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Abstract

e traditional start-to-ënish playback model is not suitable for all modern interactive video

streams. Users expect support for higher levels of interactivity such as fast forward and rewind

or the ability to arbitrary seek within their media quickly and efficiently. By conducting user

studies we have observed start-to-ënish is not applicable to many genres of video, and that

different playback models ët better. We discuss how existing delivery techniques are impacted

by these new observations.

Novel interactive controls such as bookmarks have also highly impacted user behaviour.

is has lead to the segments within the media being accessed in a uneven fashion, causing

hotspots of interest to form; areas with orders of magnitudes more viewers than others. ese

hotspots typically began at the beginning of a bookmark, however not always, which lead us

to design a dynamic bookmark positioning algorithm. As well as their position, determining

the hotspot’s length can be beneëcial. is aids in autonomic techniques such as replication

and pre-fetching as well as allowing the users to ënd what they want quicker.

Under high level of interactivity, delivery techniques are less efficient due to the unpre-

dictability of the users. We however developed techniques which restore some of this pre-

dictability, allowing clients or servers to predict future actions based on past user actions.

ese technique proves exceeding useful for pre-fetching which reduces seek latencies for

client and can reduce load on servers. However knowledge of past user activities need to be

gathered from network, thus we develop techniques to do this in a distributed manner.
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Chapter 1

Introduction

In recent years, the distribution of multimedia rich content has become increasingly

popular via the internet. Websites offer a range of media, from short user generated

clips to high deënition feature ëlms. is content typically has strict delivery re-

quirements, needed for optimal playback. e requirements typically include high

bandwidth connections and demands low latencies and low jitter.

Many techniques are employed by both client and server to ensure smooth deliv-

ery and to minimise operational costs. ese techniques include (but are not limited

to) pre-fetching, tree-based distribution, and deploying full content distribution net-

works (CDNs). Generally, these techniques assume that the user consumes the con-

tent conforming to particular usage models. e most commonly assumed models

are the classic start-to-ínish model and an extension of this, the start-to-end model.

With the former model, users will start playback at the beginning of the content and

continue until the very end, whereas the latter model assumes that the users stop

playback before the end.

As such systems evolve, users expect more control over the playback of their con-

tent, and thus improved functionality. For example, VCR-like controls are already

common; fast-forward, rewind, pause and resume. More novel interactivity controls

are beginning to appear, for example, bookmarks, which give the user the ability to

seek directly to a point of interest within the content, such as a chapter or an event.

1



Chapter 1: Introduction Research Contributions

Offering services which provide a high level of interactive control creates new chal-

lenges for traditional delivery mechanisms. For example, conventional network and

application-level multicast is not suitable for providing interactivity. Conversely, sim-

ple client-server mechanisms work well under high interactivity, however, they can

not easily scale to offer a large number of users these services. Regardless of delivery,

there are additional problems such as delay caused by start-up or seek latency, as well

as the unpredictable workload placed upon the servers.

Nevertheless, there are numerous commercial video-on-demand services which of-

fer varying degrees of interactivity. us far, these systems use a brute-force approach,

deploying large scale CDNs to satisfy the needs of their users. is thesis will explain

how these existing deployments work, and highlight their ìaws. We will then con-

tinue by discussing how these techniques can be improved to support interactivity, as

well as develop some new techniques.

1.1 Research Contributions

is thesis presents through experimentation new user behaviour models, more appli-

cable to highly interactive content. ese models can aid in simulation and develop-

ment of new techniques for efficient, quick and cheap delivery of content to the user.

e models were derived from data obtained by an experimental Video-on-Demand

(VoD) website which we designed and deployed. In addition to generic VCR-like

features, this custom built VoD application provided advanced interactivity features

such as bookmarking. Over a twelve month period more than 1000 unique users

were observed accessing a selection of 88 video ëles. ese videos included the entire

2006 FIFA World Cup and the 2007 Eurovision song contest.

rough detailed analysis of the data, common usage models were characterised,

such as object popularity, session duration, and other standard metrics. It was ob-

served that when users were offered additional interactive controls, the content was

no longer consumed based on the start-to-end model. To aid in characterising this

2



Chapter 1: Introduction esis Structure

novel user behaviour, additional interactive metrics were developed, which better ex-

plained this highly interactive system. ese include models for how bookmarks are

used, as well as models relating to an emergent property, hotspots. ese hotspots are

areas of particular interest within the video in which users often choose to watch

(and replay) small segments of the full video, in a complete departure from the classic

models. While the behaviour observed may be speciëc to the content used within

the experiments, the results may be of general interest, and relevant to other genres

of video with popular highlights (e.g., educational, entertainment, news, etc.).

is thesis will discuss how current delivery techniques are not designed to handle

such levels of interactivity. Understanding these new models can lead to new tech-

niques to improve the delivery of highly interactive media. For example, the actions

of a user may now be predicted based on past users. Also, distributed techniques

were developed to detect the location of hotspots automatically. Knowing the po-

sition of hotspots presents new opportunities for caching and replication techniques

which did not previously exist with less interactive media. Following from this, new

hybrid delivery techniques are explored, which use a combination of established de-

livery protocols. Hybrid delivery allows for quick, efficient, and cheap delivery of

content, while offering the user high levels of interactivity not available with existing

delivery systems.

1.2 Thesis Structure

After this chapter, this thesis is organised into ëve chapters. e chapter immediately

following this introductory chapter provides background of existing characteristics

models in the areas of live and stored streaming media, and their deëciency in mod-

elling interactive behaviour. e background is continued by explaining how inter-

active media can be delivery, and the problems with this, and then concluding with

a discussion of existing video-on-demand deployments and the problems they face.

3
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Chapter 3 describes the design of a video-on-demand system we used to exper-

iment and evaluate new interactive video concepts. is is followed by Chapter 4,

which discusses the results obtained from our experiments, with details on character-

ising the users behaviour and how these can be modelled for future simulations. e

evaluation also contains discussion of the implication these new interactive models

have on the design of new systems. Chapter 5 builds on the results obtained, and

discusses ideas which can improve the delivery of interactive media for both the con-

sumer and distributer. is includes dynamic bookmark placement, pre-fetching and

a hybrid delivery technique.

is thesis is concluded with Chapter 6 which gives a overview of the work pre-

sented in this thesis. e conclusion also suggest future directions for this research.

4



Chapter 2

Background & Related Work

e focus of this thesis is understanding how video-on-demand (VoD) systems oper-

ate under highly interactive workloads. Once a ërm understanding of this is achieved,

then new techniques can be designed to help improve performance in such systems.

erefore, the ërst section of this chapter aims to explain how currently deployed

VoD systems work. Special attention is paid to which interactive features these sys-

tems already provide, as well as their limitations in providing advanced interactivity.

is covers systems such as the incredibly popular YouTube [You08], serving low

quality short video clips via a content distribution network (CDN), to systems such

as BBC iPlayer [BBC08], a hybrid peer-to-peer CDN platform offing high quality

professional content.

Later, to understand exactly how workloads are analysed, Section 2.2, provides

a detailed overview of how existing characterisation studies have try to explain and

model user behaviour. Modelling behaviour is very important for designing video-

on-demand mechanisms, for example, understanding the popularity of objects helps

to make caching and replication decisions. Most of the existing research on character-

ising user behaviour has either ignored, or not experienced high levels of interactivity.

is is counter to the results displayed later in this thesis. As such, the review of previ-

ous work is discussed in the context of interactive workloads, where applicable. is

helps motivate the experiments evaluated in Chapter 4, as well as providing a solid

5
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ground to understand the problems with interactivity.

2.1 Deployed Video-on-Demand Systems

ere are multiple systems now in place, which allow users to watch videos when

they want, how they want. ere is an abundance of content available, ranging from

short funny video clips, to long feature movies, and everything in between. is has

been driven by incredible demand, causing new video-on-demand (VoD) systems to

appear, almost daily, to serve different niches. To keep up with demands, these videos

are no longer just made by professionals. Anyone with a cheap camcorder or webcam

can become famous for 5 minutes. Wired magazine refers to this as “bite-size bits for

high-speed munching” [Mil07].

As VoD is becoming more ubiquitous, users are expecting more features. One

such feature is interactivity, the ability to pause, resume, and seek within the content.

Many of these VoD systems are offering interactive features, however, each with their

own limitations. For example, some can only offer interactivity by forcing the user

to download the full video ërst. If they do allow interactivity via streaming, then the

systems seem slow or sluggish.

is section highlights the main classes of VoD applications, and well as how they

work. eir interactivity features are discussed in detail, as well as their ìaws. At the

end of this section, there is a summary of all solutions, giving a quick overview of

what is out there, and how it operates.

2.1.1 Flash-based Sites

A big push in storing videos online has been the creation of user generated content

(UGC) websites such as YouTube [You08], Dailymotion [Dai08], Metacafe [Met08]

as well as many more [Vid08b, Vid08a, Hul08, MyS08]. e most popular of these

sites, YouTube, was founded in 2005. Despite only being three years old, it is now

the 3 most popular site on the internet, illustrating how popular these sites are.

6
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YouTube Dailymotion Metacafe
Unique Visitors (×106/month) 70 10 10

Videos Watched (×106/day) 100 25 15
Alexa Site Rank (Feb ’08) 3 31 179

Stored Videos (2006) 45 TB unknown unknown
Stored Videos (2007) 357 TB unknown unknown

Table 2.1: Overview of the most popular video sharing websites, adapted from [SSF08, CDL07]

Table 2.1 gives a brief overview of the most commonly used UGC sites’ popularity,

as well as how many videos are viewed and stored on these services.

ese Web 2.0¹ websites allow users to upload their own videos for others to watch

freely. Once uploaded, other users can begin tagging [AN07], rating and commenting

on each video. Users may also share their favorite videos with their friends, allowing

the video to quickly disseminate through a video sharing social network.

Typically the content on the sites is short low quality clips. A study of YouTube by

Cheng et al. found that 97.8% of all videos were shorter than 10 minutes [CDL07].

is is due to a limit imposed by YouTube, that regular users may only upload videos

10 minutes or shorter. A different study found that the mean viewing length was

4.15 minutes with a median of 3.33 minutes [GALM07]. ere is a small group

of authorized users who may upload longer videos, which includes content such as

documentaries or lectures. ese short length videos are not representative of all

sites; an analysis of MSN Video found that many of the videos were a lot longer than

YouTube, however no exact ëgures or distributions of lengths were offered [HLR07].

ese sites typically use pseudo-streaming (or sometimes called progressive down-

load ) techniques [GCXZ05]. is is where a media ële is downloaded using general

ële downloading techniques, but as it downloads it is also played. As a true stream-

ing protocol is not used, many features are lacking, for example, the rate the server

transmission the ële will not be synchronised with the playback rate. is may cause

the stream to be received faster or slower than required. Additionally controls such as

pause or seeking are not easily available.

¹Web 2.0 is a term to describe a new generation of websites, where the site’s value comes from the users who
participate.
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Content Distribution Network The CDN contains many servers,
hosting all available content, ready to

deliver to the users on-demand.

This system appears to the users as
one big black box

Unicast over the Internet

Each user is able to request different
content, at different playback points.

Each user has a dedicated TCP/UDP
connection over the internet

Figure 2.1: Distribution of media via a content distribution network. Different coloured arrows and
shapes represent the different content.

e most common example of pseudo-streaming involves a combination of an

Adobe Flash player and HTTP downloading. A web page contains a Flash video

player which requests a Flash video ële (FLV) from the HTTP server. e Flash ële

is downloaded just like any other ële would be via HTTP. As the ële downloads, the

Flash player can begin playback.

Flash video was chosen due to its widespread deployment. For example, in 2000,

the Flash player was distributed with AOL, Netscape and Internet Explorer browsers.

Later, in 2002, the Flash player came pre-installed with Windows XP. is lead to an

unveriëed claim that Flash Player had an install-base of roughly 92% of all internet

users [Wik08].

Flash video can be compressed using various encodings. On YouTube, the video

is encoded with the Sorenson Spark H.263 codec, with a resolution of 320x240 at

25 frames per second [CDL07]. is creates videos which have a bitrate of around

330 kbps. However, YouTube is at the lower end of quality, compared to other

UGC sites. Due to home broadband becoming more ubiquitous, there has been

greater demand for higher quality videos. For example, in February 2008, Dailymo-

tion announced that it would begin streaming at the high-deënition resolution of

720p (1280x720) [Low08], requiring at least 8-16 Mbps bitrate streams.

e HTTP servers used for streaming are typically hosted by a content distribu-

tion network (CDN) as depicted in Figure 2.1. Little is known about how these
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systems are conëgured and deployed, however some research has gone into infer-

ring their deployment by taking measurements. In one study, Saxena et al. found

that YouTube’s videos are served from just two main locations in the US; San Ma-

teo (77%) and Mountain View (22%), with the remaining 1% being served by the

Limelight’s CDN [SSF08]. is suggests most of YouTube’s CDN is built and con-

trolled in-house. Saxena et al. also found that Metacafe took a different approach

and outsourced their needs to the Akamai and L3 Networks CDNs. It is well know

that Akamai position their servers into as many ISP’s points of presence (POPs) as

possible [HWLR08].

Until very recently these UGC sites had limited interactive controls. e Flash

player would continue to buffer the video being viewed as fast as possible and store

everything which has been received in a temporary ële on the computer’s hard disk.

Users were able to pause, and seek backwards into the stored buffer, but were unable

to seek ahead of the buffer. Since late 2007/early 2008, YouTube and others have

begun allowing arbitrary seeks anywhere in the media before it is buffered. is has

been achieved using a custom client-side Flash player and some server software. How

exactly this is achieved is discussed later in Section 3.2, as this technique was developed

independently by us before it had been implemented by YouTube.

2.1.2 BBC iPlayer

BBC iPlayer [BBC08] has been leading the way as a new type of desktop applica-

tion which enables users to watch video-on-demand over the internet, using a nor-

mal home broadband connection. BSkyB and Channel 4 have also created similar

products to compete with the BBC, named Sky Player [BSk08] and 4oD [408] re-

spectively. ese products differ from network PVRs, as they serve a more speciëc

task, and do not require custom hardware.

ese products offer a catalogue of old programmes (which are no longer regularly

shown on broadcast TV), and access to most of the broadcast programming shown in

9
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the last 7 days. Users can select which programme they want, and their client begins

to download the video. However, these products do not stream the video; instead they

download a single ële. is means the user must wait until the full ële is downloaded

before playback can start.

All three applications are actually based on one companies technology, Kon-

tiki [Inc08b]. is company has created their own technology to provide a content

delivery platform, which can securely deliver media from standard servers, assisted by

scalable peer-to-peer techniques. Kontiki is closed source software, and as far as we are

aware no studies have been conducted to analyse how it works. However, from pro-

motional material, it constructs a simple peer-to-peer network from the users. is

network can be conëgured to limit how the peers are connected, for example, mak-

ing sure the peers do not connect outside of their own subnet, or autonomous system

(AS) boundary.

When a Kontiki client is idle, any spare bandwidth is used to help spread the

content within the network. To seed the content into the peer-to-peer network, and

to provide additional capacity, a normal network of servers deployed in a CDN are

used. is peer-to-peer network does not allow users to publish their own content,

as the network is used just as the provider’s content delivery platform. To ensure

this requirement is met, the network uses strong cryptographic techniques such as

asymmetric cryptography [RSA78], to guarantee that media is not tampered with,

and also to ensure that new media is not injected into the network without permission.

e ëles published by the BBC are typically Windows Media (WMV) ëles, pro-

tected with digital rights management (DRM). e DRM stops the ëles from being

shared with others, and expires the ëles a few days after playback. ese ëles are of

good quality, and are roughly 140 MB for a 30 minute show. Since the full WMV

ëles are downloaded before playback can begin, interactive controls are easy to pro-

vide. Pausing and seeking to arbitrary points is readily available, and instantaneous.

Due to the Kontiki platform, and the DRM techniques, the iPlayer software only
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All users receive the same content at
the same playback point.

Each PVR has a buffer recording the
current broadcast, and storing any

previous content.

The content is broadcasted over a
shared medium, such as the air
waves, or private cable network.

Figure 2.2: Distribution of media in a boardcast personal video recorder network. Different coloured
arrows and shapes represent the different content.

runs on Microsoft Windows, and not on other operating systems such as Linux, or

Apple’s Mac OS. is received many criticisms, as the publicly funded BBC were

ignoring a subset of the public that did not use Windows. To counter, this the BBC

introduced a new streaming based iPlayer which could be accessed via their website.

is uses Adobe Flash technology, similar to that used by many user generated content

sites, such as YouTube. By creating their Flash based site, any device which could

render Flash video was now able to view the iPlayer’s catalogue. is includes desktop

computers running various free operating systems, many home gaming consoles, such

as the Nintendo Wii [Onl08a] and Sony Playstation 3 [Pur08], and mobile devices

such as the Apple iPhone [Onl08b].

