supporting large scale, decentralised service oriented computing. This 

chapter discusses each class of contemporary P2P architecture in turn and discusses 

the suitability of each architecture class for supporting service oriented computing. 

Future trends in peer-to-peer architectures are then discussed and multi-layer peer-to-

peer architectures are highlighted as a promising platform for supporting service 

oriented computing. This chapter then concludes with a discussion of outstanding 

issues that must be addressed before peer-to-peer architectures can offer adequate 

support for service oriented computing. 
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INTRODUCTION 
Service Oriented Computing (SOC) is a family of tools and approaches, which aim to reflect component 

trends towards anonymity and heterogeneity, providing systems which are better suited to today’s large-

scale and open distributed environments (Huhns & Singh, 2005). Individual services may be composed 

together by developers to provide emergent application functionality. Service-based applications, are 

composed of three parts: providers, who provide services, consumers, who use these services and a 

registry, which is used to publish information about available services. These architectures are supported 

by service definition languages such as WSDL (Christensen, Curbera, Meredish, & Weerawarana, 2001), 

discovery protocols such as UDDI (Bryan, Draluk, Ehnebuske, Glover, Hately, Husband, Karp, Kibakura, 

Kurt, Lancelle, Lee, MacRoibeaird, Manes, McKee, Munter, Nordan, Reeves, Rogers, Tomlinson, Tosun, 

von Riegen, & Yendluri, 2002) and binding protocols such as SOAP (Box, Ehnebuske, Kakivaya, 

Layman, Mendelsohn, Nielsen, Thatte, & Winer, 2000). 

Peer-to-Peer (P2P) systems are a promising platform for supporting more flexible service oriented 

computing, offering decentralised and large-scale service discovery and publication. This can potentially 

allow any peer participating in the network to be a service provider or consumer. P2P systems are realised 

using a family of distributed programming approaches that emphasise co-operation between entities 

known as peers that are essentially equal and can both require and provide services (Shirkey, 2001). Thus 

far, P2P approaches have been successfully applied to fields including: resource sharing, distributed 

computation, multimedia messaging and content distribution.  

A core component of a P2P system is its network architecture, which represents how the peers 

within the system are connected together. These can range from topologies that are particularly 

centralized in their operation (typically using some form of central hub), to fully decentralized topologies 

in which there is no set structure and all peers are considered equal. This chapter presents a classification 

of these P2P architectures and analyses their suitability for supporting the requirements of service 

oriented computing. In particular we look at their support for key aspects of SOC:  

 Service Publication – the process of announcing your service to others 

 Service Discovery – the process of discovering services that meet your requirements 

 Scalability – how well the infrastructure can support a large scale environment with many service 

providers and consumers 

 Resilience – the reliability of the infrastructure for the publication, discovery and provision of 

services 

 

SURVEY OF P2P NETWORK ARCHITECTURES 
As described in the introduction to this chapter, P2P systems are a promising architecture for supporting 

SOC and have a proven track record for supporting large scale resource location and distribution. This 

section introduces an in-depth survey of P2P systems conforming to the key classes of P2P architecture 

and discusses their suitability for supporting service oriented computing: 

Semi-centralised

Example Systems

Napster, SETI@home

Un-structured

decentralised

Example Systems

Gnutella (v0.4), FreeNet

Super-node

decentralised

Example Systems

Gnutella (v0.6), Kazaa

Structured

decentralised

Example Systems

Pastry, Chord

 
Figure 1 – Classes of P2P architecture 
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1. Semi-centralised P2P systems such as Napster (Merriden, 2001) and SETI@Home (Anderson, 

2001) use a semi-centralised network architecture, wherein a small number of dedicated servers 

mediate interaction between large numbers of peers at the edge of the network. 

2. Unstructured, decentralised P2P systems such as Gnutella 0.4 (The Gutella Protocol 

Specification v0.4, Document Revision 1.2, n.d.) and GPU (Mengotti, 2004) are entirely 

decentralised, connecting peers together in an essentially random manner and treating all peers 

equally. 

3. Super-node P2P systems such as Gnutella 0.6 (The Gnutella Protocol Specification v.0.6, draft, 

n.d.) and Kazaa (Kazaa Home Page, 2001) feature decentralised server-less communication, 

however, all peers are not treated equally. More powerful peers on faster connections may elect to 

become ‘super-nodes’ which route a greater proportion of messages and may also provide special 

services. 
 

4. Structured, decentralised P2P systems such as Chord (Stoica, Morris, Karger, Kaashoek, & 

Balakrishnan, 2001), CAN (Ratnasamy, Francis, Handley, Karp, & Shenker, 2001) and Pastry 

(Rowstron & Druschel, 2001) feature decentralised, server-less communication supported by a 

highly structured overlay network. 

 

Specifically, each of these architectures will be critiqued on its support for publication of service 

specifications and discovery of services. 

 

Semi-centralised P2P Systems 
Semi-centralised P2P networks use dedicated servers to mediate the process of resource discovery and 

distribution, though some stages of this process may also occur via direct interaction between peers. 

Typically semi-centralised systems use servers to index available resources and peers. In this sense, semi-

centralised systems such as Napster (Merriden, 2001) and SETI@Home (Anderson, 2001) are not really 

P2P, as they feature highly asymmetric communication. However, these systems can be considered P2P 

in the sense that they exploit unused resources available at the edge of the network and they empower 

participating peers to provide as well as consume services.  As these systems feature elements of client-

server and peer-to-peer design, semi-centralised P2P systems are often referred to as hybrid models. 

 

Napster 
Napster (Merriden, 2001) was the ‘killer application’ which led to the (re)emergence of the P2P 

paradigm. It was released in 1999 and rapidly captured the imagination of users and the research and 

business communities. Napster made use of the disk space and bandwidth of home-PCs to create a 

distributed library of digital music. Using the Napster client software, users were able to make their 

digital music collections available online and download music from other users. At its height, Napster 

served over 50 million users (Merriden, 2001). The Napster system is proprietary and protected by 

copyright, therefore it is not possible to provide a detailed description of the Napster protocol here, 

however a high-level overview of the resource location and distribution features of Napster is provided 

below. 

