
Touch-Display Keyboards and their Integration with
Graphical User Interfaces

Florian Block1, Hans Gellersen1, Matthew Oppenheim1 and Nicolas Villar2

1Lancaster University, 2Microsoft Research Cambridge
1{block, hwg, oppenhei}@comp.lancs.ac.uk, 2nvillar@microsoft.com

ABSTRACT
We introduce Touch-Display Keyboards (TDK) that retain
the traditional physical key layout and in addition provide dy-
namic display and touch-sensing capability for each key. We
demonstrate how TDKs can be seamlessly integrated with
graphical user interfaces by extending the graphical output as
well as three-state input across the keyboard’s surface. TDKs
allow the graphical interface to be dynamically distributed
across keyboard and display, exploiting both the benefits of
physical controls and the flexibility of graphical widgets.

ACM Classification: H.5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Input devices and strategies;
Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Touch-Display Keyboards, GUI, Interface Cus-
tomization, Multi-Touch Input

Introduction
In this paper, we introduce Touch-Display Keyboards (TDKs)
that are seamlessly integrated with the interaction space of
graphical user interfaces. TDKs are based on conventional
keyboards and integrate novel display and touch-sensing ca-
pabilities. Each key has the ability to display dynamic graph-
ical output, as also demonstrated in commercial adaptive
keyboards [1]. The keys further integrate touch-sensing, al-
lowing each key to sense fingers touching, in addition to
pressing and releasing [3]. The integration of both display
and touch provides the keyboard with properties of graphical
interfaces while retaining the physical characteristics of the
conventional keyboard.

TDKs are integrated with the GUI in a novel way, by con-
ceptualizing the surface of the keys as coherent display area
that seamlessly extends from the primary screen (cf. Figure
1). In this way, graphical output can be seamlessly extended
to the keyboard. In the same manner, mouse interaction is
supported across primary screen and keyboard. The Touch-
Display Keyboard further provides three-state input, allow-

Copyright is held by the owner/author(s).
UIST’09, October 4-7, 2009, Victoria, British Columbia, Canada.

Figure 1: Touch-Display Keyboards extend mouse in-
put and output space of existing graphical user inter-
faces, allowing the seamless distribution of interface
elements across screen and keyboard.

ing it to consistently support interaction techniques known
from mouse input, such as pointing and selecting [2] (cf. Fig-
ure 2.

TDKs can be operated like conventional keyboards by simply
pressing keys. However, instead of producing conventional
key events in the operating system (such as key pressed / and
released), TDKs convert interaction with its keys as mouse
events within the graphical space they display:

1. Touching a key is mapped to the same event that a mouse
would cause by moving into the screen area of the key.
From an interaction perspective, this corresponds to mouse
pointing, while in the domain of GUI programming this
could be described as a hover or MouseEnter event.

2. Pressing a key is remapped to the same event that a mouse
would cause when clicking at the screen area that covers
the key. To the user, this constitutes the selection of a con-
trol, while for developers it corresponds to a MouseClick
event. Note that this event actually consists of two events,

Figure 2: TDKs support three-state input, allowing
the implementation of fundamental input techniques
across mouse and keyboard input, such as point and
select.



(a) Tooltips on the keyboard’s
surface

(b) Preview of finger positions
on the primary screen

Figure 3: Touch-sensing is used to provide pro-active
preview.

namely MouseDown and MouseUp and pressing a key
down and releasing a key are mapped accordingly.

This model for input and output on TDKs allows for consis-
tent interaction across keyboard and display. The demonstra-
tion will focus on how this allows users and developers to
apply existing practices to working with keyboard interfaces
and how TDKs can facilitate novel ways of interacting with
physical controls and graphical widgets.

Interacting with Touch-Display Keyboards
Based on their new hardware capabilities and their integra-
tion with graphical user interfaces, TDKs facilitate several
new interaction styles:

Interface Exploration. Novice users can explore TDKs via
the mouse in the same way they explore graphical interfaces.
Moving the mouse over controls on keys invokes tooltips that
are directly displayed on the keyboard’s surface. Since TDKs
also provide three-state input that maps on identical mouse
events, tooltips can also be inherently invoked by touch, be-
fore the finger actually triggers the control (cf. Figure 3(a)).

Pro-Active Preview. TDK’s also facilitate pro-active preview
for supporting scenarios, in which it is beneficial operate key-
board interfaces by touch, while visually focusing on the pri-
mary screen (cf. [3]). Using the built-in touch-sensors, TDKs
assist the tactile acquisition of keys, by previewing the fin-
gers’ current position on a virtual on-screen keyboard close
to the task on the primary screen (cf. Figure 3(b)).

Multi-Touch Gestures. Since each key produces individual
touch-events, TDKs can detect a variety of multi-touch ges-
tures on the keyboards surface, such as swiping or pinching.
Those gestures can serve as triggers that can be mapped to
actions, in addition to key input.

Sensing User Context. TDKs can detect the users activity by
analyzing the finger’s presence (or absence) on the keyboard.
This can be used to automatically adapt keyboard interfaces
to different activities. For instance, the TDK can sense the
intention to write (the fingers of both hands rest on the home
row) or to trigger commands (dominant hand is absent from
the keyboard) and switch between text input and a command
interface, accordingly.

Drag&Drop Interface Customization. TDKs can enable new
ways of dynamically customizing graphical interfaces across

Figure 4: TDKs allow the flexible distribution of graph-
ical interface elements between keyboard and display
via the mouse using drag-and-drop.

keyboard and display. Because of the consistent input and
output layers that are underlying TDKs, toolbar buttons can
simply be dragged in between display to the keyboard using
the mouse (cf. Figure 4). This way, users can dynamically
customize their interface according to their needs, accessing
both the flexibility of graphical widgets as well as the benefits
of physical controls.

Implementation
The demonstration prototype is a fully functional TDK that
supports the described interactions (cf. Figure 5). Over-
head projection is used to augment a blank keyboard with
dynamic graphical output (Figure 5(c)). Capacitive touch-
sensing is embedded into each key and the case of the key-
board (Figure 5(a,b,d)). Gestures are supported by interpo-
lating across multiple binary touch-events. The implemented
TDK is compatible with existing applications through its
generic input layer that injects mouse events into running
applications. Furthermore, a custom interface toolkit, im-
plemented using WPF and .NET, is demonstrated, allowing
advanced interaction techniques, such as the drag-and-drop
customization of keyboard interfaces (cf. Figure 4).

REFERENCES
1. Optimus Maximus Keyboard, ArtLebedev Studios.

http://www.artlebedev.com/everything/optimus/.

2. W. Buxton. A three-state model of graphical input. In Proc.
INTERACT ’90, pages 449–456, Amsterdam, The Netherlands,
The Netherlands, 1990. North-Holland Publishing Co.

3. J. Rekimoto, T. Ishizawa, C. Schwesig, and H. Oba. Presense:
interaction techniques for finger sensing input devices. In Proc.
UIST ’03, pages 203–212, New York, NY, USA, 2003. ACM.

Figure 5: The TDK-demonstrator is implemented using
capacitive touch-sensing and overhead projection.