2.1.3 Personal Video Recorders

A device that is becoming more commonplace in the living room, is the time-shifting

set-top box. ese devices, sometimes called personal video recorder (PVR) or digital

video recorder (DVR), are typically set-top boxes which record broadcast TV. ese

PVRs allow the user to pause playback while the box continues to record, or rewind

within the recording. Additionally, if the user has paused or rewound, they may fast

forward to catch up with the live broadcast. It was estimated in 2008 that 36% of the

UK uses a PVR [Plc08].

ere are many PVRs on the market, the most popular being, Sky+ [Ltd08],
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TiVo [TT08], ReplayTV [Inc08a] and UltimateTV [Mic08b]. e Sky+ PVR, for

example, records broadcast TV received via a satellite dish as seen in Figure 2.2. is

PVR has two TV tuners, allowing it to record from two channels simultaneously. As

with most of these devices, it contains a large hard disk, able to record within the

range of 40 to 80 hours of TV.

e Sky+ box can be scheduled to record future TV programmes or ëlms via

the electronic programme guide (EPG). Once recorded, the user is able to play the

recorded programmes by selecting them from the EPG. However, this does not give

the user a true video-on-demand experience, as they have to wait until the programme

airs before being able to watch it. To combat this, Sky+ has recently integrated a push

video-on-demand system called “Sky Anytime”. Sky can instruct the Sky+ box to

record popular programming, such as new movies, or sporting events. e program-

ming is sent on hidden broadcast channels, typically during the night when the Sky+

box is not in use. Users can then chose any of these “Anytime” programmes, and play

them back instantly from their local hard disks.

e interactive controls are rather limited with these boxes, as they are only able

to seek within what is currently buffered. In live TV that means rewinding, but in

pre-recorded content (such as “Sky Anytime”) they may fast-forward or rewind. To

allow rewinding with live TV, the Sky+ box is always recording the current channel,

with a buffer of up to two hours. Once the channel changes, this buffer is discarded

and a new one begins. is allows a user to pause for no longer than two hours, and

rewind the current channel up to a maximum of two hours (as long as the channel is

not changed within that time).

Most satellite providers also offer pay-per-view content, such as very new movies,

or live one-off sporting events. Events, such as sports, are typically broadcast live on a

single encrypted channel, which limits the interactivity to simple pause and rewind.

More interesting are the near video-on-demand services. ese are typically provided

for movies, where a single movie will be broadcast on multiple channels using a simple
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staggered broadcast technique. If staggered, the movie will be broadcasted at ëxed

time intervals, for example, every 15 minutes. us, when a user purchases a movie

they will have to wait up to 15 minutes to begin watching.

Near video-on-demand has the ability to allow users to seek forward or backwards

in ëxed time intervals, for example, 15 minutes at a time. When combined with a

PVR, this can be extended to allow more ëne grained seeking, if for example, the PVR

records two broadcast channels at different positions within one programme. is

could allow the PVR to buffer 15 minutes ahead, by using the second channel. Once

the ërst channel has caught up to the buffer, it can begin playback from the buffer,

and use the ërst channel to record 30 minutes ahead. is process can continue until

the full movie is buffered to disk. As far as we are aware, no set-top box offers such

functionality, mostly due to the added complexity for little gain.

2.1.4 Networked Set-top Boxes (IPTV)

Some set-top boxes, those typically on cable networks, have begun to roll out IPTV

services which offer true video-on-demand. In the UK, the main provider is Vir-

gin Media with over 3 million customers using its “On Demand” service [Med08].

British Telecom (BT) have also recently introduced a similar product called “BT Vi-

sion” [Tel08]. It is predicted that by 2011, there will be 80 million IPTV users world-

wide [OP07].

In these systems, a simple set-top box or PVR is connected to either a private

network (in the case of Virgin Media), or via the public internet. Content is then

streamed directly to the user instantly, on-demand. Virgin Media have been able to

offer this service for many years by utilising the existing cable network infrastructure

to unicast video from the user’s local head-end² directly to the end-user. is is not

possible in satellite or traditional radio broadcast as both have ënite broadcast capac-

ity, whereas cable networks have constantly invested in and improved their networks

over the years, adding more and more capacity.
²A head-end is a facility run by a cable company to serve customers in the local region
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Nevertheless, the on-demand content which is available via these services seems

to be of lower than normal broadcast quality, and little is known about the technical

details. However, from experiments with these set-top boxes it may be possible to

infer how they operate. For example, examining Virgin Media’s On Demand service,

it is clear that a staggered broadcast system is being used. When seeking through the

video, the video jumps in increments of 15 seconds, and when starting a new video it

takes up to 15 seconds to begin. is may be because the video is being broadcast in

staggered intervals of 15 seconds. It is unclear if this is done so a broadcast technique

such as multicast may be used, or if this is to reduce the number of unique channels

the server has to transmit.

One feature which Virgin Media does offer, that no other streaming VoD service

provides, is the ability to fast-forward or rewind (e.g. to view the video at a faster

rate either forwards or in reverse). Again, however, this service is limited to just a

couple of fast-forward or rewind speeds. Also, when starting or ënishing to fast-

forward or rewind, the video appears to jump or stutter. is may be because there are

dedicated streams broadcasting the video at a higher speed forwards and backwards.

us, when the set-top box is instructed to fast-forward, it actually joins this different

faster stream.

e system being offered by BT is powered by software created by Microsoft

named Mediaroom [Mic08a]. is software is also being used by numerous IPTV

providers around the world, such as, T-Home (German), Portugal Telecom (Portu-

gal) and AT&T (United States). Most of these providers are using cable or ëbre to

deliver broadcast quality content to the homes. However, BT have taken a different

approach, and are using traditional home ADSL broadband technology. We speculate

that this is because of the higher ADSL penetration in the UK, and that cable/ëbre

networks in the UK are almost exclusively owned and operated by Virgin Media.
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There is only one source
server or peer for the

content, as it is typically
taken from a live source.

All users taking part in the
peer-to-peer distribution

will be watching the same
content at the same

playback point.

There are no need for
large buffers in this

system, as each peer is
only required to resent

the segment as it is
received

(a) Tree P2P Network

There are a few “seed” servers 
which provide the content

initially.

The users arrange themselves in
a randomly structured topology.

Users may not be actively
viewing the content, yet still aid
in the peer-to-peer distribution.

Some users may aid in the
distribution of more than one

piece of content.

The user may be able to receive
the content from multiple

sources, aiding in reliability,
efficiency and performance.

(b) Mesh P2P Network

Figure 2.3: Distribution of media in a peer-to-peer network. Different coloured arrows and shapes
represent the different content.

2.1.5 Peer-to-Peer

Other than the previously mentioned commercial online video-on-demand systems,

there are numerous peer-to-peer (P2P) technologies that enable efficient streaming

of live and stored media [LGL08, LNZ07]. Traditional P2P has been used to dis-

tribute full ëles [Coh03, eMu08, Cli08], including ëles such as movies, tv shows,

music [Nap08], etc. As the full ële must be downloaded before playback can begin,

this can be considered a primitive form of VoD, similar to that offered by the Kontiki

based applications (see Subsection 2.1.2).

After the initial surge of P2P ële sharing applications, research began on applica-

tion level multicast (ALM) [YLE04], sometimes called end-system multicast [CRSZ02].

is is a form of P2P designed to stream content, in a one-to-many fashion, similar to

traditional IP multicast. However, streaming is different to video-on-demand, as all

the users are typically viewing the same content at the same playback point. Video-

on-demand should allow users to view different content at different playback points

simultaneously, which makes it much more problematic.

Only recently has research began into the areas of peer-to-peer video-on-demand

(P2P-VoD). Using P2P offers many advantages over the traditional client-server ap-

proach. Firstly, peer-to-peer can greatly reduce the costs to run the service, as a large
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CDN is not required to deliver the content. Additionally, in the mesh-based P2P,

those able to request from multiple sources simultaneously have advantages when it

comes to interacting with the media. ese protocols are designed to allow arbitrary

segments to be downloaded. us, seeking and pausing can occur relatively easily.

Peer-to-peer does have some disadvantages, such as additional overheads and re-

quiring peers to take part in the delivery. ese overheads are from the extra control

traffic needed to arrange peers into a structure suitable for media delivery. As peers

are the main source of content, they can be less reliable and have less resources than

tradition servers. is may result in unpredictable or unreasonable service. Addi-

tionally, unless a content protection scheme is used, peers may maliciously alter the

content when relaying to other users [DHRS07]. Also, not all peers have sufficient

capacity or want to take part in the network.

When describing P2P, there are a few different ways the networks may be arranged

and how the data is transmitted.

Tree In tree distribution, the peers arrange themselves in a tree, rooted at the source

of the content (as depicted in Figure 2.3a). is is best used for streaming, as

there is typically only one source for this kind of content. e content can then be

streamed down the tree, and eventually reach every peer. ere are many proto-

cols which efficiently arrange peers in this manner [MCH01, BBK02, THD03].

However, it was noted [CDK+03], if nodes are arranged in a tree, the leaf nodes

(those at the bottom) do not distribute to others. is is an obvious waste of re-

sources, as fh peers within the network do not help distribute the content, where

f is the node’s out-degree and h is the height of the tree. To better utilise the re-

source, multi-source trees were developed [BAE03, CDK+03]. ese multi-source

trees also make the distribution more robust to failures, such as, a node parent fail-

ing [DHT04]. One problem for all trees, is that they may become very deep,

causing a high latency (or lag) for the peers near the bottom.

Mesh To improve the efficiency of tree based schemes, mesh networks create a
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seemingly randomly connected graph from the peers [KRAV03, LJL+06, MR07,

HLR08], as seen in Figure 2.3b. Content may then ìow in any direction through

this graph, allowing each peer to have many sources, as well as many nodes to share

with. is technique is typically used to provide video-on-demand [AGRM06] or

ële distribution [Coh03], as it offers greater reliability and performance, at the cost

of additional overheads and less guarantees of the ordering of received data. Unfor-

tunately, peers within a mesh network will experience a higher rate of churn (peers

joining and leaving), as each peer is potentially connected to tens of others.

Typically the content is always divided into segments, of ëxed (or sometimes vari-

able) size. is allows peers to request individual chunks of the media, as well as to

more efficiently inform others which segments they has. e segments are normally

either pushed or pulled by the peers though the peer-to-peer network.

Push Push distribution is typically used for live streaming in combination with tree

based distribution. In live streaming each peer will require the segments by a similar

deadline, and each peer typically only has one parent, the segments can be pushed

to the peer, without request. is greatly reduces the overheads of knowing which

peer needs which segment, etc. Push can also be used in multi-source situations by

clever partition tricks, for example, in a two-source situation, a peer can receive odd

segments from one peer, and even from the other. However, this gets increasingly

complex when there are multiple source peers or the network is in a constant state

of churn (as is common in mesh networks).

Pull If it is not obvious which peer needs which segment, then pull distribution is

better. Each segment must be explicitly requested by the peer before it is sent. is

adds additional overheads, but allows the receiving peer to make decisions on where

to receive from. Pull is popular in mesh networks, as it simpliëes the distribution of

content. To allow pull to work, each peer must occasionally share a list of currently

buffered segments with their neighbours. is list is typically shared in the form of
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a bit-map, assigning a one or zero to each segment, indicating whether it is buffered

or not.

is rest of this section discusses the main peer-to-peer systems in both the stream-

ing, and VoD domains.

2.1.5.1 Streaming

Streaming, is typically used for live events, or broadcasting of traditional style televi-

sion channels. As such all the users will be viewing the content at the same playback

point, as opposed to video-on-demand, which allows users to view different playback

points simultaneously.

ere are many commercial peer-to-peer streaming products available, mostly

from Chinese companies. ese include PPLive [PPL08], CoolStreaming [ZLLY05],

Zattoo [Zat08], TVAnts [TVA08], PPStream [PPS08] and SOPCast [SOP08]. is

software has been very popular in China [FM05], and is starting to become more

popular in the US/UK.

CoolStreaming (or more formally known as DONet) was one of the most popular

services, when it was in operation. Information about how the system works was

made publicly available, and a couple of papers were published on the topic [ZLLY05,

XLKZ07]. However, in 2005 the service stopped broadcasting, less than a year after

it ërst began, due to copyright issues.

e CoolStreaming technology is based on a pull mesh-based streaming tech-

nique. When joining the system, a newly connecting peer would obtain a list of

existing peers from a central repository. is list would be used to bootstrap the

newly connecting peer into the network. Afterwards, a gossip protocol is used to ënd

additional peers. Segments of the media are there pulled from neighbouring peers,

who frequently advertise their segment lists.

One of the novel features of CoolStreaming is the scheduling algorithm which

decides which peer is used for a segment when there are multiple peers to chose from.
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e problem of deciding the most efficient way for each peer to allocate it’s resources

is an NP-hard problem, akin to parallel machine scheduling [CLRS01]. erefore,

CoolStreaming uses a simple heuristic to decide the allocation of resources. e algo-

rithm uses a combination of how rare the segment is, how much free bandwidth the

remote peer has, and how urgently the segment is needed.

PPLive [PPL08] is more popular than CoolStreaming, as it has a total of 2.2 mil-

lion users and 500 different streams [HFC+08]. A keynote presentation by Huang, a

PPLive Software Architect, demonstrated how scalable P2P streaming can be. In the

second quarter of 2007, PPLive supported 1,480,000 simultaneous users viewing the

same live sporting event, being served by just one 10Mbit/s server [Hua07].

Even though PPLive is a closed-system it has been a hot-topic for researchers to

study [HFC+08, SF07, VGLN07, KS08, CCL08]. Silverston and Fourmaux cap-

tured traces from PPLive, and determined it uses a mesh-based pull approach, similar

to CoolStreaming [SF07]. Vu et al. noted that PPLive tries to keep its neighbour peer

list around 30 to 45, independent of the number of peers currently taking part in the

stream. By keeping the neighbour list around a constant size, this allows the system

to scale far more efficiently [VGLN07].

Vu et al. also calculated the clustering coefficient [WS98] of this network. is

is a measure of how randomly the peers are connected to each other. ey found

streams with few peers (< 500 peers) had a high degree of randomness, however,

as the stream size increased, many clusters of peers began to form. ey did not

speculated as to whether the clusters were based on some metric of “closeness”, i.e.

network or geographical locality.

e remaining studies which look at PPLive have looked at simple metrics such as

packet size [KS08], signal overhead [SF07], stream popularity, and chunk availabil-

ity [HFC+08]. ese do not give much insight into how PPLive operates. However,

one thing is clear, PPLive is a large peer-to-peer application which has tremendous

scaling abilities. is is only let down by the fact that it is a pure streaming applica-
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tion, and does not offer interactivity features beyond pause and resume. Nevertheless,

PPLive will encourage development of future projects which take advantage of this

form of streaming peer-to-peer, hopefully with addition VoD features.

2.1.5.2 Video-on-demand

Peer-to-peer video-on-demand (P2P-VoD) typically uses a combinations of P2P ële

sharing and streaming techniques. Users will contribute local disk space, as well as

bandwidth, to allow other users to stream directly from them. Typically the local

disks will store multiple videos which have been previously watched, and perhaps a

few which have not if the network deemed their replication necessary. Many of the

pure streaming techniques can be applied, or slightly altered, to work for video-on-

demand. However, this is easiest with the pull based systems, which can easily cope

with peers being at different playback points.

ere are a number of commercial systems, such as, Vuze [Vuz08], Joost [Joo08]

and many others [Gri08, PFS08, PPS08, UUS08]. Again, all of these systems use

proprietary techniques, and as such the only information about them is inferred, or

discovered through measurements.

Vuze, for example, offers a catalogue of thousands of videos, mostly uploaded by

users, but some from professional studios. To download the videos Vuze uses a sliding

window BitTorrent [Coh03] technique [VIF06a, SP07b]. To begin viewing a video,

Vuze must connect to a tracker. e tracker is a centralised server or possibly decen-

tralised in some modern BitTorrent implementation [Roo06]. e tracker maintains

a list of all peers who are in the process of downloading, or have ënished and now just

sharing. e Vuze client uses this list to form a single P2P network for each video.

Normally, BitTorrent connects to as many peers in the P2P network as possible

and begins downloading. Multiple downloads occur in parallel, each requesting a

different random segment of the full ële³. e random order helps ensure that the

³BitTorrent does not always download segments in a random order, as there are multiple improvements to
increase the efficiency of the ordering [MV05]
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ële is spread as quickly as possible throughout the network [BHP05]. So that Vuze

can display the video to the user as it downloads, it opts to download the segments of

the ële in a semi-sequential order. A sliding window is created ahead of the playback

point, and only segments within this window are downloaded. As playback continues,

the window moves along.