Connection: Peers connect to the Napster network by firstly establishing a TCP connection to the 

central indexing server. This connection is authenticated by user-name and password and nodes which 

have behaved badly are blocked at this point. Each peer then uploads a list of all available files to the 

indexing server. 

Resource Discovery: In order to discover resources, the downloading client will issue either a 

‘search’ or ‘browse’ request to the server.  A ‘search’ request takes a file name as argument and the server 

responds by returning a list of all matching files, together with connection information for the peers that 

are hosting them. A ‘browse’ request takes a peer identifier as argument and the server should respond by 

returning a list of all files contained on the specified host. 
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Resource Distribution: File transfer occurs directly between peers via Hypertext Transfer 

Protocol (HTTP) following the resource discovery phase. The searching peer attempts to make a HTTP 

connection to the peer holding the target resource on the IP address and port previously discovered and 

then proceeds to download the file. In cases where the serving peer is behind a fire-wall or Network 

Address Translation (NAT) device, the client peer may initiate a ‘PUSH’ request, wherein the server peer 

makes a TCP connection to the client and uploads the required file. If both client and server nodes are 

behind a firewall, then no file transfer is possible. 

While at its height Napster was very successful, supporting a user community that numbered in 

the millions, the system was to prove critically vulnerable to scalability issues and attack, as will be 

discussed in the critique at the end of this section. 

 

SETI@Home 
SETI@Home (Anderson, 2001) uses the CPU cycles of home PCs to create a highly distributed super-

computer dedicated to searching through information gathered by radio telescopes for signs of extra-

terrestrial intelligence. Using the SETI@Home client software, users are able to donate their spare CPU 

cycles to a scientific experiment. SETI@Home has been a great success and at one point was the largest 

super-computer in the world (Anderson, 2001). Unlike the Napster model, peers do not directly interact 

with each other in SETI@Home. As no stage of interaction occurs directly between peers, SETI@Home 

can only be considered a P2P application in the context that is makes use of resources around the edge of 

the network. 

Data Acquisition: The initial data set for SETI@Home is gathered at the Arecibo radio telescope 

array, which gathers radio signals from the vicinity of candidate stars, at specially selected frequencies 

(Anderson, 2001). The SETI@Home servers then divide this data into work units of suitable size for 

distribution over the Internet (300KB). 

Processing: Peers connect to SETI@Home by firstly establishing a connection to the central 

server, which is authenticated by user-name and password. Each peer then downloads a work-unit via 

HTTP and proceeds to execute the algorithms contained in the client software on the work unit. When 

analysis of the work unit is completed, the result is uploaded back to the SETI@Home server, where it is 

logged. 

Candidate Detection: Strong candidates that have been detected by SETI@Home peers are 

filtered by central servers in order to remove interference from human activities. Miscalculated or 

misreported work units are then removed by central servers and promising results are passed to 

astronomers for further analysis. 

SETI@Home has been extremely successful at exploiting public interest in the search for 

extraterrestrial intelligence using P2P technology. The SETI@Home system remains one of the world’s 

most powerful super-computers at over 20TFLOPS and the SETI@Home project is also the world’s 

longest computation, having performed more than 4 X 10
20

 floating point operations (Anderson, 2001). 

 

Other Semi-Centralised P2P Systems 
Alongside Napster and SETI@Home, other notable systems use a semi-centralised P2P approach. 

OpenNap (The OpenNap Protocol Specification, 2000), the open-source clone of Napster was released 

following Napster’s closure in 2001. OpenNap allowed users to set-up their own Napster-style directory 

server, to which other OpenNap users could connect and share files. Unfortunately, while Napster’s 

parent company had the financial resources to provide sufficiently powerful and reliable server hardware, 

home-run directory servers lacked the resources to support large-scale user communities and were far too 

unreliable. In time, these technical shortcomings drove users to abandon OpenNap. 

BOINC (Anderson, 2004) is a flexible application framework based upon the SETI@Home 

paradigm. Whereas SETI@Home (Anderson, 2001) uses P2P technology to implement a super-computer 

dedicated to a specific task, BOINC provides a framework for creating P2P super-computers for any task. 

The BOINC network structure is very similar to that of SETI@Home and like SETI@Home, BOINC is 



 A SURVEY OF P2P ARCHITECTURES FOR SERVICE ORIENTED COMPUTING  5 

cross-platform. Unlike SETI@Home, BOINC is open source and designed to facilitate the deployment of 

existing applications. 

 

Critique of Semi-Centralised P2P for Service Oriented Computing 
Semi-centralised P2P systems can be considered as hybrid designs featuring elements of both client-

server and peer-to-peer design. This being the case they naturally demonstrate only a subset of the 

advantages of a P2P approach. Both Napster (Merriden, 2001) and SETI@Home (Anderson, 2001) 

successfully leverage unused resources around the edge of the network to provide a service, however, the 

semi-centralised architectures they use to accomplish this have inherent limitations in terms of scalability, 

resilience and cost. 

At its height Napster served a user community of over 50 million, therefore it is clearly possible 

for the semi-centralised model to scale to support large-scale service discovery and publication; however, 

this is dependent upon the presence of a central authority which is capable of adequately provisioning 

servers. As communication is highly asymmetric in semi-centralised systems, servers experience extreme 

loads. This necessitates specialist server hardware of adequate performance and reliability to store data on 

all available services and the peers providing them. While Napster proved that this model can work for 

large user communities where there is adequate funding by a central authority, it is inherently unsuitable 

for situations where no such authority exists. This is highlighted by the falling popularity of OpenNap 

(The OpenNap Protocol Specification, 2000). 

As with Napster, SETI@Home suffered from significant dependability problems. Unlike Napster, 

where the resources being distributed are located on standard peers, in SETI@Home, work units are only 

distributed by the SETI@Home server, which was frequently overwhelmed during the early stages of the 

SETI@Home project and often had to be upgraded as the SETI@Home user community grew (Anderson, 

2001). These scalability shortcomings are typical of semi-centralised P2P architectures. 

Semi-centralised architectures are inherently more vulnerable than decentralised P2P 

architectures as central servers, such as Napster’s indexing server, form single points of failure and the 

focal points for attack. In such systems, hardware or software failure in servers may result in failure of the 

entire system, and thus the unavailability of all services. Thus, while semi-centralised P2P architectrues 

may be the most intuitive P2P architecture to support web services (being closer in character to existing 

web service architectures), they offer poor scalability and reliability compared to more decentralised P2P 

architectures. 

 

Unstructured, Decentralised P2P Systems 
Unstructured decentralised P2P systems make connections essentially at random between peers, forming 

an unstructured overlay network which, unlike semi-centralised systems contains no servers or other 

special-purpose peers. Each peer on such a network is equally responsible for providing resources, routing 

network maintenance messages and routing resource discovery traffic. Unlike the semi-centralised 

systems discussed previously, unstructured decentralised networks meet all of the criteria in our definition 

of P2P systems. All peers are essentially equal; the network is highly decentralised and features 

symmetric communication. The remainder of this section discusses significant implementations of 

unstructured, decentralised P2P systems and concludes with a critique of unstructured, decentralised P2P 

networks for service oriented computing.  

 

Gnutella 0.4 
Gnutella (The Gnutella Protocol Specification v.0.6, draft, n.d.) is an open protocol which supports peer-

to-peer resource discovery. The protocol builds an unstructured decentralised overlay network in which 

each host is required to forward both resource discovery and network maintenance messages. The 

protocol uses just five message types: PING (peer discovery search), PONG (peer discovery response), 

QUERY (resource discovery search), QUERYHIT (resource discovery response) and PUSH (a firewall 
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avoidance mechanism). Interaction on Gnutella can be considered to be structured into three phases: 

connecting to the network, discovering resources and transferring resources.  

Connection: Acquisition of an initial host address (used to bootstrap network entry) occurs 

outside of the Gnutella protocol; typically via a Gnutella host cache (The Gnutella Protocol Specification 

v.0.6, draft, n.d.). A newly-arriving peer connects to an initial peer discovered in this way by initiating 

TCP connections to that host. Subsequently, further peers are discovered by sending a PING message. 

PING messages are broadcast by each peer to all of their neighbours, who in turn broadcast the message 

to all their neighbours and so on, ‘flooding’ the network. All available peers that receive a PING should 

respond with a PONG, which is forwarded back along the path of the incoming PING to the originating 

peer. PONG messages contain the network address and port on which the sending peer is listening for 

incoming Gnutella connections along with useful meta-data. To avoid swamping the network, all 

broadcast messages are tagged with a Time to Live (TTL) value, which is typically 7 hops. Peers 

decrement the TTL value of messages as they are routed, discarding messages where the TTL equals 0. 

This gives each peer a ‘search horizon’ of approximately 10,000 remote peers, outside of which search 

messages will not reach. 

Resource Discovery: Peers listen for incoming QUERY messages, and contribute to their 

broadcast across the network by flooding them to each of their neighbours, as described above. If a peer is 

able to satisfy a QUERY, it responds by sending a QUERYHIT message back along the path of the 

incoming QUERY. QUERYHIT messages contain the network address and port on which the responding 

peer is listening for HTTP file-transfer connections. QUERYHITs also include the speed of the peer’s 

connection, and a set of ‘hits’ (matching file-names) which satisfy this QUERY. 

Resource Distribution: Actual file-transfer, or service provision occurs outside of the Gnutella 

protocol. When a requesting peer receives a QUERYHIT message, it can attempt to initiate a direct 

download, from the target peer (whose port and IP address were specified in the QUERYHIT message) 

via HTTP. However, if the target peer is behind a firewall, the requesting peer can instead send a PUSH 

message to the target, containing details of the file requested and the network address and port to which 

the file should be pushed. On receiving a PUSH, the target peer establishes the HTTP connection and 

pushes the file to the requesting peer. 

Gnutella 0.4 provided a decentralised alternative for supporting P2P file sharing following the 

demise of Napster. Due to its decentralised nature and lack of indexing servers; it could not be subject to 

the same legal attacks. Unfortunately, unstructured decentralised networks suffer from significant 

scalability problems (discussed in the critique at the end of this section) and for this reason these schemes 

have since largely been replaced by super-node architectures. 

 

Other Unstructured, Decentralised P2P Systems 
Alongside Gnutella, a number of other systems follow the unstructured P2P approach. Freenet (Clarke, 

Miller, Hong, Sandberg, & Wiley, 2002) is an anonymous and censorship resistant content publication 

and distribution system, which in its early incarnation used a decentralized architecture very similar to 

Gnutella. However, unlike Gnutella where users have control over their own file-share, Freenet 

automatically manages the assignment of materials across the network. As material published by a user 

may be stored anywhere within the network and resource discovery messages are routed through many 

intermediate peers, Freenet is highly anonymous. Recently, Freenet has moved towards a more structured 

network architecture in order to address the scalability shortcomings associated with unstructured 

decentralised networks. 