In theory, Vuze could support many interactive controls, however, it only sup-

ports pause and resume. Pause is a simple operation as playback from the buffer can

stop while not affecting the normal download. Seeking is not possible as time offsets

cannot be easily mapped to ële segments. is feature could be added if metadata

provided a map of keyframe times to an offset within the ële. en on a seek request

the sliding window can be moved to the new seek location, and download/playback

resume.

ere are numerous problems with Vuze, for example, the protocol is a very simple

modiëcation to BitTorrent, which is not custom-made for this task. is causes the

start-up times to be long, and limits the interactive features. Also, because the peer-

to-peer networks are only made up of peers who have previously downloaded, or

are downloading, the video, it is possible for the video to not be fully available. A

more suitable situation would be to either backup the videos on dedicated content

servers, or ensure the videos are replicated on nodes with spare capacity, therefore

better utilising the network.

Joost [Joo08], takes a different approach to Vuze, by designing a new P2P-VoD

protocol from the ground up. Joost, was created by Niklas Zennström and Janus

Friis, the two entrepreneurs responsible for Skype [Sky08] and Kazaa [Net02]. Joost

has a large catalogue of content, which is provided exclusively by professional studios.

Because of Skype’s and Kazaa’s fame, Joost has been able to secure deals with many

large studios, such as FOX networks, Viacom (which includes MTV and Paramount

Pictures), and Warner Music. is has allowed Joost to have high quality content,

such as feature ëlms and TV episodes.

21



Chapter 2: Background & Related Work Deployed Video-on-Demand Systems

Peer-to-PeerHTTP Flash PVR Networked PVR Push Pull
Overheads Minimal Minimal Minimal Small Small-Moderate

True VoD Yes No, but offers
Near-VoD Yes No Yes

Pause Yes Yes Yes Yes Yes

Seeking Yes, with Seeking
Hack

Yes, within
Buffered Content Yes No Yes

Fast-forward &
Rewind No Yes

Yes, with
limitation

outside of buffer
No No

User Costs Internet Access Set-top Box & Subscription Internet Access

Provider Costs Large CDN /
Server

Broadcast
Infrastructure

Broadcast &
Network

Infrastructure
Small Seed Server

Quality Low–Medium High High Medium Medium

Pros
Simple Protocol,

Small Seek
Latencies

Easy for users
Private network
can be optimised
for the VoD task

Cheap, Lots of Content

Cons
Costly and
Limited

Interactivity

Limited VoD &
Interactivity Costly Complex Protocols, Long Start-up

and Seek Latencies

Table 2.2: Summary of features available with each video-on-demand system

Little is know about Joost, however it is reported that it is a mesh based peer-to-

peer network backed by servers deployed in a CDN. From one study, it appears that

Joost uses UDP packets, to transmit content in MPEG-4/AVC with error-resilience

coding [KS08]. It is speculated that Joost will use peers with spare capacity to help

distribute content which is popular. is would help to maximise the delivery effi-

ciency.

2.1.6 Summary

e previous sections have outlined popular video-on-demand systems which are cur-

rently deployed and in use. eir features have been explained, as well as the pros and

cons of using them. Here, we will summarise the previous sections, and aim to discuss

the systems compared to each other. To recap, Table 2.2 lists the main categories of

systems, and which features they support.

e HTTP Flash-based systems are typically backed by a content distribution

network (CDN), but can in small cases be simple client-server systems. By using a

simple pseudo-streaming technique, the ìash-based web-site is able to provide videos

on-demand to a vast audience of users via the internet with minimal overheads and
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costs to the user. However, the back-end system, will no doubt involve terabytes of

replicated data, spread across hundreds if not thousands of servers, typically deployed

throughout the world. e cost of running such an infrastructure is not cheap, for

example, in 2006 it was estimated that YouTube pays $1 million a month just for

bandwidth costs [Fro06]. As such, only the well funded content providers can afford

to provide this service.

Content distribution networks used by Flash-based systems can provide many of

the modern interactivity features requested by users, albeit with additional overheads

and complications for the servers. e one downside when interacting with these

systems is the seek-delay. is is normally quite small (less than 2 seconds), and no

longer than a couple of round trip delays, and the time it takes to fetch an initial

buffer. is can be reduced by making sure the content servers are near to the end

users.

Personal video recorders (PVRs) are perhaps the simplest system for users, as they

integrate with users’ existing home entertainment systems. If the content provider is

already broadcasting the content, then the cost for deploying the PVRs is just the price

of the box. However, a simple broadcast-only PVR does not allow for true VoD, only

being able to watch pre-recorded content. To add true VoD, dedicated networks are

typically used, which greatly increase the cost for the provider. Regardless, PVRs are

able to record content at broadcast quality, which is much higher than that typically

found on the internet.

Finally, the peer-to-peer model of distribution offers the cheapest way to deliver

content, and if it is not streamed (and instead downloaded) the highest quality of

content. is allows independent movie studios, or amateurs to easily release their

work in high-def quality formats. Being cheap comes at the cost of requiring users

to aid in the distribution, which typically involves high signalling overheads, for ex-

ample, to coordinate all the peers in a distributed manner. Aiding in distribution is

unappealing to many, as they either have to pay for their bandwidth, or are unwilling
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to share their resources if they are required to pay for the content or service.

Peer-to-peer also offers numerous other challenges, which can vastly affect the

performance of the system. Unlike with CDNs and PVRs, the relative simplicity of

the protocols allows them to have a high level of service and reliability. However,

in peer-to-peer, your level of service depends on other users, who join and leave the

network as they choose. Also, if a user decides to be malicious, they may disrupt the

network, inject illegal content, or tamper with the existing content.

e added complexity of P2P does allow for higher levels of interactivity. For

example, in pull based P2P, the content may be fetched out of order. It is therefore

trivial for the protocol to fetch new seek points, or to even pre-fetch ahead to areas of

interest. Features like this reduce seek delay, but this improvement may be negated

because of the high overheads and unreliable performance of other peers. ere is cer-

tainly room for much improvement and innovation to solve the numerous challenges

found within P2P.

2.2 Characterisations of User Behaviour

To design systems that support the delivery of multimedia over the internet, it is cru-

cial to understand how users will interact with the media. ese interactions impact

multiple functions, such as, admission strategies, buffer management and delivery

techniques.

In a content distribution networks (CDNs) context, this could effect how proxy

servers operate, and how the location of replicated media, and which delivery mech-

anisms are used. If, for example, only a small subset of media from a large catalogue

is popular then more resources should be dedicated to those popular ëles. Content

could also replicate in advance, if it was possible to anticipate demand. is is all

possible by understanding how the content is consumed by the user.

One area which has not been closely examined, is when there are high levels of

interaction, such as those when a user wishes to view just the highlights of the content,
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or is searching for a speciëc clip. Understanding highly interactive characteristics can

aid in the designs of many novel features. is may include the ability to pre-fetch

areas of high popularity, or place bookmarks at key points.

e behaviour of users has previously been studied in a few different domains, in-

cluding static web content, video-on-demand, and live streaming. Each have different

properties, causing the observed user behaviour to differ for each domain.

Video-on-demand (VoD) domain consists of applications in which videos from a

stored catalogue can be fetched and viewed at the user’s discretion. ese applications

typically allows the user to control the playback of the content, for example, allowing

users to pause, fast-forward, or rewind. Live streaming is akin to TV broadcasting;

all users viewing a particular stream do so at same playback point, thus limiting their

control over playback.

Veloso et al. describe VoD as user driven, meaning that the user decides which

media is viewed and when. However, live streaming is object driven; the user’s ac-

cess is inìuenced by show/event time, and the various activities within the live me-

dia [VAM+02].

2.2.1 Video-on-Demand

e characterisation of Video-on-demand (VoD) is important to this thesis, as the

main experiments involved VoD. As such it is important to have a understand of ex-

isting VoD characterisations, to contrast with the new results found within this thesis.

Additionally VoD has become increasingly popular over the internet, and is thus in-

troducing new challenges which need solving. Already, 11% of people within the UK

supplement or replace their broadcast TV viewing with online video services [Plc08].

In a 2001 study, the streaming habits of users on the University of Washington

campus were recorded. It was found that 85% of all videos viewed were from stored

content [CWVL01]. is percentage is thought to have increased as numerous video

websites have become very popular, with YouTube [You08], for example, receiving 70
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million visitors a month [SSF08].

Multiple studies have suggested that the majority of online VoD content is rela-

tively short [LCKN05], with 93% of content having a duration of less than 10 min-

utes [CWVL01], and a median of 3.2-3.9 minutes [SSF08]. e length of video

content is expected to increase as VoD becomes more popular driven by services such

as BBC iPlayer [BBC08] offering TV shows and feature ëlms.

2.2.1.1 Popularity

e popularity of content within a VoD system play an important role in deciding

how it is cached and replicated. Popularity of web objects typically follow a Zipf-

like distribution. Within Zipf distributions [Zip49], the popularity of a object is

proportional to its rank, i.e. the iǸ most popular object receives 1/iα of requests,

as seen in Figure 2.4a. is implies the majority of content is unpopular, and a few

items are extremely popular, making up the weight of the distribution. is is be

illustrated by observations made by Chesire et al. Out of 23,738 video objects, 78%

of which were only accessed once, 21% accessed two to nine times, and the remaining

1% accessed ten or more times, with the 12 most popular objects being accessed more

than 100 times each [CWVL01].

Video-on-demand popularity was ërst suggested to follow a Zipf distribution by

Dan et al. in 1994 [DSS94]. is was again observed by Wolf et al. in 1997, however
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with varying degrees of skew each week [GBW97]. In early 2000, Acharya et al. could

not ët the popularity of their education videos to a Zipëan distribution [ASP00]. In-

stead they noticed requests to their objects were more biased towards the popular titles

than expected within a Zipf distribution. is bias can be explained by Cherkasova

and Gupta’s analysis of an enterprise media workload [CG02]. ey observed that

over long timescales the bias towards the most popular items increased. For example,

object popularity ëtted a Zipf distribution with 1.3 ≤ α ≤ 1.6 over 1-month periods,

over a 6-month period with α = 1.6, and eventually Zipf did not ët well over a year.

e fact that Zipf did not ët well over a year time scale is often overlooked and

the reasons for this are typically misunderstood. Zipëan models are useful for static

distribution, those which do not have a temporal component. For example, Zipf

was ërst developed by George Kingsley Zipf when studying the frequency of words

appearing in a corpus of natural language. e corpus would not change over time,

i.e. words would not be added or removed. is differs from popularity of videos

over a timescale as it is common for new videos to be added and removed over time,

and for the popularity of the videos to change over time. Instead the Zipf models

should be used to model the popularity over shorter periods, such as daily or weekly,

or be used to blindly model the rank of objects on daily bases. For example, objects

on a daily bases may follow a Zipf distribution, but instead of noting the popularity

of each object, note the popularity of each rank. is will then more accurately model

the expected popularity on any given day, and is more useful for the design of caching

systems.

Whilst analysing Kazaa’s [Net02] peer-to-peer traffic, Gummadi et al. proposed

a new distribution that ëtted the popularity of objects better than Zipf [GDS+03].

Individual Kazaa users rarely requested the same object twice, unlike in web traffic

where the same object may be requested multiple times by an individual. is lead

to the “fetch-at-most-once” model, which ëtted better to the workloads discussed

by Cherkasova and Gupta [CG02], as well as ranking data collected from video store

27



Chapter 2: Background & Related Work Characterisations of User Behaviour

rentals [Com00], and box office sales [Dat03]. is model says that users fetch objects

following a Zipf distribution, but must not request the same object twice. If the user

chooses a previously fetched object, then a new object is picked again from the Zipf

distribution.

Yu et al. contradicted the fetch-at-most-once model when analysing a 219 day

trace collected from a VoD system deployed by China Telecom used by 150,000 peo-

ple [YZZZ06]. eir object popularity ëtted best to a Zipf distribution, except for

a long heavy tail. ey speculate that their results do not ët the fetch-at-most-once

model because users were unable to save the viewed media, thus if they wished to

watch a video again, they had no choice but to re-fetch it.

Which model is best seems to depend on how the videos are accessed, what genre

of video they are, and other currently unknown factors. However Cha et al. tried

to explain the shape of the distributions through simulation [CKR+07]. A fetch-at-

most-once model was simulated with a Zipf distribution of α = 1.0. Parameters such

as the number of users, the number of requests per user, and the number of objects

were varied. ey found that the effects of fetch-at-most-once are barely noticeable

when there are few requests, this intuitively makes sense as there is less chance of

selecting the same object twice. e number of users did not seem to impact the

shape of the distribution at all. When the number of objects increased, the effects of

fetch-at-most-once were also reduced, again, because the chance of selecting the same

object is decreased.

Both Zipf and fetch-at-most-once are categorised as power-law distributions.

However there are other factors which govern the power-law nature of these distri-

butions. In most of the analysed models, the two ends of the distributions have been

truncated or extended. It is suggested by Chris Anderson that “Latent demand for

products ... is suppressed by bottlenecks in the system” [And06]. Take, for example,

the popularity of movies in cinemas. Most cinemas show the most popular movies,

however there are few cinemas screening niche content. is causes the popularity
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distributions of the movies to have a truncated tail. is is refereed to as a “distribu-

tion bottleneck”, where due to lack of distribution, the tail is truncated. e opposite

can be true, where, for example, there is ample supply of niche content, but it is hard

to ënd this niche content, thus a “information bottleneck” exists [CKR+07].

2.2.1.2 Popularity Over Time

Over time the popularity of videos will change, greatly impacting the decision on what

to cache or replicate. It is essential to consider how frequently replication updates are

carried out. Too often and video may needlessly be moved, but too infrequent and

the servers may not be prepared for demand of a newly popular video. As such the

rate of change in user interest can aid in the design of a VoD system.

Paneda et al. noted the popularity of videos on a popular Spanish news website

would change daily as new content was added. Typically the most popular items for

each day were added to the site on that day. However after the ërst day the content

could be grouped into four categories; short life, long life, up and down and seasonal.

Short life content would reach its peak popularity on the ërst day, and after the ërst

day the number of accesses would decrease suddenly. Long life content also peaks on

the ërst day, however its popularity decreases slowly over the the following days/weeks.

Up and down content, will build up popularity for a few days, and then decrease in

a similar way to long life. Finally, seasonal content would have peaks in popularity

every few weeks or months [PGM+06].

In a study of a enterprise media server, Cherkasova and Gupta observed that on

any given month most of the bytes transferred were for new content. ey found

that ~50% of requests to content were made in the their ërst week, with and addition

20% to 30% being made in the following four weeks [CG04]. ey did not discuss

if they found seasonal or up and down style content. However these patterns may be

directly related to the genre or appeal of the content.

Yu et al. took a different approach to monitoring popularity over time in their
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large scale VoD system [YZZZ06]. ey looked at the rate of churn in the top-10,

top-100, and top-200 most popularity movie charts over different time scale. ey

began by looking how newly inserted content affected these top charts on a hourly

timescale. e time content was added to the system, correlated with a high change

in user interest. is encourages that newly added content be replicated early to avoid

insufficient availability.

It was also noted, that over a small time scale, i.e hours, the top-10 list had a small

amount of churn averaging around 25% change per hour, whereas the top-100 and

top-200 experienced 45% change per hour. Over longer timescales such as days and

week, it was found that the top-10 list rarely remained stable, whereas the top-100

changed only 15% each day.

e main observations from Yu et al. suggest that popularity changes on differ-

ent timescales, with the top-10 being stable for a day, and the top-100 being stable

over longer periods. It is suggested that a two level caching model be used, with

a small adaptive cache for the top-10, and larger more constant cache for the top-

100 [PGM+06].

Although popularity of objects change over time, it appears these changes are very

speciëc to the viewing population and genres of the objects. In the current research

no single model has been found which accurately explain the observed behaviours,

however, it is clear that this is an important metric for cache design.

2.2.1.3 Recommendations

Some systems display a top-10 list of the most popular videos that month, or a list of

recommendations, such as new releases, or videos a user may ënd of interest. All of

these lists can greatly inìuence what a user views. However, the importance of rec-

ommendations has not been studied, much, it has been highlighted as a great source

of revenue for companies such as Amazon [And06].