GPU (Mengotti, 2004) implements a framework to support distributed processing over the 

Gnutella network. Like BOINC, GPU is open-source, cross platform and intended to be flexible; 

however, unlike these systems, GPU is entirely decentralised, allowing all users of the GPU network to 

submit tasks for processing. As GPU peers operate over the same network as Gnutella file-sharing peers, 

GPU has transitioned to a super-node architecture in Gnutella 0.6 (The Gnutella Protocol Specification 

v.0.6, draft, n.d.). 
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Critique of Unstructured Decentralised P2P Systems for Service Oriented Computing 
Unstructured, decentralised P2P networks such as Gnutella (The Gutella Protocol Specification v0.4, 

Document Revision 1.2, n.d.) address some of the concerns associated with their semi-centralised 

predecessors in terms of resilience; however these networks are inherently incapable of offering reliable 

service location while remaining scalable. Unstructured decentralised P2P systems offer inherent support 

for complex search and are capable of scaling to large numbers of users without the need for specialised 

server hardware. Unfortunately, the broadcast resource discovery mechanism employed on these 

networks does not scale (Ritter, 2001) and thus all resource discovery messages are assigned a Time to 

Live (TTL) value which limits their propagation through the network. This in turn leads to an effect 

known as the search horizon, wherein nodes can only communicate with a subset of peers that are ‘in 

range’ on the Gnutella network. This makes it impossible for Gnutella to support reliable object location 

for large-scale networks. This limitation arises from the fact that unstructured decentralised networks treat 

all peers as equal and therefore bandwidth consumption due to message-passing must be sufficiently low 

so as not to exclude slow peers on low bandwidth links. In reality nodes are highly heterogeneous, and 

thus treating them as equals is undesirable as the capabilities of ‘strong’ nodes are not fully exploited, 

while the poor performance of ‘weak’ nodes may have a detrimental effect on their neighbours. For this 

reason, from version 0.6, Gnutella has adopted a hierarchical super-node network. Decentralised 

architectures such as Gnutella 0.4 are far more resilient than semi-centralised architectures such as 

Napster (Merriden, 2001) or SETI@Home (Anderson, 2001). Unlike these systems, Gnutella has no 

single point of failure, which makes it extremely resilient where resources are distributed evenly across 

the network. Thus, while unstructured, decentralised P2P systems offer better resilience and scalability 

than semi-centralised systems, they cannot offer large scale, reliable location of services, making them a 

poor fit for SOC wherein service consumers expect highly available, non-transient services. 

 

Super-Node P2P Systems 
Super-node systems differentiate nodes into two classes, ‘leaf nodes’ and ‘super nodes’. Super nodes 

make connections essentially at random to other super nodes forming an unstructured, decentralised 

network, similar to those discussed in the previous section. Super nodes accept incoming connections 

from both super nodes and leaf nodes. Unlike super nodes, leaf nodes do not accept incoming 

connections, forming connections only to super nodes. This differentiation in peer responsibility means 

that super nodes route the majority of traffic.  

Unlike unstructured decentralised P2P systems, peers in super-node networks are not equal, 

though the emergent network structure typically remains highly decentralised and usually features 

symmetric communication between super nodes. The remainder of this section discusses a significant 

super-node P2P system: Gnutella 0.6 (The Gnutella Protocol Specification v.0.6, draft, n.d.) and 

concludes with a critique of the super-node model of interaction for service oriented computing. 

 

Gnutella 0.6 
Gnutella 0.6 (The Gnutella Protocol Specification v.0.6, draft, n.d.) uses a super-node network 

structure. Gnutella’s super node architecture is implemented through the Gnutella ultra-peer scheme (The 

Gnutella Protocol Specification v.0.6, draft, n.d.). The ultra-peer scheme was introduced to reduce the 

scalability problems caused by the flooding search used in Gnutella 0.4 (described previously). Alongside 

the differential connection behaviour, which is common to all super node schemes, Gnutella ultra-peers 

are also required to proxy for leaf nodes as specified in the Gnutella QUERY Routing Protocol (QRP) 

(The Gnutella Protocol Specification v.0.6, draft, n.d.). Ultra peers also cache PONG messages according 

to the Gnutella PONG caching scheme (The Gnutella Protocol Specification v.0.6, draft, n.d.). 

As ultra-peers respond to incoming PING messages in the same way as Gnutella 0.4 peers, these 

nodes form an unstructured decentralised network such as that formed by Gnutella 0.4 peers, however, 

leaf-nodes do not respond to incoming PING messages, forming only a few connections to super-nodes – 

making them the leaves of the network graph. As each ultra-peer maintains a list of what files their leaf-
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nodes neighbours are sharing, it is possible for ultra-peers to proxy for their leaf-nodes, effectively acting 

as distributed index servers for leaf-nodes and thus further reducing traffic for these nodes. Also, as leaf-

nodes do not receive PING messages, the level of traffic that they are required to route is reduced still 

further. 

Most Gnutella 0.6 clients allow their users to decide whether they would like to join the network 

as an ultra-peer or leaf-node. Those users with powerful computers and fast Internet connections are 

expected to elect to become ultra-peers, while users with less powerful PCs or slower Internet connections 

are expected to elect to become leaf-nodes. By adapting the role that each node plays in this way, their 

capabilities are better exploited and the contribution that each node makes to the system as a whole is 

somewhat optimised. Similarly, by adapting the way that each node is treated by the system, it is possible 

to maximize its suitability for supporting different service classes. 

 

Other Super-Node P2P Networks 
Alongside Gnutella 0.6, several other notable P2P systems use a super-node approach. Kazaa (Kazaa 

Home Page, 2001) is a commercial implementation of a super-node network similar to Gnutella 0.6. As 

Kazaa is a commercial implementation, its protocol is not open and therefore cannot be discussed in detail 

here. However, two key differences between Kazaa and Gnutella 0.6 are apparent. Firstly, like Napster, 

Kazaa uses usernames and passwords, which are authenticated when a node is boot-strapped onto the 

network. Secondly, Kazaa uses specialised indexing servers to augment the super-node network. This 

increases the performance of Kazaa, however, it does so at the expense of both scalability and resilience. 

Various schemes have been proposed to better manage the election of super-nodes, for example 

SG-1 (Montresor, 2004) addresses the issue of reduced resilience on super-node networks (discussed in 

the following critique), while SUPS (Pyun & Reeves, 2004) applies random graph theory to the election 

of super-nodes in order to ensure that super-node networks remain scalable and avoid the issues which 

may arise either due to either a lack of super-nodes or poor selection of super-nodes.  