Yu et al. have studied this phenomenon more analytically when they observed it
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in their VoD system. ey found one video stayed in the top-15 most popular ëlm

list for a signiëcant amount of time, but once a administrator manually removed the

ëlm from the list, its popularity quickly declined [YZZZ06], and never recovered.

e fact that users appear inìuenced by these lists, can play in the favour of a

video-on-demand system. For example, if it is know ahead of time that a ëlm will

appear in the list, the system can take necessary steps to ensure the content is well

replicated, in advance of the demand.

2.2.1.4 Session duration

e session duration can be deëned in two ways; ërstly the duration a user spends

using a Video-on-Demand application, and secondly the duration the user spends

watching a particular video. Each deënition is applicable in different contexts. For

example, knowing how long a user views a single video can aid in caching decisions,

whereas knowing how long a user uses an application can aid in the design of the

application. is section is only interested in how long a user views a particular video

for.

From early studies on VoD it has been observed that session duration is quite

short. For example, in 2001, whilst studying streaming traffic on a large university

campus, Chesire et al. showed that 85% of all sessions lasted less than 5 minutes with

a median session duration of 2.2 minutes. is is compared to a mean advertised

media length of between 2.5 and 4.5 minutes. Long lived sessions (those longer than

one hour) accounted for only 3% of all client sessions [CWVL01].

Almeida et al. found similar results when analysing logs from an educational media

server. A signiëcant proportion of requests were less than 3 minutes in duration.

ese sessions were very short when compared to the length of the media, which had

a median length of 60 minutes [AKEV01].

It was suggested by Guo et al. that the short duration was due to the long wait

times, and low patience of users [GCXZ05]. Yu et al. found that short durations
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within their traces were due to users sampling the media by “scanning” through them.

An inverse correlation was also found between the session lengths and the popularity

of the media. Less popular videos actually had longer session times [YZZZ06].

As noted by Guo et al., 20% of network bandwidth was wasted buffering video

which was never watched due to the user aborting the stream [GCXZ05]. ese short

session durations encourage the design of agile systems which can quickly display

the media before the user becomes impatient, as well as techniques such as preëx

caching [SRT99], which prioritise caching of the ërst frames of the media for quick

delivery.

2.2.1.5 Interactivity

e playback of media is not always passive; certain systems allow for interactive

control over the playback. For example, the user may be able to pause, fast-forward

or rewind, as well as seek to arbitrary points within the content. Offering interactive

features can be challenging. For example, most multicast delivery techniques require

all clients to be at a similar playback point within the stream. However, if a client seeks

arbitrarily, they are no longer at the same playback point, and thus must join another

multicast group, or start to receive the content via a different delivery method. As

such, an understanding of how users interact with the content can be invaluable for

good delivery.

ere have been few studies on how users interact with media. is may be due

to the relatively few systems which have interactive features. However, Huang et al.

found then when interactive controls were available, for videos clips shorter than

30 minutes, only 20% of all sessions showed interaction from users [HLR07]. Un-

surprisingly, the longer the video, the more interactivity is observed. For example,

with videos less than a hour in length 40% of session exhibited interactivity. is

trend is consistent with the results within this thesis, and other research [CCB+04].

However, this thesis presents results with far higher percentage of sessions with inter-
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activity. is may be due, in part, to the novel interface presented to the users which

encouraged interactivity.

Costa et al. found that when users do interact, that in both education and en-

tertainment the most common action is pause [CCB+04]. is was conërmed by

Vilas et al. who noted that 7% of session for short videos (those less than 5 minutes

in length) and 10% of longer videos session had at least one pause. It was also shown

that the pause duration could be modelled with a Weibull distribution, with means

of 55 seconds and 95 seconds, for short and long videos respectively [VPG+05].

Another common action is seeking forwards or backwards. For short videos, the

percentage of forward and backwards seeks appeared to be roughly the same. However

as video length increases, there are more forward seeks, indicating users wished to skip

ahead [AKEV01]. Seeking forward also surprised Padhye and Kurose when studying

an education server which provided lectures. ey assumed students would regularly

seek backwards to go over a section again, but found that seeking forward was seven

times more popular than seeking backwards [PK98].

Vilas et al. modelled the number of seeks per session, and follow it matched a

Zipf distribution, with α values between 3.73 and 5.8 [VPG+05]. is implies that

most users never sought backwards or forwards, however when users did, they did so

numerous times.

e distance sought was also studied by Padhye and Kurose, who observed on

their education server a very large average distance. For forward seeks this was approx-

imately 35 minutes, and backward was 34 minutes, for media around 70 minutes in

length. However, one third of these seeks were for less than 3 minutes [PK99].

2.2.1.6 Segment Popularity

When users seek, not all segments of the video may be viewed equally. is could

lead to some segments being very popular, whereas others unpopular. is situation

can also be caused if users do not watch for the full duration of the video. is all has
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implications on how media, or segments of the media should be cached.

Almeida et al. divided education media into ten-second segments. For the most

popular video, all segments were accessed roughly equally, however for the less popular

video, the earlier segments within the media were accessed more [AKEV01]. is

indicates only the beginning of the content was viewed. Costa et al. also observed

this result with newer education content, as well as entertainment content [CCB+04].

When Huang et al. analysed the traces from a large entertainment Video-on-

Demand site, they found users would regularly quit before the end of the video. For

short videos, most users watched for the full duration, however as the video length

increased users were more likely to stop early. For example, with videos less than

30 minutes in length, only 18% would watch for the full duration, with 22% watch-

ing for 60% of the duration [HLR07].

ese later results are consistent with the ëndings in this thesis, however, we noted

areas of high interest dubbed hotspots. e previous work found only minor differ-

ences in segment popularity, whereas we found segments with orders of magnitude

different popularity. is result is speculated to be because of the higher levels of

interactivity found within this thesis’ traces.

2.2.2 Live Streaming

e characterised workloads of live streaming are likely to be different to those of

video-on-demand for a couple of reasons. Firstly, users are mostly passive in live

streaming, fairly limited by how they can interact with the media. In some cases,

pause is available, but seeking is typically not. e only real interaction available

is the choice of when to join or leave the stream. Also, as all users are viewing the

same content, the force of the crowd may be stronger, for example, all user leaving

simultaneously as a live programme ends.

Secondly, in a 2004 study of a large CDN, it was found that only 7% of streams

were video, accounting for only 1% of all requests [SMZ04]. e remaining streams
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were audio only, for example, radio stations. is section highlights the differences

between VoD and live streaming workloads, while explaining any features speciëc to

live streaming.

2.2.2.1 Time-of-day

Non-stop streams have a diurnal access pattern, peaking at the same time each day.

is kind of diurnal access patterns has not be observed with Video-on-Demand. It

is speculated by Veloso et al. that diurnal access patterns are smoothed out because

the clients have control over when they access the media and by clients accessing

from multiple time zones [VAMJ+06]. e non-stop stream is also inìuence by time

zones, but less so, for example, Sripanidkulchai et al. observed for a single radio

station’s stream, several similar periodic patterns were present, but shifted by the time

zone of the clients [SMZ04].

Streams with a short durations did not follow the same daily pattern. However,

nearly all short stream began with a îash crowd. A ìash crowd is a sudden surge of users

all wishing the view the same content. is typically overwhelms servers, and results

in an accidental denial of service. ese types of events are certainly user driven, with

users speciëcally joining the stream for an event. Almost 50% of non-stop streams also

exhibited a ìash crowd event every few days. is, for example, could be the result of

many users joining a radio stream to listen to a popular programme [SMZ04]. is

behaviour is rarely seen in VoD systems, as the requests are object driven.

2.2.2.2 Session duration

Session durations for live streaming follow that of video-on-demand. Most sessions

are short, with a a few long-lived sessions. Vandermerwe et al. found the distribution

of session duration to be long-tailed, with 69% of sessions being less than 2 minutes

in length, 88% less than 10 minutes, and the top 8% being longer than 20 min-

utes [VdMSK02]. ese results were similar to Chesire et al. who found a similar
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long-tailed distribution with their top 3% of the population being more than a hour

in length. However, these 3% of long-lived sessions accounted for about half of all

bandwidth consumed [CWVL01]. is demonstrates how the distribution is not just

long-tailed, but heavy-tailed.

Sripanidkulchai et al. compared the session durations of live streaming content,

repeating streaming content and video-on-demand content. e repeating stream-

ing content consisted of non-stop streams which broadcasted the same programme

over and over, for example, every 30 minutes. e session duration for both repeating

streaming content and the VoD content exhibited similar “truncated” Pareto distribu-

tions. e majority of sessions with this distribution are short, with the few long-lived

sessions being no longer than the content’s length. However, the session durations for

live streaming content, ëtted a Pareto distribution with a heavy tail. is extended

long tail is caused by the user’s actions, rather than being truncated arbitrarily by the

content’s length [SMZ04].

2.2.2.3 Interactivity

As far as we are aware there have been no studies on the characterisation of interactivity

with live streaming. is will of course be due to the lack of interactive controls. For

example, it is impossible to seek forward in a live stream, and only possible to seek

backwards if the stream has been stored by the server or client.

e storing of live streams by the client is becoming increasingly popular with the

use of time-shifting devices such as digital video recorders (DVRs) or personal video

recorders (PVRs). ese are typically set-top boxes which buffer broadcast TV. e

user is then able to pause while the box continues to buffer, or rewind within the

buffer. Additionally, the user may fast-forward to catch up with the stream if they

have paused or rewound. PVRs are discussed in more detail in Subsection 2.1.3.

As far as this author is aware, there have been no research examining how users

interact with PVRs. However, it is commonly reported that these devices are used

36



Chapter 2: Background & Related Work Characterisations of User Behaviour

to fast-forward through advertising when watching recorded programming [BP05].

When users skip adverts, these advertising segments become less popular than the

rest. is has implications for how these segments would be cached or replicated.

2.2.3 Implications

is section has highlighted the main characterisation models for both video-on-

demand and live streaming. Understanding how media is consumed has many prac-

tical uses, such as designing, evaluating, planning and managing systems. is is

especially true when dealing with highly interactivity workloads, as these typically

cause excessive load for servers.

It is clear that starting with a metric as simple as content popularity can greatly

aid in replication and caching strategies. As popularity is typically modelled by a

power-law distribution, systems will beneët from caching the most popular content.

However, as distribution bottlenecks are reduced, and users ënd it easier to access

their niche content, it might be useful to implement multi-level caching hierarchies,

which can use different policies based on the the ranking of the content. For example,

one caching policy can be used for most popular content, whilst another can be used

for the more niche content. As such, the niche caching policy may only store the

content in local caches for a short, whereas the very popular content is kept available

for a longer period of time, on a more global scale.

Knowing what is popular, and caching it, is a reactive method, however, it is

sometimes useful to be proactive. is may be possible if the content is listed in top-x

charts, such as the top-10 voted movies. e popularity of an object ranked 10Ǹ ,

is far higher than that at position 11, when only the top-10 chart is available to the

user. e effect these charts have on the user’s viewing habits can easily be exploited

by the video-on-demand system. As soon as the chart is available, the system can

begin pro-actively replicating the content, perhaps near to the target demographic.

It is also clear that certain content has a seasonal or recurring monthly appeal,
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such as Christmas-themed videos. Again, these can be pro-actively replicated ahead

of demand, at the cost of potentially wasting resources. Other content is perhaps

only popular for a very short time, such as daily news reports. Understanding the

appeal of the media can greatly help choose on the appropriate content management

techniques.

Where interactivity is concerned, it is already clear that users can be impatient

and either scan through the content, or prematurely stop playback. erefore, to

maximise caching efficiently, the ërst segments of media can be stored in preference

to the later segments. Techniques such as preëx caching [SRT99, HNG+99] can also

aid in deciding which segments are the most useful to cache and replicate.

Even though users do interact with the content somewhat, high levels of inter-

activity have not previously been reported. However, the results presented later in

this thesis (see Chapter 4) show much greater levels of interactivity. Different design

decisions must be made under these workloads, which will be discussed later in the

thesis.
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Interactive

Video-on-Demand System

ere has been lots of work on characterising user behaviour when viewing video-on-

demand (VoD) and streaming media (as discussed in Section 2.2). However, there

has been little analysis when a highly interactive system is used, for example, a system

where users regularly pause and resume playback and actively seek around the media.

is would generate results which would be a complete departure from the classic

start-to-end model.

To obtain traces from a highly interactive workload, we set up and designed a

video-on-demand system. is system was designed to provide powerful, yet simple

interactivity controls, which would hopefully encourage more interaction between

the users and the system. Once deployed, the system would be used to record traces

of real user behaviour, and to be used as a test environment for future experiments.

To be useful, the system had to meet three criteria:

Wide user base So that we could maximise the number of participants, the system

needed to be designed in a way which was non-invasive, and simple for the users

to use. is ruled out installing any special software on the users machines.

Encourage Interactivity To ensure that the system generates a highly interactive
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Figure 3.1: Diagrams of our video-on-demand system

workload, the layout of the user interface should make it easy to pause, resume,

seek, etc. is should be supported by the system, which should offer these fea-

tures with low-latency, as to not to discourage their use.

e content chosen for the system is also important. It should somehow encourage

the use of interactive controls, for example, feature ëlms will always be viewed start-

to-ënish, but genres such as sports may encourage users to view just the highlights.

Simple and Cheap Finally, to ensure this system could be deployed, it has to be sim-

ple and cheap, for both us and the users. is of course can be achieved by using

“off the shelf ” products. Open source software would also be useful as it can easily

be customised for our needs.

To meet all these requirements, the following choices were made. e system

should be a simple client-server Flash based one, similar to the ones described in

Subsection 2.1.1. ese sites are relatively simple to set up and easily customisable.

ey also allow for a wide user base, as they use a simple web browser and the Flash

player, both of which are commonly found on users’ PC. ese technologies will also

typically work through ërewalls, unlike other streaming protocols. is was beneëcial

to us, as it allowed us to stream to restricted users on our university campus.

e Flash player expects the video to be encoded as an FLV ële; this can easily

be achieved using the open source FFmpeg [FFm08], which again makes this system
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simple and easy to deploy. One issue with the Flash player was the lack of seeking

support, however a hackwas developed to add this functionality. e exact description

of how this hack worked is described in Section 3.2.

We chose a few different genres of content, but for the ërst round of experiments

we served the 2006 FIFA World Cup. is is a hugely popular event with three to

four matches on each day. Due to the number of matches each day, many users would

miss the live match; this therefore encourages them to use our site to view any matches

they missed.

e majority of videos served by our system typically had areas of particular in-

terest, such as goals. To allow users to quickly navigate, we designed and added a

bookmark feature. While viewing the videos, the users were shown a list of book-

marks to the key events within the content. en, at any point, the user could click

the bookmark to instantly seek to its position within the media. Within our sport

content, for example, goals, fouls and similar occurrences were bookmarked.

e concept of bookmarks in media is not new. Most DVDs contain chapter and

scene bookmarks, which enable the user to start playback at any location. However,

as far as we are aware, there have been no studies on how these DVD features are

used. If a user does start a DVD at a speciëc chapter, it is no technical challenge for

the DVD player to seek to the correct point and begin playback. is is not true for

video-on-demand, as it can be quite strenuous for servers to seek arbitrarily. As such,

the analysis of bookmark use within VoD will be novel.

e rest of this chapter explains how our video-on-demand system was designed

and deployed to cater for our interactive experiments, and also outlines the different

content used. is also includes the design of different tools to enable seeking within

Flash videos.
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3.1 System Overview

We set up a simple, interactive video-on-demand system. e system was divided

into three main components: the capture server, the Video-on-Demand server, and a

web interface as depicted in Figure 3.1a.

Our capture server recorded publicly-broadcasted raw MPEG-2 streams of the

programmes selected for our experiments. e recording was done via a digital TV

capture device, using VLC [Vid08c] to store the raw stream. Once the full programme

had been recorded, the system transcoded the stream with FFmpeg [FFm08]. Two

streams were created; high and low bitrate Macromedia Flash 7 FLV ëles (1 Mbps

and 300 Kbps respectively). Administrators would then manually add metadata to

the system describing the ëles. is metadata included the title and description of

the video as well as marking the location of key events within the videos which would

become bookmarks (more details on what was bookmarked is listed in Section 3.3).

e ënal FLV ëles were then transferred to the VoD server, making them accessible

to the users. e full procedure described typically took around twice the length of

the recorded video, and so the videos were available shortly after being aired.

e VoD system was an Apache webserver, which served the Flash-based user

interface over HTTP. is server was only accessible to staff and students within

Lancaster University’s campus, and those staff and students connecting remotely via

the university’s Virtual Private Network (VPN). To aid in logging, all requests made

through the user interface were verbose, allowing us to determine exactly which con-

trols users pressed and when. Additionally, each playback window would maintain

a periodic (10 second) HTTP-request heartbeat with the server, which was used to

determine when connectivity was unexpectedly lost.