 

Critique of Super-Node P2P Systems 
Super-node P2P networks such as Gnutella 0.6 (The Gnutella Protocol Specification v.0.6, draft, 

n.d.) and Kazaa (Kazaa Home Page, 2001) address some of the scalability issues associated with their 

entirely decentralised predecessors, however, super-node schemes do so at the expense of resilience and 

are equally incapable of providing truly reliable object location. As with unstructured decentralised P2P 

systems, super-node schemes offer inherent support for complex search and are capable of scaling to large 

numbers of users without the need for specialised server hardware. Unfortunately, while the search 

horizon of these networks is significantly larger than unstructured networks (an order of magnitude for 

Gnutella 0.6) it is still possible for peers to fall out of range of one another. This makes it impossible for 

Gnutella 0.6 to support reliable service publication. 

Unfortunately, the scalability improvements offered by super-node schemes come at the cost of 

asymmetric network communication and to some extent, this asymmetric communication brings with it 

the issues associated with semi-centralised P2P systems - reduced resilience to attack and lower fault 

tolerance. In most cases, leaf nodes will be connected to multiple Super-Nodes and therefore the failure of 

a single Super-Node should not cause a service interruption for attached leaf-nodes, however, as leaf-

nodes typically only connect to a few super-nodes, the failure of a super-node may cause a significant 

reduction in quality of service for attached leaf-nodes. This is better than the semi-centralised model, 

wherein the failure of an indexing server may cause a loss of service for the entire network, but worse 

than unstructured decentralised networks. In addition, as the failure of super-nodes is likely to have a 

significant effect on their leaf-nodes, they form a logical point of attack. Again this is preferable to the 

semi-centralised approach, but worse than unstructured, decentralised approaches. Thus, while super-node 

networks are a more promising platform for supporting SOC than semi-centralised or unstructured, 

decentralised P2P systems, they still cannot provide reliable availability of services. This is addressed to 

an extent by structured, decentralised systems, which are discussed below. 
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Structured, Decentralised P2P Systems 
Structured P2P systems are designed to provide efficient resource location and routing primitives. A 

strictly defined network structure is maintained by controlling the way that peers connect to their 

neighbours, for example through the implementation of a distributed hash table (DHT). A DHT 

abstraction provides the same functionality as a traditional hash table, wherein nodes and resources on the 

network are mapped onto a unique key using a hash function. Nodes on such a network make connections 

to peers according to their key value and in this way; the hash function defines a specific structure for the 

overlay network. Typically, all nodes in structured decentralised networks are considered equal and are 

not differentiated in terms of functionality or responsibility as in super-node or semi-centralised networks. 

The remainder of this section discusses three significant structured, decentralised P2P systems: Chord 

(Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001), CAN (Ratnasamy, Francis, Handley, Karp, & 

Shenker, 2001) and Pastry (Rowstron & Druschel, 2001). It concludes with a critique of the structured, 

decentralised model of interaction. 

 

Chord 
Chord (Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001) is a simple DHT which uses a 

consistent hash function to map keys onto nodes. The use of a consistent hash function means that nodes 

will always be mapped onto the same key. Nodes join the Chord overlay based upon their key value, such 

that nodes close in the key space are located close to each other on the overlay network. Each Chord peer 

maintains information about the preceding peer and log n other peers in what are known as ‘finger tables’. 

The result of this is that each peer has knowledge of the following node in the ring, then the node 2 hops 

away, 4 hops away and so on until the termination of the Chord ring structure. For example, peer A in the 

simplified Chord overlay shown in figure 1 would have knowledge of nodes {B, D, and H}. Due to the 

highly structured nature of the Chord network, all data can be predictably located in O(Log N) hops. The 

consistent hash function usually used with Chord is the Secure Hash Algorithm – SHA1 (Eastlake & 

Jones, 2001). SHA1 takes an input of up to 263 bits and produces a 160-bit key. It is computationally 

expensive to compute a value from a given key, but inexpensive to generate a key from a given value, 

thus it is difficult to deduce the IP address of a peer based upon its key. 

 

 
Figure 2 – Chord, a Structured Decentralised P2P Network 

 

Chord does not implement a full resource location and distribution system; rather it implements a simple 

Key Based Routing (KBR) algorithm. However, Chord is often used to support distributed storage 
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systems, wherein each peer on the Chord overlay network is assigned responsibility for part of a 

distributed data set. Data is mapped onto Chord nodes by hashing with the SHA1 algorithm and each 

node is made responsible for storing all data which has a key of less value than its own and which is not 

already stored on a preceding peer. For example, if a piece of data ‘D2’ had a hash value of 3.5, this data 

would be stored onto node D. Reliable lookup of this data can then be performed in O(Log N) time from 

any node. The lookup path from node A for this resource is shown in Figure 2. 

 

Content Addressable Network 
Content Addressable Network (CAN) (Ratnasamy, Francis, Handley, Karp, & Shenker, 2001) is another 

example of distributed hash table that enables the insertion, look-up and deletion of key-value pairs. 

Key/value pairs in CAN are mapped onto a virtual Cartesian coordinate space. This space is dynamically 

(re)partitioned between nodes, such that each node is responsible for a section of the virtual space. Each 

key-value pair is mapped onto a point in the virtual coordinate space by hashing its key with a uniform 

hash function and then storing it on whatever CAN node is responsible for that section of the coordinate 

space. This is shown in figure 3 below. Alongside maintaining a database of key/value pairs which map to 

its zone, each node in a CAN network maintains a routing table containing each of its closest neighbours 

along the X axis and the Y axis in both the positive and negative direction, together with the coordinates 

of these nodes, such that the routing table of Node D would contain {E, B, A, C} and the routing table of 

node B would contain {E, D, A}. In order to route a message to a given point in the CAN, each node, 

simply forwards the message to the node in its routing table with the closest coordinates. 

 
 Figure 3 – CAN, a Structured Decentralised P2P Network 

 

Unlike logarithmic DHTs such as Chord, the connection of a peer to the CAN network affects a 

much smaller region of the network. When nodes leave CAN, it is essential to ensure that the 

responsibility for the zone that the leaving node is currently responsible for is transferred to another node 

in order to avoid the loss of data in that zone. Suppose that Node E wishes to leave the CAN network. If 

the node’s zone can be merged with a neighbour to form a valid Cartesian zone, then the key/value 

database is explicitly transferred. If not, then the neighbour node with the smallest zone temporarily takes 

control of two zones.  If a node fails without transferring its zone, that zone can become inaccessible. To 

prevent this, each node also maintains the routing table of neighbouring peers. CAN nodes aggressively 

probe their neighbours and, in the event that node failure is detected send take-over messages to each 

node in their neighbour’s routing table. In the event that multiple adjacent nodes fail, CAN nodes attempt 

to respond by broadcasting take-over messages across the overlay network. There are many potential 

paths between nodes in the CAN coordinate space, which makes the overlay particularly robust in the 
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presence of node failure. If the node which is the next closest hop to a target zone fails, then a peer will 

simply select the next closest entry from its routing table.  

 

Other Structured, Decentralised P2P Systems 
Pastry (Rowstron & Druschel, 2001) implements a scalable application level routing and object location 

service using a DHT. Pastry adds optimisations based upon network proximity and adapts better to the 

arrival and failure of nodes. As with Chord, each node has a unique node identifier and nodes join the 

overlay based upon their key value, such that nodes with close numeric values are located close to each 

other on the overlay network. Keys in Pastry are randomly assigned and a node will not necessarily be re-

assigned the same ID upon re-joining the network. Pastry seeks to minimise the distance that messages 

travel on the underlying network using a scalar proximity metric based on the number of hops between 

nodes on the underlying IP network. The circular Pastry key space closely resembles the Chord ring 

illustrated in Figure 2. However, Pastry nodes maintain additional routing tables which are used to 

optimize routing based upon the underlying network structure. 

Tapestry (Plaxton, Rajaraman, & Richa, 2007) is a structured, decentralised network which 

attempts to ensure reliability through high levels of redundancy, thus ensuring the systems resilience 

against both failure and attack. Like other structured networks, Tapestry supports efficient object location 

and retrieval; however, unlike the other systems discussed in this section, it builds a network 

corresponding to a Plaxton mesh (Castro, Costa, & Rowstron, 2003), rather than a ring structure as in 

Chord (Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001) or a Cartesian coordinate space as in 

CAN (Ratnasamy, Francis, Handley, Karp, & Shenker, 2001). 

 
Critique of Structured, Decentralised Networks 

Structured decentralised networks such as Chord (Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 

2001), CAN (Ratnasamy, Francis, Handley, Karp, & Shenker, 2001) and Pastry (Rowstron & Druschel, 

2001) address the issue of providing efficient and reliable service publication for large-scale P2P systems. 

However, unlike unstructured and super-node schemes such as Gnutella 0.4 (The Gutella Protocol 

Specification v0.4, Document Revision 1.2, n.d.) and Gnutella 0.6 (The Gnutella Protocol Specification 

v.0.6, draft, n.d.), these networks are not inherently capable of service discovery. While each of the 

structured, decentralised P2P systems discussed in this section supports efficient lookup of services, this 

requires that a node performing such a look-up knows the key of that resource in advance. Acquisition of 

this key is non-trivial and requires the implementation of a separate search mechanism. This may take the 

form of distributed indexing servers, which associate file-names with keys, or the use of a second overlay 

network, more suitable for supporting search. This overlay may, rather than being implemented directly 

over transport-layer protocols such as TCP, use the structured network as a routing substrate. Systems 

which make use of such a multi-layer P2P architecture are discussed in the future trends section of this 

chapter. Thus while structured P2P systems provide an important part of what is needed to support P2P 

SOC – reliable service publication and binding, they do not support complex service discovery. 

 

SUMMARY OF P2P SUPPORT FOR SERVICE ORIENTED COMPUTING 
Based upon the survey performed in the previous section, it can be seen that each of the major P2P 

architectures provide part of the solution to supporting service oriented computing. Unstructured or super-

node systems provide efficient support for service location, while structured networks provide good 

support for service publication and binding. This is summarised in table 1 below: 

 

 

 
 

 

Table 1 – P2P Architectures for Service Oriented Computing 
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Semi 

Centralised 
Unstructured Super Node Structured 

Service 
Publication 

GOOD 

Reliable service 

location. 

POOR 

Services may fall out 

of range. 

POOR 

Services may fall out 

of range. 

EXCELLENT 

Efficient and reliable 

service publication. 

Service 
Discovery 

GOOD 

Search via indexing 

server. 

GOOD 

Inherent discovery 

through flooding 

search. 

GOOD 

Inherent discovery 

through flooding 

search. 

NONE 

No support for service 

discovery. 

Scalability 
VERY POOR 

Requires big, costly 

servers. 

POOR 

Flooding search 

doesn’t scale. 

GOOD 

Improved, but un-

scalable. 

EXCELLENT 

Efficient, scalable 

lookup. 

Resilience 

VERY POOR 

Failure of indexing 

server affects all 

nodes. 

EXCELLENT 

Resistant to failure & 

attack. 

GOOD 

Less resistant to 

failure of super-nodes. 

EXCELLENT 

Resistant to failure & 

attack. 

 

As can be seen from table 1, no single P2P architecture provides good support for service oriented 

computing. The next section however introduces some experimental P2P systems which use elements 

from various architectures to provide support for service oriented computing.  

 

FUTURE TRENDS IN PEER-TO-PEER ARCHITECTURES 
Multi-layer peer-to-peer architectures have recently begun to emerge and, though they have yet to be 

deployed on a large scale, they are a promising platform for SOC. These architectures attempt to combine 

the benefits of unstructured decentralised networks (which provide flexible service discovery) and 

structured decentralised networks (which provide efficient service publication). Multi-layer networks 

accomplish this by building a structured decentralised network, which is then used as the underlying 

routing and service publication substrate and is overlaid with an unstructured, decentralised network 

which provides support for service discovery. In multi-layer architectures, the lower overlay could be any 

structured, decentralised network such as CAN (Ratnasamy, Francis, Handley, Karp, & Shenker, 2001), 

Chord (Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001) or Pastry (Rowstron & Druschel, 2001), 

while any unstructured decentralised network such as Gnutella (The Gutella Protocol Specification v0.4, 

Document Revision 1.2, n.d.) or GPU (Mengotti, 2004) could be layered on top of this to provide search. 