To handle user tracking, each user was assigned a unique session ID, which was

stored within a HTTP cookie and their URLs. Each event that was logged contained

this identiëer, allowing us to track individual users throughout their visit to the site.

If, however, a user blocked or deleted their cookie, they would appear to be new to
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the system upon each visit. We note within our analysis where this uncertainty could

affect the results.

e web interface consisted of two main sections: an index page allowing the user

to select any available video from the system, and the player interface that displayed

the video (as shown in Figure 3.1b). We were aware that the user interface would

constrain the users’ actions somewhat, and it was therefore designed to be as simple

and generic as possible. We also wanted the interface to offer modern interactive

controls (also called trick-modes).

ere are many different trick-modes, for example the ability fast-forward or

rewind, or the ability to step through the video one frame at a time. However, of-

fering too many trick-modes would clutter the interface, and most of them wouldn’t

be useful. erefore, we limited the interface to having just seeking controls (e.g.

forward, backwards and to arbitrary points), as well as pausing and resuming.

Forward and backward buttons were provided that allowed seeking 10, 30 and 60

seconds in either direction. As these are relatively short distances, we also provided

a seek bar which enabled users to seek to any arbitrarily chosen time. Finally, a list

of bookmarks was displayed to the users, which enabled them to jump directly to

key events. Bookmarks were added by an administrator, but later the interface was

extended to also allow users to submit their own bookmarks (via the tag button),

which other users could see and use. User bookmarks often covered events that were

not typically bookmarked, but were of particular interest (such as events that came

under later scrutiny).

3.2 Seekable HTTP Flash

A few tools were created to enable a fully interactive experience in the experiments.

Typically, when streaming Flash video (FLV) ëles from a web server, the full ële is

streamed start-to-ënish, which does not allow for seeking to arbitrary points within

the video. erefore, additional software had to be developed to support seeking.
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is software was developed independently in 2006. However, in late 2007, YouTube

implemented a system very similar to the one described here. e rest of this section

discusses the three main changes which had to be implemented.

3.2.1 Flash Indexing

It is not possible to start playback from any arbitrary byte within a media ële, as a

media player would have problems decoding the media. As such, an index is typi-

cally provided that maps byte offsets to seekable points within the media. e ërst

application which was designed was one which could generate this index.

Typically, stored video is contained within a single ële as a long continuous se-

quence of frames. ere is a frame for each picture within the video. Each frame

has a unique timestamp, to represent the time at which it should be displayed, and

typically these timestamps are at ëxed intervals. In Flash video there are two types of

frames; key frames and predictive frames. Key frames provide data to generate a full

picture, whereas predictive frames provide only the differences since the previous key

frame. is allows an efficient way to compress a video, where the complete picture

typically does not change every frame.

To play a video, the Flash player must always start at a key frame, otherwise a full

picture can not be decoded. us, when seeking to an arbitrary point, the player must

ënd the key frame immediately preceding the seek point. An index of key frames to

positions within the ële must be created to seek efficiently. is index can then be

used to ënd the appropriate key frame when seeking.

For our experiments, software was created to generate these indices. Each index

was generated with a custom-made program named FLVTool++ ¹. is C++ program

scans through the FLV ëles, noting the byte offset of each key frame. Once all key

frames were found, an index of the timestamps to byte positions was inserted into the

beginning of the FLV ële as meta data.

¹Since the release of this software, a product with the exact same name has been released by Facebook [Fac08]
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3.2.2 Custom Video Player

Once a FLV ële has a key frame index, the Flash video player must be modiëed to take

advantage of this. e Flash player provides a set of APIs which allows simple control

over the playback of video. However, it does not provide any control for seeking.

erefore, to provide the appearance of seeking, each time a seek request was issued

the Flash player would request a new video stream from the server. is requested

video stream URL was in the form of:

http://<host>/play.php?video=<video name>&offset=<offset>

is URL allowed the server to start streaming from a speciëed offset, and thus

the user could seek arbitrarily. e offset sent to the server is the byte offset for the

requested key frame within the video ële. is position is calculated by the Flash

video player using the key frame index contained within the stream’s meta data.

Using the URL to pass the offset is not the best way to achieve this. e HTTP/1.1

standard has a Range header [FGM+99], which allows HTTP clients to partially re-

quest segments of ëles stored on a HTTP server. e better way to achieve seeking

with Flash would be via this Range header, however the Flash player does not sup-

port this functionality. If it did, it would simplify processing on the server and aid in

caching of the media by traditional web caches.

3.2.3 Server Side Support

As each seek is actually a new HTTP request for a stream starting at a speciëc offset,

there must be some logic on the server which allows the client to begin from any offset

within the stream. To achieve this, a PHP script was created which simply opened

the ële and streamed from the desired offset. is offset was provided in the URL by

the client, who found the particular offset using the media’s key frame index.

Since the offset points to the beginning of a key frame, an FLV stream header is

not present. Since each seek is a new stream, the header is required, as it contains
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information required for correct playback. erefore, the PHP script recreates the

correct header, and preëxed it to the stream.

Because the video is served as a normal HTTP request, the server will try and

transmit the stream as fast as possible. To conserve bandwidth and increase the max-

imum number of concurrent users, the server was conëgured to limit the streaming

rate. For the ërst few seconds, the rate was unlimited and then afterwards limited to

the video’s average bitrate. is minimised the start-up latency and then smoothed

playback afterwards.

3.3 Experiment

Over the course of twelve months, this interactive video-on-demand system was used

to carry out multiple experiments. ese experiments were available to staff and stu-

dents, and publicised to help attract users. e experiments were run in two phases,

ërstly covering the 2006 FIFA World Cup² and nine months later a wider range of

sport and musical events. e content selections were chosen because they had points

of interest to bookmark, and would yield sufficient user demand.

e ërst experiment made a total of 66 matches available from the World Cup

(64 from the event itself, and 2 pre-competition friendlies) starting from the 9Ǹ of

June 2006. Only results after the 13Ǹ of June were analysed due to alterations made

to the logging system and user interface before that date. Each match was recorded

from the beginning of the pre-match commentary through to the end of coverage. At

the very least, every goal, penalty, and match start/end-point (inclusive of half-time)

was bookmarked.

As a direct result of the ërst experiments, some new autonomic management tech-

niques were designed. To test this in a real environment, a second experiment was

set up. From the 13Ǹ of April 2007, we began adding new content to extend the

existing catalogue of content. is time, our approach was designed to test the vari-
²is is not the only study to look at the 2006 FIFA World Cup, Silverston and Fourmaux took measurements

of the PPLive peer-to-peer network as it broadcasted live matches from the event [SF07].
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ous new techniques and to revalidate our previous experimental results. Furthermore,

we wished to determine the relevance of our analysis/models to other genres (such as

music).

Over the following two months we provided the last six matches from the 2007

UEFA Champions League football tournament, some other miscellaneous football

matches, seven Formula 1 races, as well as several recordings from music channels

and the 2007 Eurovision Song Contest semi-ënal and ënal. e football matches

were bookmarked in the same manner as the previous World Cup event. In the For-

mula 1 content we bookmarked the beginning and end of the race, as well as any

noteworthy events such as a driver having to retire (after a crash or technical difficul-

ties). Within the musical content the beginning of each track was bookmarked with

its corresponding artist and title. A similar approach was taken with the Eurovision

Song Contest, where the beginning of each song was bookmarked with the name of

the country taking part.

In total there were 88 videos, with an average length of 2.5 hours. e maxi-

mum video length was 4 hours, and the minimum length 45 minutes. ere were

695 bookmarks, with each video having on average 7.8.
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As outlined in the previous chapter, two sets of experiments were conducted to char-

acterise a highly interactive video-on-demand system, as well as to test some new

content management techniques. In this chapter, we use traces from our system to

characterise user behaviour and the resulting workload. Using a combination of R-

Square ëtting and Kolmogorov-Smirnov tests, models for the various features were de-

termined. Aggregated results are shown where applicable, but in some cases it is more

appropriate to show results for individual videos. We noted in many cases that the

features analysed were similar for each video, so for simplicity we will speciëcally dis-

cuss two individual videos in greater detail: the World Cup’s Argentina vs. Serbia and

Montenegro match, and the Eurovision Song Contest ënal. Both were amongst the

top 5 most popular videos and were representative of their genres (namely sport and

music). We will refer to these ëles as arg-scg and eurovision respectively.

roughout the two experiments we observed a total of ~1800 unique users to

the site, with each video receiving on average 68.2 unique users (and an overall max-

imum of 383). During this period we served 925 hours of video, which equates to

3.3 terabits of data. We received an average demand of 287±31 requests per day,

with ursday being the most popular. roughout the day we saw the typical diur-

nal sinusoidal access patterns averaging 12±10 requests per hour, reaching its peak at

midday with an average demand of 29 requests per hour.
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We witnessed 123 unique users for arg-scg, and 131 unique users for eurovision,

who watched for a combined total of 29.1 hours and 79.6 hours respectively. Note

that if an individual does not maintain the same HTTP cookie between sessions (e.g.,

their cookie is deleted) they will appear as a new unique user. Equally, if two individ-

uals share the same cookie, they will appear as a single unique user. While we expect

these cases to be rare, they may however introduce error into the unique user count.

An observant reader will note that the most popular video had 383 unique users,

yet the analysis is concentrated on arg-scg and eurovision with only 123-131 unique

users. e reason for this is that the most popular content, a collection of ‘cheesy’

music videos, had a very short average session duration. e video was the newest

content on the site for many weeks, as such was at the top of the list of videos. We

speculate that newcomers to the site would click on this video to understand what

the site had to offer, but quickly stop. Shortly afterwards they would continue to

explore the other videos on the site, which were perhaps better to their liking. ese

shorts views were therefore not representative of a typical viewing session and thus

the analysis does not concentrate on them.

e rest of this chapter uses the traces obtained from the experiments and charac-

terises the observed user behaviour. Common metrics are looked at, such as popular-

ity, longevity, session length, etc. However, to describe the more interactive aspects,

new analysis techniques and metrics were developed such as seek distance, hotspot

length, jump plots and sequence graphs.

4.1 Probability Distribution

roughout this chapter different metrics will be ëtted to and modelled by different

probability distribution. is section quickly outlines the main models, and discusses

their uses and relevance.
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Normal pdf(x; µ, σ) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
A normal distribution is perhaps one of the simplest probability distribution also

known as the Gaussian distribution, and recognised as the bell curve. Any variable

which is the sum of multiple independent identically-distributed factors is likely

to be normally distributed. is ensures that values are centered around a mean

with a equal variance either side. ere are many examples of normal distribution

in natural, for example height of people or the intensity of laser light.

Other distribution are generally not centered around a mean and instead skewed.

is is particularly common when mean values are low, variances large, and values

cannot be negative [LSA01]. e follow distributions are all skewed.

Log-normal pdf(x; µ, σ) = 1
xσ

√
2π

e−
(ln(x)−µ)2

2σ2

Log-normal is a continuous distribution in which the logarithm of the variable is

normally distributed. For example, if X is a random variable with a normal distri-

bution then Y = eX is a log-normally distributed. is distribution is generated by

multiple independent variables in a similar way to a Normal distribution however,

the variables are multiplied instead of added. Within video-on-demand analysis

log-normal can be used to model the size of frames within a video stream, or in

some cases the popularity of content [CKR+07].

Exponential pdf(x; λ) = λe−λx

Exponential is a simple continuous distribution which models the wait times be-

tween events, if events occur continuously and independently at a rate of λ per unit

of time. Typically it is used to measure the time between particle decays in radioac-

tive materials, or the time between phone calls. More speciëcally it can model the

time between viewing of a video.

Weibull pdf(x; λ, k) = k
λ

(
x
λ

)k−1
e−(x/λ)k

is is a particular ìexible continuous probability distribution which can mimic
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the behavior of other statistical distributions such as the normal and the expo-

nential. For example, when k = 1 the distribution is identical to an exponential

distribution, and when k = 3.4 it resembles a Normal distribution. Weibull distri-

butions are commonly used in survival analysis, reliability engineering and failure

analysis, amongst others. In VoD it has been used to model the session times, as

well as metrics more commonly used by an exponential distributions.

Poisson pmf(k; λ) = λke−λ

k!

is a discrete distribution which expresses the probability that a number of events

will occur in a ëxed period of time when events occur independently of each other

at a known average rate. is is typically used to model arrival distributions in

multimedia systems such as the number of times a video is accessed in a particular

period.

e following distribution are considered power law distributions. ese are ones

where the frequency of an event is proportional to its rank, i.e. the iǸ most popular

object receives 1/iα of requests.

Pareto pdf(x; k) = k xk
m

xk+1

is a continuous power law probability distribution more simply known as the Pareto

principle or the “80-20 rule”. It states that 80% of the distribution’s weight is

from only 20% of the values. is has been observed in many examples, such as,

the distribution of wealth or the distribution of ële size in TCP transfer over the

internet, etc.

Zipf pmf(k; s,N) = 1/ks

HN,s

Zipëan distributions have become very popular in computer science, and may be

thought of as a discrete counterpart of the Pareto distribution. It is used to model

distributions where there are many large rare events, and many small common

events. For example, the popularity of websites can be modelled by Zipf as there
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are millions of websites, which receive only a few users a day; and then there are a

few large very popular websites. Zipf has also be shown to model the size of cities

(there are a few mega-cities, but many small town) or used to model the frequencies

that words occur, e.g. words such as ‘and’ and ‘the’ that occur very frequently, but

many which occur rarely.

4.1.1 Fitting

roughout this Chapter the different evaluated metrics will be ëtted to different

mathematical models. ere are a couple reasons to do this. Firstly, by ëtting the

raw data to a model it can aid in understand the shape and implications of the data.

Secondly, by creating models it allows the models to be used for future simulations

and experiments where using the raw data alone would not be suitable. Both of these

reasons aids in the design and development of new algorithms and techniques, some

of which are described in Chapter 5.

To test how good a models ëts to the raw data two statistical tests were employed.

R-square R2 e R-Square is a very simple and common indicator of goodness of ët.

It works by calculating the sum of the errors between the observed value and the

value predicted by the model. More clearly it is deëned as:

R2 =
SSR

SST

= 1 − SSE

SST

(4.1)

where SSR, SST and SSE are deëned as:

SSR =
n∑

i=1

(ŷi − ȳ)2, SST =
n∑

i=1

(yi − ȳ)2, SSE =
n∑

i=1

(yi − ŷi)
2 (4.2)

and the variables are deëned as:

• yi is the observed value at xi

• ŷi is the value given by the model at xi
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• ȳ is the mean value of y1...yn

• n is the number of values.

e calculated R2 value should be between 0 and 1, indicating how good a ët the

model is to the real data, where 1 is a perfect ët, and 0 is a terrible ët.

Kolmogorov-Smirnov (K-S tests) e Kolmogorov-Smirnov takes a different ap-

proach, instead it compares the empirical distribution function (ECDF) of the

data with the cumulative distribution function (CDF) of the model and simply

measuring the largest distance between the two functions. e smaller the value

the better the ët.

D = maxi=1...n(CDF (yi) − ECDF (yi)) (4.3)

By using a combination of R2 and K-S tests it is possible to mathematically decide

how well a parameterized model ëts the real data. e remainder of the chapter will

utilise these techniques to explain how well the models ët, and why they are suited to

each particular metric.

4.2 Interactions

Recall that our system allowed various interactive operations, namely pausing, resum-

ing, seeking forwards & backwards, and jumping to bookmarks. is range of oper-

ations, combined with the nature of the content, highly inìuenced user behaviour.

As a result, for most users we observed a complete departure from the typical start-

to-ënish playback model that has been noted in previous work [CCB+04].

Table 4.1 shows, over the duration of the experiment, the frequency of each ac-

tion and its corresponding percentage against all other operations. Small individual

forward seeks were used a combined 24.9% of the time, whereas individual back-

ward seeking was only used 7.67%. ese actions only accounted for the short-seeks
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Action Frequency Percentage (%) Mean & Std. (σ) per Session
Back 10s 3098 4.50 0.59 (σ = 3.14)
Back 30s 654 0.95 0.12 (σ = 0.83)
Back 60s 1532 2.22 0.29 (σ = 1.90)

Forward 10s 7438 10.79 1.41 (σ = 8.61)
Forward 30s 1804 2.62 0.34 (σ = 2.93)
Forward 60s 7930 11.51 1.50 (σ = 7.38)

Seek-bar 9902 14.37 1.88 (σ = 7.39)
Bookmarks 13857 20.11 2.62 (σ = 2.63)

User bookmarks 1236 1.79 0.23 (σ = 1.01)
Pause 11839 17.18 2.24 (σ = 7.65)

Resume 9616 13.96 1.82 (σ = 6.80)

Table 4.1: Interactions observed throughout the experiment
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Figure 4.1: Jumps made by users within two videos

buttons (10, 30, and 60 seconds), whereas potentially large seeks (seek-bar and fol-

lowing bookmarks) made up 34.5% of all operations. e table also shows that in

each session (a viewing of a single video), a user on average used backward actions

once, bookmarks and seek bar actions 4.5 times, and forward actions 3.25 times.

Previous studies have shown that the most common action is pause/resume [CCB+04],

however we see that for our traces, forward operations are by far the most common,

closely followed by seeking to bookmarks. e table also shows that the number

of pause operations account for 17.18% of all actions. Pausing not being the most

common action can be explained by the short session durations observed. is is in

accordance with previous work which found a positive correlation between session

time and the number of pause operations [VPG+05].

To better understand how users navigated through a bookmarked video, we anal-
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ysed the behaviour in the arg-scg and eurovision videos, which had 10 and 24 book-

marks respectively. In Figure 4.1a & Figure 4.1b each point is a seek that is identiëed

by a “from” time on the x-axis and a “to” time on the y-axis. A point x,y therefore

represents a user that has jumped from their current playback point x to a new point,

y. Vertical and horizontal lines in the ëgures denote the position of the bookmarks.

e diagonal line is a current-time marker such that seeks forward are points which lie

above it, while seeks backward appear below it. erefore, no point can fall precisely

on the diagonal. It is immediately obvious from the ëgures that many points are on

horizontal lines, implying that most seeks were to the bookmarks.

e forward seek buttons appear to have been mostly used for skipping to the

next event, shown on both ëgures as points slightly above the diagonal line between

the bookmarks. is could be due to user unfamiliarity with the bookmark interface,

or possibly users simply browsing the video. Backward actions were typically used

around bookmarks, where users would often re-watch the bookmarked event. In some

cases users may also have wished to see video immediately preceding the bookmark.

An example of this is shown in Figure 4.1a before the bookmark at time 2815, where

users sought up to 75 seconds backwards to see more of the build up to the goal.

Clusters of points can also be seen on horizontal lines shortly after a vertical line,

indicating that users jumped from bookmark to bookmark. In fact, the concentration

of clusters of point just above the diagonal time reference indicates that users have a

tendency to follow bookmarks in sequence, as exempliëed in Figure 4.1b.

Overall, for both videos these results demonstrate that users did not simply view

continuously start-to-ënish, and were in fact highly inìuenced when presented with

bookmarks.

4.3 Seek Distance

e understanding of locality is important for caching and pre-fetching algorithms.

By looking at how far users sought we can determine the probability of accessing
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Figure 4.2: CDF of backward and forward seek distances

media nearby the playback point. We therefore deëne seek distance as the absolute

difference, in seconds, between a user’s current playback point and their requested

seek destination.

Figure 4.2a & Figure 4.2b display a CDF of seek distance for backward and for-

ward actions. A large proportion of seeks (between 50%-70%) are of a 15 seconds,

30 seconds, or 60 seconds values. ese seeks represent the short seek button presses.

40% of backward seeks were less than or equal to 15 seconds in length. is prop-

erty could be exploited by keeping a small client side buffer of previously watched

segments, which would satisfy many backward seeks if the user has already viewed

them.

Even though small seeks are the majority, there are between 30% and 50% of

seeks which are further than 60 seconds. ese seeks consist of jumps to bookmarks

or “blind” seeks with the seekbar. ese long range seeks are log-normally distributed

with a mean of 1968 seconds and 1630 seconds for forward and backward seeks

respectively. ey can be ëtted to log-normal models with parameters µ = 6.8269

and σ = 1.5953 for forward seeks, and µ = 6.3273 and σ = 1.7906 for backward

seeks. It can been seen that the backward distribution has a greater positive skew

than the forward distribution, thus it will generate many small seeks.

ese behaviours exhibit a high degree of spatial locality, with the majority of seeks

being within 60 seconds. Regarding long-ranged seeks, the log-normal distribution
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models imply that some very large distance seeks do occur, but the majority of seeks

are shorter. Additionally, the skewed nature of this distribution is most likely because

it is impossible to have a negative seek value. Overall the seek distances exhibit a

median of 60 seconds for forward seeks and 34 seconds for backward seeks. is is

consistent with previous ëndings [PK99].

4.4 Popularity

We study popularity in terms of the number of viewers who watched an object or a

segment. An object in this system is a single video whereas a segment is a section of

video one second in length.

e ranking for both object and segment popularity is shown in Figure 4.3. e

eurovision, and arg-scg were approximately 10,000 seconds in length, causing ~10,000

segments to be ranked for each video. Recall that only 88 videos were available, so

the lowest object rank is 88.

Typically object popularity with CDNs and VoD systems follows a power-law

distribution [CWVL01, AKEV01, YZZZ06], however, our analysis reveals otherwise.

Instead the ranking of objects best ëtted a normal distribution with parameters µ = 60

and σ = 32. ere are two reasons that power-law was not the best ët. Firstly, the

catalogue of 88 videos was not very large, and secondly, power-law distributions do

not ët well if the objects are constantly changing. Instead power-law ëts better if a
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Figure 4.4: Number of viewers at each second of video (each vertical line represents the position of a
bookmark)

snapshot of rank vs. popularity is taken each day and aggregated.

Again, the popularity of one-second segments might be best suited by a power-

law, however Zipf and Pareto did not ët well. Instead, the popularity of one-

second segments for all the videos exhibit a Weibull distribution with parameters

λ = 2.887 and k = 0.69527. Log-normal distributions provide the best ëts for the

arg-scg and eurovision results independently with parameters µ = 2.00, σ = 0.587

and µ = 2.32, σ = 0.567 respectively. Note that log-normal and Weibull dis-

tributions closely relate to power-law or heavy-tailed distributions [Mit04, FA06]:

they are skewed distributions where a small percentage of samples contributes to

a sizeable weight of their distribution. We observe that a small percentage, (the

10% most popular segments), accounted for about 44% of all requests. Previously,

Costa et al. [CCB+04] found that for educational and entertainment content, the

popularity of segments is roughly uniformly distributed with a slight skew towards

the beginning for entertainment content. Our result, however, implies that there are

segments with orders of magnitude more viewers than others.

To illustrate the order-of-magnitude differences in viewers, we present Figure 4.4a

& Figure 4.4b which show the popularity of each second of video for arg-scg and eu-

rovision respectively. e vertical lines signify the position of the bookmarks; note

for the eurovision video there were no bookmarks after 6000 seconds as only the per-
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Figure 4.5: Bookmark utilisation within all videos over time, following initial usage

formances were bookmarked and they all appeared in the ërst half of the video. It

is clear from the ëgures that there are peaks of popularity, highly inìuenced by the

bookmarks. In arg-scg (and in other sport content) we observe that most of the book-

marks are equally popular. However, in the eurovision (and other music genres), we

observe there is a greater variance in the popularity of the bookmarks. is can be

attributed to sports having numerous events which all users wish to watch, however

in music videos there may be only certain artists which interest the user.

Popularity metrics are important to many CDN algorithms as they help to decide

which resources to allocate to each object. We have seen that bookmarks within videos

cause segments to be of high interest and popularity, for example, goals within a sport-

ing event. is result emphasises the use of partial caching techniques [CSWZ03] to

cache only popular segments.

4.5 Longevity

e popularity of both videos and bookmarks in our system changed over time. is

phenomenon is outlined in Subsection 2.2.1.2 which describes how and why the

popularity changes. However, in our results the popularity always declined, therefore

we call the duration at which any such item remains utilised its longevity. e study

of a video or bookmark’s longevity can aid cache replacement policies, as well as other

content management decisions.
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Figure 4.6: CDFs of session lengths and inter-seek times

Figure 4.5 shows the popularity of all our bookmarks versus the time they were

ërst used. e ëgure suggests that following an initial peak and a slight resurgence,

there was a rapid decrease in interest after a short period. R-Square ëtting reveals

that the bookmark longevity can be suitably estimated using a Weibull distribution

with λ = 3.10 and k = 0.615. is suggests that the popularity exhibits long-tailed

properties. We also observe that 40% of the bookmark usage occurs within 24 hours,

with the remainder slowly occurring over the following weeks. is is in line with the

previous research on this topic [CG04].

e popularity of videos decreased over time, but this is not true for the popularity

of segments within the videos. For example, the segments which were popular within

that video when it was ërst published were still popular within the video weeks later,

long after the video had lost it overall popularity. is was tested on each video by

calculating the distribution of segment popularity for the ërst 50% of requests versus

the last 50% of requests. e difference in distributions was minor, with an average

R-Square value of 0.9. On a visual inspection of the number of viewers per second,

it was clear that the popularity still focused around the bookmarks.
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4.6 Session Lengths

Session length is the total time a user accessed a video, regardless of the actions they

may have taken whilst doing so. For example, a session may be longer than the actual

length of the video if the user chose to re-watch segments, and/or pause.

Figure 4.6a & Figure 4.6b show the CDF of both session and inter-seek times

(discussion of inter-seek times follows in the next subsection). It can be observed from

the session times that most users access each video for a very short time relative to its

overall length (possibly just watching the events they are interested in). In particular,

note that in the arg-scg case around 80% of sessions lasted less than 15 minutes. Given

that the video was 2.2 hours in length, 15 minutes corresponds to only 11% of the

total video. A similar result was found with eurovision, with 80% of sessions lasting

less than 12% of the total video duration. e average session duration was found to

be only 11 minutes and 18 minutes for arg-scg and eurovision respectively.

We also found that a small minority (roughly 3%) of session durations were longer

than the length of a video. Of these durations roughly 39% were between 3 to 8 hours

long. Our logs show that these users paused for a long time before deciding to resume

playback.

4.7 Inter-seek Times

Inter-seek time is described as the duration for which a user watched a section of a

video before seeking to a new location (disregarding any paused periods). is can be

useful, for example, to determine the amount to replicate when using partial caching.

From our logs, we found that on average a user performed 8.98 seek operations

around a video, resulting in a mean inter-seek time of 50.4 seconds. Figure 4.6a &

Figure 4.6b show the CDF for inter-seek times as well as session length. As the inter-

seek times are generally shorter than session times, this implies that the majority of

users viewed the content as a series of excerpts, usually under a minute in length.
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Figure 4.7: Sequence diagram for Argentina vs. Serbia and Montenegro depicted as a tree

e inter-seek time in the music content was found to be on average longer. is is

because the length of a bookmarked musical performance generally exceeds the length

of an event within a football match. Regardless of the difference in inter-seek times,

we found that they can be estimated by log-normal distributions. For instance, the

inter-seek time for arg-scg can be modelled with parameters µ = 2.15 and σ = 1.72.

Previous studies have found that the majority of inter-seek times are very short [VPG+05].

For long educational content, inter-seek times have also been shown to be Weibull dis-

tributed or a combination of Weibull for the body and Pareto for the tail [AKEV01].

We found that most of our videos had inter-seek times that could be suitably mod-

elled by a Weibull distribution, and two thirds which could be modelled with Pareto

alone. Models of inter-seek times can be used by a delivery system to determine the

size of video replicas and the time available to react before a user seeks elsewhere in

the video.

4.8 Sequence

e traces were analysed to study the extent to which users’ actions could be predicted.

Since jumps to bookmarks made up a relatively large percentage of all requests, we

limit this prediction to which bookmark will be visited next. If a system could pre-

dict which bookmark would be requested next by a user, then it could pro-actively

respond in order to optimise content delivery. For example, based on the next pre-

dicted bookmark, the relevant segments could be pushed out by a server with spare
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capacity, or pre-fetched by a client.

We call the order that bookmarks are viewed by a single user a sequence of book-

marks. Every user’s sequence can be aggregated together to form a directed graph.

Each node in the graph represents a bookmark with links between them represent-

ing the probability of seeking to that bookmark next. Figure 4.7 shows a section of

one of these directed graphs depicted as a tree for clarity. e “Start” node repre-

sents the beginning of the video, and the “End” node represents the completion of

a session. ere is also an “Unknown” node which signiëes when a seek to another

bookmark has not been made within 200 seconds of visiting the previous bookmark

(the observed upper bound for bookmarked events’ length). For clarity, links with

low probabilities have also been aggregated to form a “N Others” node, where N is

the number of aggregated links.

It is clear from the ëgure that there are multiple choices to visit from each node,

although there is generally one link that is signiëcantly more likely to be chosen. For

example, the probability of viewing bookmark “Goal 2-0” immediately after “Goal

1-0” is 80%. We can also see that following the “Kick Off” bookmark 50% of users

did not visit another bookmark within 200 seconds and instead continue to watch,

this could indicate that this subset of users were interested in watching the full game

instead of just the highlights. An interesting observation for caching is the occurrence

of self-loops. 6% of links were between the same two bookmarks, which made up

6.5% of all requests.
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Figure 4.9: CDFs of wait times

To understand how many bookmark-to-bookmark links are predictable, Fig-

ure 4.8 shows a CDF of probabilities for all links for all videos, as well as probabilities

for just the most popular link from each bookmark. From this ëgure we can con-

clude that 10% of all links have more than a 58% chance of being followed. Looking

at just the most popular link from each bookmark we observe that over half of the

bookmarks have an outgoing link with a probability over 50%; an encouraging result

for user predictability.

In this analysis we assumed that all users will visit the bookmark in similar or-

der, however in a large heterogeneous environment this may not be true. Different

sub-groups may wish to view a different set of events possibly in a different order to

other sub-groups. Across our videos we did try and identify if there were groups of

individuals that behaved differently to the majority, however none were found. is

could possibly be due to our genre of media, with all sports fans wishing to see the

same events, in the natural sequential order.

4.9 Hotspot Length

Jumps to bookmarks comprised roughly 20% of all requests with an additional 32%

of seeks being within 60 seconds of a bookmark. Bookmarks form the majority of

requests within the content, and represent the beginning of a popular segment of
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Metric Distribution R-square
Object Popularity Normal ( µ = 60.129 , σ = 32.111 ) 0.97996

Segment Popularity Log-normal ( µ = 0.551 , σ = 1.32 ) 0.98084
Weibull ( λ = 2.887 , k = 0.69527 ) 0.98284

Session Length Log-normal ( µ = 4.73, σ = 1.90 ) 0.99779
Weibull ( λ = 233.17, k = 0.51125 ) 0.98666

Inter-seek times Log-normal ( µ = 1.2886, σ = 2.318 ) 0.99644
Weibull ( λ = 7.5243, k = 0.35646 ) 0.99353

Seek Distance (forward) Log-normal ( µ = 7.2668, σ = 1.2194 ) 0.99567
Seek Distance (backward) Log-normal ( µ = 7.195, σ = 1.3132 ) 0.99083

Hotspot Length Log-normal ( µ = 2.6361, σ = 1.388 ) 0.98463
Weibull ( λ = 24.594 , k = 0.7034 ) 0.99545

Bookmark Longevity Weibull ( λ = 3.1004 , k = 0.61592 ) 0.99796

Table 4.2: A summary of metrics with their corresponding distributions

video which we call a hotspot. e beginning of a hotspot is generally known (i.e.,

the bookmark point), but the end is not. Knowing the length of the hotspot can be

useful for numerous tasks such as caching and pre-fetching. We therefore deëne wait

time as the time elapsed between a user following a bookmark and seeking.

Figure 4.9a & Figure 4.9b show a CDF of wait times for each bookmark in the arg-

scg and eurovision videos. It can be seen that in the football match the wait times follow

a similar distribution, with the majority of users waiting less than 40 seconds (this,

for example, could corresponds to the length of a run up to a goal). e eurovision

results are more varied with average wait times being much longer. is is due to the

typical song in the Eurovision Song Contest being 180 seconds in length. Finally,

there is a “Start” bookmark listed in both ëgures: this is the entry point into both

videos, and does not correspond to any event.

To better understand the wait times, distributions were ëtted. In the general ag-

gregated case a Weibull model ëts best with parameters λ = 24.594 and k = 0.7034.

For individual bookmarks log-normal and Weibull models proved best in the ma-

jority of cases. With these models the upper bound of a hotspots’ lengths can be

extrapolated by using, for example, the 95Ǹ percentile.
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4.10 User Behaviour Models

Model ëtting is important for understanding the different properties of the system,

and aids in simulation creation and algorithmic design. Various models have been

discussed for the different parameters of the system. In all cases many models (e.g.,

normal, log-normal, exponential, Weibull, Pareto, Poisson, Zipf ) were ëtted to the

data with varying success. Generally, more than one distribution ëtted well. is

subsection will summarise the analytical models found for each parameter.