In such architectures, the structured overlay essentially fulfils the role that transport-layer protocols play 

in single-layer P2P systems. The remainder of this section discusses significant multi-layer P2P systems 

and discusses their suitability for supporting SOC. 

 

Structella 
As described in previously, a major shortcoming of structured, decentralised networks is that, unlike 

unstructured or super-node networks, they do not provide inherent support for complex queries such as 

plain-text search. Initial research on retrofitting structured decentralised networks with search capability 

focus on distributed index server approaches, however this has the same associated drawbacks as super-

node schemes, and to a lesser extent semi-centralised systems. 
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Figure 4 – Structella, a Multi-Layer Network 

 

Structella (Castro, Costa, & Rowstron, 2003) proposes a more architecturally interesting solution; 

layering an unstructured decentralised network on top of a structured decentralised overlay, theoretically 

combining the primary benefits of both architectures: scalable object lookup and inherent support for 

complex queries. Structella uses the Pastry network as a routing substrate (layer 0 in figure 4). This is 

overlaid with a cross-layer optimised version of Gnutella (layer 1 in figure 4 to provide support for 

resource discovery. As with Gnutella (The Gutella Protocol Specification v0.4, Document Revision 1.2, 

n.d.), Structella does not manage the distribution of services across the network, allowing users to host 

their own content. Structella offers support for two connection mechanisms, flooding search and random 

walk. The connection process for Structella is virtually identical to the connection process for Gnutella 

(The Gutella Protocol Specification v0.4, Document Revision 1.2, n.d.), save that messages are routed via 

a structured, decentralised network rather than via TCP/IP. 

The Structella resource discovery mechanism is much more efficient than that used on 

unstructured, decentralised networks such as Gnutella (The Gutella Protocol Specification v0.4, 

Document Revision 1.2, n.d.), as the use of Pastry’s proximity-aware routing table ensures that QUERY 

messages should not be received more than once by each peer. In this way, Structella combines the 

benefits of structured networks (reliable service publication) with a more reliable and scalable version of 

Gnutella’s service discovery facilities. 

 

Open Overlays 
The Open Overlays middleware (Grace, Coulson, Blair, Mathy, Yeung, Cai, Duce, & Cooper, 2004) 

provides an abstraction in which different overlay networks are universally modelled using standardised 

‘overlay’ component frameworks. The framework accepts ‘plug-in’ components that offer various types 

of overlay-related behaviour from underlying transport protocols such as TCP to DHTs such as Chord 

(Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001). Overlay plug-ins are themselves ‘mini’ 

component frameworks, each of which is composed of three distinct components that encapsulate the 

following areas of behaviour: 

i. Control, in which the node implements cooperation with the peer control element on other nodes 

to build and maintain an overlay-specific topology; 

ii. Forwarding, which determines how the overlay will route messages over the aforementioned 

topology 

iii. State, information required for the overlay, for example the nearest neighbours. 
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As these elements expose standard interfaces, Open Overlays allows the creation of diverse P2P 

systems using a variety of P2P network protocols. Furthermore, the resulting system may be re-

configured at runtime to modify system functionality. Overlay component frameworks form powerful 

building blocks which can be used to assemble systems using heterogeneous overlays, including multi-

layer overlays. Furthermore, the open overlays middleware provides support for common web service 

technologies, as described in (Grace, Coulson, Blair, Mathy, Yeung, Cai, Duce, & Cooper, 2004). 

 

Multi-Layer P2P Networks for SOC 
Multi-layer overlay networks such as Structella (Castro, Costa, & Rowstron, 2003) address the two 

critical issues for supporting Service Oriented Computing (SOC) which are not adequately addressed by 

other architectures. Firstly, they are capable of supporting both scalable lookup and search. Though the 

latter depends upon cross layer optimisation between the search and routing layers. 

Multi-layer networks, such as Structella (Castro, Costa, & Rowstron, 2003), inherit the scalable 

and reliable object location offered by the lower structured layer. Furthermore, multi-layer networks such 

as Structella can exploit the inherent structure of the structured routing substrate to improve the scalability 

of broadcast service discovery. For example, Structella uses Pastry’s proximity-aware routing table 

(Rowstron & Druschel, 2001) to ensure that search messages are not re-broadcast to the same peers. 

Without such cross-layer optimisation the search layer would always demonstrate lower per-hop 

efficiency than single layer schemes such as Gnutella (The Gutella Protocol Specification v0.4, Document 

Revision 1.2, n.d.) due to the overhead of maintaining multiple layers. 

Multi-layer overlay networks also maintain complete decentralisation and therefore enjoy a high 

level of resilience to node failure and attack. In these networks, as in single-layer structured decentralised 

networks, the failure of even a large number of nodes typically has little effect upon routing efficiency. 

This makes the emerging class of multi-layer P2P systems highly promising for supporting SOC, though 

these networks have yet to be proven through wide-scale deployment. 

 

Current Work in the Field of P2P SOC 
Amoretti et al. (Amoretti, Zanichelli, & Conte, 2008) propose web service extensions based on SOAP 

(Box, Ehnebuske, Kakivaya, Layman, Mendelsohn, Nielsen, Thatte, & Winer, 2000). to the JXTA P2P 

middleware (JXTA Home Page, n.d.). The JXTA P2P middleware is a generalized platform for supporting 

P2P networking which can use multiple underlying network types, and therefore depending upon the 

network architecture employed the architecture will exhibit different characteristics. By layering SOAP 

over JXTA, Amoretti et al. take an important step towards supporting integration between P2P SOC and 

traditional SOC architectures, however this work addresses neither the architectural concerns highlighted 

in the earlier survey nor significant outstanding challenges in the fields of reliability, security and trust, as 

will be discussed in the following section. 

 Gerke et al. (2003) propose a more decentralised approach for providing services based on an 

unstructured network, however, it is clear that their approach will suffer from the inherent limitations of 

unstructured decentralised networks, as discussed previously in this chapter. Furthermore, while Gerke et 

al. provide rich SOC functionality, they do not consider the critical issues of reliability, security and trust, 

which are of paramount importance in decentralised, unreliable and largely anonymous P2P networks. 

 Sacha et al.  (2007) also propose a decentralised P2P SOC approach which considers the issues of 

node reliability using a network of trust in which peers with better reliability characteristics are moved 

into optimal positions in the network, while peers with sub-optimal characteristics are marginalized. The 

supporting implementation was developed on a structured decentralised network and thus provides good 

support for reliable service publication but poor support for service discovery. 
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Outstanding Issues in Supporting SOC using P2P technologies 
This chapter has thus far focused upon supporting the basic elements of SOC computing using P2P 

systems – i.e. supporting large scale service discovery and publication. However there remain significant 

outstanding issues if P2P approaches are to be adopted for supporting SOC. 

Perhaps the most critical outstanding issue is that of security. As modern P2P networks are 

inherently decentralised and lack single points of control, implementing effective security is difficult, and 

first requires authentication of peers to establish their identity and also the establishment of networks of 

trust (Wang & Vassileva, 2003; Koutrouli & Tsalgatidou, 2008), which can offer security assurances in 

lieu of a central authority. This is further complicated if services are expected to be provided by ‘standard 

peers’, as it may be possible for end users to offer malicious services which perform differently than 

advertised. Research into establishing networks of trust may also be useful in addressing this problem. 

Peer reliability is another important issue. The nodes that typically compose a P2P network are 

inherently less reliable than more expensive and well provisioned server machines. Furthermore, these 

peers may leave the network at any time as users deactivate their machines. Even where machines remain 

connected and functional, peers may be concurrently executing competing applications, the resource 

usage of which can lead to diminished quality of service (QoS) characteristics. This lowered reliability 

demands research in two domains. The first being support for adaptation in P2P environments, which is 

necessary to deal with changing resource availability. The second being P2P caching approaches, that 

may also be applied in order to replicate services and hence avoid service unavailability due to peer 

failure or deactivation. 

While P2P systems are a promising platform for supporting SOC, integration with legacy web 

service technologies such as WSDL (Christensen, Curbera, Meredish, & Weerawarana, 2001) and SOAP 

(Box, Ehnebuske, Kakivaya, Layman, Mendelsohn, Nielsen, Thatte, & Winer, 2000). will also be 

necessary to maximize the usefulness of P2P SOC platforms. This will allow organizations which have 

invested significant time and money into current SOC approaches to transition smoothly to P2P 

technologies. The resulting system, based around a multi-layer P2P architecture and offering end-to-end 

consideration of reliability and security would be an extremely powerful platform for supporting SOC. 

 

CHAPTER SUMMARY 
This chapter has introduced P2P systems and discussed how they may be used to support large scale 

decentralised service oriented computing. A classification of P2P architectures was presented and the 

suitability of each of these architectures for supporting service oriented computing was discussed. Semi-

centralised systems, typified by Napster (Merriden, 2001) and Seti@Home (Anderson, 2001) were 

discussed and the problems inherent in this architecture – low scalability and resilience were highlighted. 

Next, unstructured decentralised systems were discussed along with applications that use this architecture 

such as Gnutella (The Gutella Protocol Specification v0.4, Document Revision 1.2, n.d.) and GPU 

(Mengotti, 2004). This P2P architecture was presented as being well suited to service discovery, but 

poorly suited to reliable service publication due to the inherent ‘search horizon’ limitations of this 

architecture. Following this, super-node architectures such as Gnutella 0.6 (The Gnutella Protocol 

Specification v.0.6, draft, n.d.) were discussed. It was shown that super-node architectures improve upon 

unstructured decentalised systems, but are still unable to provide reliable service publication due to the 

search horizon effect. Finally, structured decentralised networks were discussed and it was shown that 

this network architecture provides good support for service publication and binding, though it provides no 

support for service location. 

 While the survey of existing P2P network architectures revealed that no one architecture provides 

a complete solution for SOC, the emerging field of multi-layer overlay networks such as Structella 

(Castro, Costa, & Rowstron, 2003) and Open Overlays (Grace, Coulson, Blair, Mathy, Yeung, Cai, Duce, 

& Cooper, 2004) provides the best all-around support for SOC, offering reliable service publication via a 

base structured decentralised network and service discovery through an unstructured decentralised 

network which is overlaid on the base layer. Despite the potential of these architectures, a number of 
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critical issues were identified that must be addressed before P2P architectures can be used to support 

SOC. These issues include: security, reliability and integration with legacy web services technologies. 
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KEY TERMS 

 

Service Oriented Computing (SOC): The a family of tools and approaches, which aim to reflect 

component trends towards anonymity and heterogeneity, providing systems which are better suited to 

today’s large-scale and open distributed environments. 

 

Peer-to-Peer Systems (P2P): Peer-to-peer is a class of applications that takes advantage of resources - 

storage, cycles, content, human presence - available at the edges of the Internet. 

 

Semi-Centralised P2P Systems: use a semi-centralised network architecture, wherein a small number of 

dedicated servers mediate interaction between large numbers of peers at the edge of the network. 

 

Unstructured, decentralised P2P systems: are entirely decentralised, connecting peers together in an 

essentially random manner and treating all peers equally. 
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Super-node P2P systems feature decentralised server-less communication, however, all peers are not 

treated equally. More powerful peers on faster connections may elect to become ‘super-nodes’ which 

route a greater proportion of messages and may also provide special services. 

 

Structured, decentralised P2P systems feature decentralised, server-less communication supported by a 

highly structured overlay network. 

 

Multi-Layer P2P Architectures layer multiple network architectures in order to provide an emergent 

network architecture which combines the benefits of the component architectures. 