Table 4.2 gives an overview of the best matching models for each metric discussed

previously, with their corresponding R-square values. Of particular importance are the

types of distribution which can have a signiëcant impact on the system. For example,

the Weibull and log-normal models are both long-tailed, and systems may have to

anticipate the skewed distribution to cope effectively.

4.11 Summary

Our results have shown that the interactivity options available to users highly inìu-

ence their behaviour. In particular, it was found that the novel interactive feature

of bookmarking played a pivotal role, leading to access patterns quite dissimilar from

previous related studies that looked at VCR-like interactivity alone. e combina-

tion of our content type and the addition of bookmarks led to users accessing content

in relatively short segments sparsely distributed throughout the length of the videos.

Segment popularity is skewed with the most popular segments clearly around the

bookmarks, forming hotspots. From both a user and a content distribution network’s

perspective, this can be viewed as advantageous; users can reach interesting content

more quickly through the bookmarks, and the increased locality of interest means

CDNs can respond more effectively by, for example, prioritising hotspot replication.

Content placement is an important and difficult problem for CDNs. e CDN

has to decide where within the network to replicate or cache content. Typically the
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content is placed near to the users, and replicated as a whole. However, as we have

seen, not all segments within a piece of content are equal and a CDN can leverage this

information to replicate certain segments more than others. is is especially useful

when popularity nearly always concentrates around bookmarks, allowing the relevant

segments to be replicated throughout the network before user demand increases.

A CDN could be designed to handle high levels of user interactivity, with relatively

short sessions and inter-seek times. Our results have shown that hotspots following

bookmarks were orders of magnitude shorter than the video containing them. Fur-

thermore, it encourages the use of an agile delivery mechanism that allows distribution

of small sparsely distributed segments quickly and efficiently.

We have also shown that users view the bookmarks in a similar order, giving them

a degree of predictability. is could allow a CDN to exploit pre-fetching techniques

to improve the user’s experience. For example, if the CDN could predict the next

segment the user will watch, then this could be pre-fetched into the user’s playback

buffer and when the user seeks to that segment there will be no delay caused by seek

latency and buffering.

e use of bookmarks depends on them being well positioned and of interest to

the user. We noted in the ërst experiment that 40% of bookmarks had at least one

user seek before the bookmark, with 30.7% of these seeks occurring within 5 sec-

onds of jumping to the bookmark. is perhaps represents users who were almost

immediately dissatisëed with the bookmark’s location. We noted this happened con-

sistently for roughly 6% of the total bookmarks. Upon further inspection, it appeared

the bookmarks were inadvertently misplaced. is led to users performing additional

seeks to ënd the correct location, thus placing extra load on the servers.

roughout the experiment different genres of videos were available to the users,

namely sporting and musical videos. Only the analysis of the “Argentina vs. Serbia

and Montenegro” football match and the “Eurovision song contest” were shown in

this chapter, however other sporting events were available on the site such as Formula 1
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racing, International Cricket, and other miscellaneous recordings of music channels.

Similar patterns were observed for each video, however, semantics of the content did

have some impact of how the users consumed the data.

All videos exhibited similar patterns, for example, popularity was generally cen-

tered around the bookmarked segments, and that the viewing duration was far shorter

than the full length of the video. However, minor differences were found, for ex-

ample, the music channels had greater variance in the popularity of each bookmark

(which were placed at the beginning of individual music videos). is can easily

be attributed to users only being interested in particular artists or videos, whereas

viewers of sporting events would be interested in every highlight (and therefore every

bookmark). Similar differences were found in the inter-seek times, session times, and

hotspot lengths, as the semantics of the content would determine how long particular

hotspots were. However, metrics such as the number of interactions, or bookmark

longevity stayed the same, as these did not appear to be directly impacted by the

content.

In the following chapter, we explore and study the implications of a few techniques

designed to exploit some of the properties suggested from our analysis. e ërst

addresses the dynamic re-positioning of bookmarks in response to user behaviour. e

second concerns predictive pre-fetching of popular segments to enhance the efficiency

of delivery of highly interactive content. e last technique is an evaluation of how

well existing delivery mechanisms behaviour when delivering interactive media, and

how this can be improved with an hybrid approach.
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Techniques for Interactivity Support

So far, this thesis has outlined a twelve month experiment in which highly interactive

user behaviour was recorded. e traces obtained from the experiment have been

analysed and characterised to produce a set of models and user workloads. ese

workloads and models were developed so future ideas and concepts could be designed

and tested with realistic data.

is chapter outlines some of the improvements which can be made to aid in

the delivery of this genre of content. is includes a system to dynamically position

bookmarks within the media, a way to pre-fetch segments of the media ahead of their

request, and an evaluation of hybrid delivery technique designed to deliver highly

interactive content.

5.1 Dynamic Placement of Bookmarks

During our experiments, bookmarks were appropriately positioned by administrators

before the video was published. It was previously noted that a small percentage of

bookmarks (roughly 6%) were unintentionally misplaced. ere are many reasons

why a bookmark could be misplaced, such as human error, or a lack of insight into

user requirements. For example: a bookmark could be placed before a penalty kick,

but many users may ërst wish to see the foul that led to the penalty. As such, it would
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Scenario A

1. Jumps to Bt
2. Watches for w

3. Seeks to St (St < Bt)

Scenario B

1. Jumps to Bt
2. Watches for w

3. Seeks to St (Bt < St < Bt + w)

Scenario C

1. Jumps to Bt
2. Watches for w

3. Seeks to St (St > Bt + w)

Figure 5.1: Different scenarios that may induce bookmark movement

be beneëcial if the system could autonomically detect poorly placed bookmarks and

correct them based on automatic feedback derived from the user’s actions.

During the second video trial, we took the opportunity to go beyond characteris-

ing user behaviour, by testing a dynamic bookmark placement technique in the live

system. is technique inferred if the bookmark was misplaced based on the user’s

seeking behaviour, and then correct the bookmark’s position in a reactive way. e

remainder of this section discusses and analyse this technique.

To develop a reactive algorithm that moves bookmarks dependent on user be-

haviour, different possible scenarios should ërst be explained. Figure 5.1 shows three

different sequences of actions a user could follow shortly after seeking to a bookmark.

Scenario A shows the user brieìy viewing the bookmark, then seeking to a time ear-

lier than it. While this could indicate that the bookmarked event was short and

that the user wanted to view it again, it could equally imply that the bookmark was
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placed later than it should have been.

Scenario B is similar to Scenario A but differs in that the user does not seek back to

a point before the bookmark; this means the user is simply replaying footage, thus

implying the bookmark is correctly placed for that individual.

Scenario C represents a situation in which the user’s motives are difficult to deter-

mine. Since they watch brieìy then seek forward, several possibilities exist: the

bookmarked event may have ended, the bookmark may have been placed prema-

turely, or the user is simply seeking forward towards the next event.

A further possibility, not shown in the ëgure, is for a user to seek far away from a

bookmark in either direction. Since it is unlikely their destination would be related

to the bookmark, such an action would not indicate the bookmark was incorrectly

placed.

Scenario A and Scenario C are therefore the only scenarios where the user’s actions

could indicate the bookmark is misplaced. All other actions should reinforce the

position of the bookmark to reduce future movements once it is correctly placed.

Additionally since we are less sure of the user’s intentions in Scenario C we should

only make minor changes to the bookmark’s placement to limit the impact of false-

positives.

Algorithm 1 has been developed to identify these situations and act appropriately

with regard to moving a bookmark. An exponential moving average (EMA) is used

to recalculate the bookmark’s position with a smoothing constant α. e value used

for α is dependent on the identiëed scenario. Initially these values were 0.1 and 0.05

allowing us to place greater conëdence in the seeking-backward Scenario A than the

seeking-forward Scenario C. ese values were chosen as the intuitive ërst guesses for

experimental purposes, and should be reëned with future experiments. For our testing

scenario we also used maximum wait times of 20 and 60 seconds for backward and

forward seeks respectively. ese maximum values were chosen because they exceeded

approximately 80% of all wait times.
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Algorithm 1 Dynamic bookmark moving algorithm
// Bt is the location of the bookmark at time t
// St is the location the user sought at time t
// w is the time the user waited before seeking to St

if St < Bt then
// e user seeks backwards before the bookmark
if w <= 20 and St > (Bt − 60) then

// e seek occurred within 20 seconds of viewing the bookmark and lands within 60 seconds of the
bookmark
α = 0.1
Bt+1 = αSt + (1 − α)Bt

end if
else if St > (Bt + w) then

// e user seeks forward
if w <= 60 and St < (Bt + 120) then

// e seek occurred within 60 seconds of viewing the bookmark and lands within 120 seconds of
the bookmark
α = 0.05
Bt+1 = αSt + (1 − α)Bt

end if
end if

To test this algorithm, several of the bookmarks in the second video trial (not

the initial World Cup experiment) were deliberately misplaced by different amounts

before they appeared on the live site. Over time the bookmarks were moved autonom-

ically by our algorithm. For example, Figure 5.2a & Figure 5.2b show the position

of a single bookmark as it was moved by the system with respect to time and received

requests. In both cases the system responds and the bookmark quickly moves to a

new position, and then gradually converges until it becomes stable. In most cases the

majority of movements were only in one direction, but for a couple of bookmarks the

positions oscillated between two values. e most prominent example of this was a

foul in a football match which led to a penalty. Some users wished to see the foul

but others only wished to see the penalty a minute later. In these small number of

cases it is subjective to decide if a bookmark is correctly placed, and in fact using this

algorithm the bookmarks may never converge to a single point. In such cases, it may

be best to bias the bookmark towards the earlier position, so both the early and later

events can easily be seen.

Instead of subjectively deciding if a bookmark has moved to its correct location,
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Figure 5.3: Reduction in viewing duration due to the algorithm

we examined how much traffic might have been saved by moving the bookmark to a

new location. If, for example, a bookmark was moved forward 10 seconds closer to

the desired location, and a user views for 90 seconds, then by moving the bookmark

we have potentially stopped video being transferred, which might have normally been

skipped over. A reduction of 10/(90 + 10) = 10% is therefore made. Of course, this

is only true if the user does not seek backward to watch the skipped 10 seconds, in

which case we save nothing, and in fact incur an extra seek. Figure 5.3a displays a

CDF of the potential reduction in viewing duration per bookmark request from the

use of the algorithm. We can see that 16% of the requests made no saving: these

are accounted for by early requests before the bookmarks were moved, and requests

where the user incurs an additional seek.
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Figure 5.3b illustrates how rapidly these reductions are made (and whether or

not they are sustained) through a plot of the fractional potential saving versus the

number of requests received across all the moved bookmarks. For the ërst 20% of

requests the reductions are low yet they improve, and then stabilise at a reduction

of between 30-40% per request. e 95% conëdence intervals are quite wide in

most cases (averaging around ±10 seconds) although this variance is mostly due to

differences in playback length and not the 16% of requests with no saving.

With minimal processing this simple algorithm has been able to reposition the

bookmarks to more appropriate locations based on observed user behaviour, resulting

in consistent traffic reductions. e algorithm can still be improved by ëne tuning

the α values. Larger values would move the bookmark more quickly at the cost of

increasing the probability of incorrect decisions. is investigation has been left for

future work.

5.2 Predictive Pre-fetching

In the classic start-to-ënish model it is commonplace to simply pre-fetch ahead of

the playback point. is reduces the chance of playback stalling due to momentary

network problems. However, due to the increased interactivity of users and their

departure from the start-to-ënish model, it is no longer wise to only pre-fetch ahead

of the playback point. As noted in Section 4.8 it is possible to predict which bookmark

a user will view next, allowing the client to intelligently pre-fetch content, beneëtting

both clients and servers.

For the clients, pre-fetching removes seek latency when seeking to a pre-fetched

segment, both in terms of incurred network seek latency and also the time taken to

buffer enough video for playback. Pre-fetching also helps to avoid buffer underruns

under poor network conditions. Similarly, on the server side, pre-fetching can help

reduce the peak server load by increasing the load at quieter times with pre-fetching

requests, thus making the overall load more uniform.
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However, pre-fetching does come with a cost; resources are wasted if a segment is

downloaded and never used. Deciding which segments to pre-fetch is therefore an

important task. is section gives some background on the concept of pre-fetching,

followed by the design and evaluation of a pre-fetching technique for our highly in-

teractive workloads.

5.2.1 Background

Pre-fetching or pre-loading, is the act of requesting content in advance of demand.

is allows clients to have the requested media stored locally before needing it. When

a client eventually does request the media, it can be served from the local cache,

as opposed to requesting it from a server. Pre-fetching can therefore improve the

experience for clients, as there is reduced start-up delay, at the cost of pre-fetching

content which may never be viewed.

ere are a three main forms of pre-fetching. e ërst is pre-fetching the media

before playback. e second is when playing media, to buffer slightly ahead of the

playback point. e last is to pre-fetch segments of media while the media is being

played. ese three forms will now be discussed in more detail.

When the media is fetched before playback has began it is typically called pre-

loading. is involves either fetching the full media, or just the beginning segments

of the media [PL01]. Pre-loading the beginning segments is typically used to re-

duce the start-up latency when the media is periodically broadcast [PLM99]. e

decision of what to pre-load is normally based on what content is popular, and how

much spare capacity the server has. ere have been numerous papers detailing the

optimal parameters [BNLT08], such as how much to pre-fetch [Pâr01], how many

objects to pre-fetch [Pâr02], how much bandwidth to use, what delivery mechanism

to use [CT03], etc. From the work, it seems clear that the exact parameters are depen-

dant on the characteristics of the media, as well as how the media is delivered. But

overall, pre-fetching at least the ërst few minutes of media certainly provides beneëts.
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A very common pre-fetching technique is to buffer ahead of the playback point.

is requires a small buffer, large enough to contain at least a few seconds of me-

dia. Before playback begins, this buffer is ëlled and then playback may start from

the buffer. e buffer smooths out playback, allowing it to be jitter free, as well as

hiding temporary network problems, such as lost packets. is kind of pre-fetching

is also useful when streaming variable bitrate (VBR) content [RR97]. Typically, VBR

content is bursty, causing periods of time where the server is either under-utilised or

oppositely, unable to satisfy the demands of its clients. To solve this, each client re-

quests the VBR content at a constant bitrate (equalling the mean VBR rate), allowing

the client’s local buffer to smooth out the burstiness [BL99].

e ënal technique is to pre-fetch segments which are likely to be viewed within

the content. is is one of the main areas of interest in this section. e pre-fetched

segments can be areas within the media which are particularly popular, and are likely

to be watched. Popular segments may occur when users selectively seek within the

media and do not follow the typical start-to-ënish model of playback. As far as this

author is aware, there has been no work which will pre-fetch segments of media in

this manner.

e closest example of such pre-fetching, is “link pre-fetching” used by some web

browsers and proxies [CY97]. is feature will pre-fetch hyperlinks on the web page

that the user is currently viewing. In this way, if the user clicks on a hyperlink which

has been pre-fetched, the page will load instantly. However, this technique has been

discouraged [Dav01], as most of these systems blindly fetch all hyperlinks on the page.

is generates additional bandwidth, and may overload the servers [Duc99].

When content is pre-fetched, it is not always stored in the same place. Earlier

work assumed that pre-fetched content would be stored on content servers near to

the clients [SRT99, EFV99]. More recent work has assumed that clients are using a

set-top box (STB) or PC to view the media, both of which may contain a large hard

disk or similar storage device. is allows the content to be available even when the
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client has no connectivity.

Pre-fetching does not always have to involve a server. In the most naïve systems,

pre-fetched data is requested directly from the server via unicast distribution. More

advanced systems have dedicated pre-fetch channels which periodically broadcast the

segments of media which the server deems useful to pre-fetch [CT03]. More recently,

systems have been designed to pre-fetch media from neighbouring clients [SLP+06].

One study by Huang et al. found that if peers used their spare upload to assist others

in pre-fetching, the server’s bandwidth could be signiëcantly reduced [HLR07].

5.2.2 Pre-fetching Strategies

e workloads observed in this thesis exhibited sparsely distributed areas of high in-

terest. is areas have been dubbed “hotspots”. A sensible pre-fetching strategies

would take advantage of these hotspots, and pre-fetch their segments accordingly.

erefore, a set of pre-fetching strategies were devised. For simplicity, and because

interest typical formed around bookmarks, each strategy will only pre-fetch segments

immediately following a bookmark (i.e., bookmarked hotspots). In all experiments

the amount of each hotspot pre-fetched was determined by varying the percentile of

that particular hotspot’s length model, as described in Section 4.9.

Each pre-fetch strategies was tested within a simulator driven by the eurovision

trace. Clients were provisioned with a dedicated link to the server, capable of transfer-

ring twice the bitrate required to play the content. Once a client has fetched enough

data to ëll a 5 second playback buffer, half of their bandwidth is allocated to the

pre-fetcher whilst the other half continues to ëll the playback buffer.

e details for each pre-fetch strategy are listed below:

Ahead simply continues to pre-fetch ahead of the playback point assuming the client

has a unlimited buffer. is is similar to what most existing streaming applications

do.

Ahead (to hotspot end) again simply continues to pre-fetch ahead of the playback
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Figure 5.4: Various metrics for different pre-fetch schemes versus bookmark length

point but only until the end of hotspot associated with the bookmark being viewed.

Ahead (and Predictive) works in a similar way to Ahead (to hotspot end), however,

once it reaches the end of the hotspot it begins to use the Predictive pre-fetch

scheme.

Predictive uses knowledge observed from other users as to which bookmark is likely

to be requested next, and thus starts to pre-fetch the bookmark hotspots in de-

scending order of probability of being visited. is uses the sequence tree concept

introduced in Section 4.8, therefore the more users interacting with the system,

the more accurate the predictions becomes.

Sequence will pre-fetch bookmark hotspots in the order in which they appear within

the video regardless of the current playback point. For example, in a football match

the bookmarked goals would be pre-fetched in a sequential order.

Sequence After again pre-fetches bookmark hotspots in the order in which they ap-

pear within the video; the difference being only hotspots that are after the cur-

rent playback point are fetched. For example, if a user has yet to fetch the ërst

bookmark’s hotspot but is already viewing the second, then the ërst will not be

pre-fetched.

Two metrics were measured to determine how well the different schemes behaved.
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e ërst metric displayed in Figure 5.4a is the fraction of requests with zero seek

latency. A seek latency of zero occurs when the user has already pre-fetched a playback

buffer’s worth of video from a requested seek point. e second metric measured the

ratio of fetched data which was never watched, and therefore needlessly fetched. is

usage ratio is shown in Figure 5.4b.

Using the simple Ahead scheme 31% of seeks have zero latency, this is made up

of seeks to segments that have already been viewed, and small forward seeks into the

ahead buffer. Adapting this scheme to only pre-fetch to the end of the bookmarks

(i.e. the Ahead (to hotspot end) scheme) has a minor negative effect on the seek latency,

whilst increasing the average usage ratio.

e Sequence and Sequence After schemes are very similar, but the simple modië-

cation to the Sequence After scheme allowed it to achieve a lower seek latency whilst

not degrading its average usage ratio. is was because users had a tendency to not

seek to a bookmark before the current playback point, and always go forward within

the video, leaving the Sequence scheme stuck pre-fetching hotspots before the current

playback point.

Both the Predictive and the Sequence After schemes perform in a similar manner,

with the Predictive schemes always outperforming the other. Due to this fact, the Se-

quence After scheme could be used in place of the Predictive scheme whilst knowledge

is collected to improve the Predictive scheme’s accuracy.

e best outcome was the combination of Ahead and Predictive schemes named

Ahead (and Predictive). is exploited the fact that users rarely viewed beyond the

end of a hotspot, and thus pre-fetching another hotspot was of beneët.

5.2.3 Pre-fetching Knowledge

In the previous experiments the Predictive scheme was primed with knowledge from

all users, but in reality this knowledge would be built up over time. To test how

quickly this knowledge could be obtained, we ran another set of experiments where
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Media From (seconds) To (seconds) Frequency
arg-scg 0 1024 34
arg-scg 0 271 10
arg-scg 0 0 5
arg-scg 271 1024 8
arg-scg 279 1024 2

Table 5.1: Example links table, showing the frequency of seeks from one time to another

the Predictive and Ahead (and Predictive) schemes were primed with different amounts

of knowledge. e results of this are shown in Figure 5.5. We set the percentile

hotspot length to 0.55 and 0.9, which were chosen since 0.55 is where the seek la-

tency began to stabilise, and 0.9 is where the usage ratio began to drop rapidly. e

knowledge is ranked from 0 to 3000 which represents the number of seek requests the

knowledge was based on. It can be seen that very quickly (within 250 seek requests)

the knowledge has become useful, and eventually plateaus at 1500 seek requests. Any

seek requests after this point just increase the conëdence in the knowledge and does

not improve it.

In a real system, predictive knowledge must be collected in real time, and then

disseminated in an efficient, scalable, and quick way otherwise any beneëts gained

may be lost in overheads. One solution to gathering this knowledge is described

below.

To gather this knowledge, the clients and servers must store a small amount of

state. Clients must record what is currently being requested. ese details are typically

recorded by the client anyway, for example, the name of the media, as well as the
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location playback started within the media. To make the solution scale, and generate

less overhead for the server, it has purposely been designed so that the server need not

store per-client state. e servers must only store a table of links relevant to the media

stored on that server.

An example of the server’s links table is shown in Table 5.1. is table maps the

frequency of seeks between two locations within the media. For example, Table 5.1

shows that 34 seeks occurred between time 0, and time 1024 within the arg-scg media.

is table may be used by the server or clients to predict what they will visit next, for

example, if a user has just started playback of arg-scg, they have a 34/(34 + 10 + 5) or

69% probability of seeking to time 1024 within the media.

To construct this table the client must send some additional information to the

servers. Typically when a client seeks, a new request is issued and the old request is

stopped. is new request may be issued to a different server if the media is parti-

tioned across multiple servers, or just for load balancing purposes. So when a client

issues a new request, it must send details of the new seek location to the previous

server. ese details can be sent when the client stops the previous request.

By sending details of the new request, the previous server is able to infer a link

between the two requests, even if the next request is supplied by a different server.

e server does not need to store any additional per-client state, at the cost of trusting

that the client will always send correct information. e inferred links can be stored

in a table along with the frequency of their occurrences. is is the beginning of

constructing a prediction tree. Once sufficient links have been inferred, a tree can be

constructed.

Once this links table begins to be constructed, it can be used by both the servers

and clients. When a user makes a request, the server can send a subset of the table

to the client as out-of-band data. For example, if the client requests second 0, then

the server would send the subset of rows whose from time is 0. is would give the

client the knowledge to predict which locations are most likely to be visited following
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Figure 5.6: CDFs of Argentina vs. Serbia and Montenegro link frequencies with varying numbers of
links in the table

the current location. As the client continues playback, the server can send additional

subsets of the table. For example, if the client continued playback for a further 60

seconds, then subsets of the table from time 60 will be sent, again as out-of-band data.

When multiple servers are used, the links tables can easily be shared or partitioned

among the servers. If two servers create the tables independently, they can be easily

aggregated to produced more accurate data. e frequency of sharing the links table

is left for future work.

e size of these tables may quickly be ëlled with requests with only a small fre-

quency. Figure 5.6a displays a CDF of link frequencies for one table with varying

number of links in it. It can be seen that when there are 800 links, roughly 80% of

these have a frequency of one. ese small frequencies may not be useful. erefore,

there are a few ways to reduce the size of the table. e ërst technique will reduce the

resolution of the table by grouping similar times together. For example, in Table 5.1,

the values 271 and 279 could be rounded down to a single value of 270. en all

matching values can be easily aggregated. is technique would most likely be used

to at least round down to the nearest keyframe. As playback of media can only start

from a keyframe, then it makes sense it always round the from and to times to the

nearest preceding keyframe.

e second method aims to remove “noise” from the data. Each frequency can be
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transformed by some operations, such as a division or a right bit shift. Any frequencies

which become zero or less would be removed from the table. Any values large enough

to be signiëcant will be kept, and the long tail of small results will be lost. A count

of how often the table is reduced in this way must be kept to enable the table to be

aggregated easily with other servers.

A ënal suggested technique would use the concept of aging, whereby entries in the

table that have not be observed recently are removed from the table. is technique

may provide the most relevant entries at the cost of additional overhead for each entry.

An evaluation of these techniques has not been conducted in a real system, and

is therefore left for future work. However, the system has been designed to be

lightweight and take advantage of how the delivery systems normally operate. e

client, for example, only needs to send a small amount of additional information

piggy-backed on existing communications. Additionally the servers do not have to

handle any “heavy” per-client state, and instead only store the links table, which even

if large would only consume 10-50 kilobytes¹ per media object.

5.3 Hybrid Delivery

is section discusses how existing peer-to-peer (P2P) delivery techniques are unable

to provide a sufficient level of interactivity to adequately support the workload anal-

ysed in this thesis. To improve the performance of P2P delivery, this section discusses

a hybrid approach which can use the best features of two main classes of streaming

P2P. ese two classes are ‘pull’ and ‘push’, which have previously been described in

Subsection 2.1.5.

To recap, push based systems conëgure the peers in a tree topology, and dissemi-

nate the content efficiently throughout the tree. is however does not give the peer

freedom to seek within the stream, as everyone in the tree is at the same playback

point. To seek, the peer would therefore need to join another tree, causing long seek

¹Based on 12 bytes per row, and between 800–4000 rows.
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delays.

e pull based system do not typically try to conëgure the peers into any struc-

tured way, instead creating random meshes of connections between the peers. Each

peer must advertise the segments of the media they currently have stored locally. Peers

may then request these segments arbitrarily, allowing them to play back the media in

a sequential manner, or if they wish, seek to any segment and resume from there.

is however requires a high amount of overhead as segment advertisements must be

continually exchanged and each segment is only received after an solicited request.

e remainder of this section describes a hybrid approach which constructs the

peers into multiple push-based trees using a periodic broadcast technique. e peers

also form a light weight pull-based mesh, so they can use a P2P patching technique

to allow for quick seeking. e following section describes these typically multi-

cast/server orientated broadcasting and patching techniques, and how they relate to

peer-to-peer. Following this, design, analysis and evaluation of the hybrid scheme is

discussed.

5.3.1 Periodic Broadcast and Patching

It is cheaper in terms of resources to serve ten users via a single multicast stream, then

to serve the same ten users via unicast. Creating a single multicast channel decreases

network load, as only 1/10 of the bandwidth is needed, and also reduces requirements

placed on the the server, such as the memory and disk IO bandwidth. However, it

is not always possible to ensure that the users all wish to start watching at the same

time; batching was therefore created to solve this [DSS94, AWY96, VI96, HS97].

Batching in its simplest form groups users with the same playback point to-

gether and delays them receiving the media until a suitable multicast stream can be

found/created to accommodate the full group. is works well if the media is period-

ically broadcast [Chi95] on multiple multicast channels at ëxed intervals apart. is

technique is also called staggered broadcasting. When a client joins or seeks to a spe-
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ciëc point [BHH+94], they wait until one of the channel’s playback points matches

their required playback point. However, this causes a long delay, for example, if a

60 minute video is broadcasted over 10 evenly distributed channels, it can take at

most 6 minutes to view any requested location, but on average only 3 minutes. To

allay this issue, enhancements such as harmonic broadcasting [JT97] or patching can

be employed.

Patching (or sometimes called Stream Tapping [CL97]) extends batching by

adding a mechanism to remove the start-up delay whilst still utilising multiple dedi-

cated channels [HCS98]. When a client requests a playback location which can not

instantly be served by an existing channel, a separate patching channel is created.

is can occur when the client ërst views the content, or if they seek to an arbitrary

point. e client then requests both the patching channel and a dedicated channel

whose playback point is later than the requested playback location. e patching

channel contains the data required to catch up with the dedicated channel and is typ-

ically unicast from a content server or sometimes from neighbouring clients [KPS08].

is then allows the client to begin playback instantly from the patching channel and

buffer from the dedicated channel. Once the patching channel catches up with the

client’s buffer, the patching channel is stopped.

e idea was extended to reduce the number of required dedicated channels. For

example, consider there are two dedicate channels one being 10 minutes behind than

the other. If a client is currently viewing the channel which is behind, they may start

to patch from the ahead channel. After 10 minutes they would have caught up with

the ahead channel and thus can disconnect from their behind channel. is then

might allow the channel to be freed if no other users are viewing it.

e duration for which the patching channel is used is called the patching win-

dow [CHV99]. e size of the window can impact performance, for example, the

greedy patching scheme tries to minimise the number of multicast channels by allow-

ing the patching window to be as long as the content’s duration. It has been shown

85



Chapter 5: Techniques for Interactivity Support Hybrid Delivery

that being too greedy can result in less data sharing [HCS98]. e opposite of greedy

patching is grace patching, which schedules a new multicast channel when the client’s

buffer is smaller than the patching window.

A middle ground is controlled multicast, which adds access controls limiting how

many patching channels can be created. For example, the controlled CIWP algo-

rithm [GT99] uses a mathematically optimal scheduling algorithm that limits the

rate at which patching channels are created. Another technique, Lambda Patch-

ing [GLZS00], allows the server to decide on the patching window sizes, based on

currently observed popularity and interarrival times.

A ënal scheme is transition patching which increases the size of the patch window,

but allows multiple clients to share a patch stream, thus increasing bandwidth shar-

ing [CH99]. e efficiency of these patching schemes has been measured [BWS+01,

EVZ01], modelled [TEVG02] and optimised when considering factors such as video

length, client buffer size and request rate [CHV99, EVZ99, SGRT99].

Although patching was originally designed to provide simple video-on-demand, it

also enables interactivity. More recently, Ma et al. optimised patching for high levels

of interactivity [MSW05]. However their evaluation used non-realistic interactivity

patterns. Rocha et al. tested patching with more realistic interactive patterns and

found that patching did not scale well under high levels of interactive requests. With

low levels of interactivity, patching performed sufficiently. However, with medium to

high interactivity, patching performed in a similar way to serving each client with an

individual unicast stream [RMC+05].

5.3.2 Delivery Methods

To compared a peer-to-peer hybrid approach to the existing push and pull methods,

three delivery mechanisms are deëned and evaluated. is section describes the three

mechanisms in detail.
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5.3.2.1 Push – Periodic Broadcast over TBCP

e ërst of the three approaches aims to group similar users together on a multicast

substrate. Given the lack of support for network multicast, we use an application-

level multicast (ALM) algorithm, speciëcally the Tree Building Control Proto-

col [MCH01], which in practice is a protocol to arrange the peers in a push-based

P2P tree.

Periodic broadcast can then be used in order to provide the illusion of true video-

on-demand. Staggered broadcast is its simplest form, involving a number of multi-

cast channels for a given video, and beginning each at an interval evenly distributed

throughout its length [DSST95]. Users may then move forwards and backwards

throughout the stream by switching channels. e granularity of these operations is,

however, limited by the interval between the available channels. Without allocating a

large number of broadcast channels, startup/interaction latency may be unacceptable

in longer pieces of media. An adaptation of this method is our push approach to de-

livering the media, in that content nodes broadcast the same segments of content to as

many nodes as possible simultaneously, where TBCP trees are generated as required

to act as periodic broadcast channels.

5.3.2.2 Pull – Peer-to-Peer

e second delivery method considered, representative of the pull approach to deliv-

ery, is the use of a peer-to-peer, BitTorrent-like protocol. BitTorrent implements a

tit-for-tit incentives mechanisms, to discourage free-riders². A beneëcial side-effect

of involving time-sensitive data in such a network is that the incentives that drive the

system become more pronounced. In other words, due to the tit-for-tat exchange

mechanism, would be encouraged to contribute, as to improve the probability of re-

ceiving the segments they require in a timely fashion. Such protocols are not without

drawbacks in the context of streaming media, however.

²Peers who chose to not contribute to the network, thus obtaining a service at no cost to themselves.
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Firstly, the most common issue is that media playback requires sequential seg-

ments of a piece of content; BitTorrent instead delivers them effectively randomly. A

solution often proposed to handle the need for sequential delivery is to apply a sliding-

window to the data being distributed. Peers then have upper and lower boundaries for

the segments which they are interested in downloading, and prioritise their requests

accordingly.

Secondly, startup latency should be minimised; BitTorrent’s reliance on other

peers optimistically unchoking newcomers means this is not the case. Shar et al.

and Vlavianos et al. amongst others have noted and responded to issues such as

these [SP07a, VIF06b]. A simple solution is to ensure that established peers per-

form optimistic unchoking on a more regular basis; Shah and Pâris show that, when

combined with a sliding window approach, signiëcant improvements over the base

protocol can be achieved [SP07a]. We therefore employ similar methods to gain the

same beneëts.

5.3.2.3 Hybrid – Periodic Broadcast with P2P Patching

Finally, the third method examined is a hybrid of both the push and pull methodolo-

gies. By using TBCP-based periodic broadcast trees in conjunction with peer-to-peer

patching, clients can share data enabling them to reach the current broadcast point

rapidly. To clarify, when a client joins a periodic broadcast channel, they do not

need to wait for channel to reach the desired playback point, but can instead request

segments from their neighbours as quickly as possible until the broadcast channel

reaches the required position. is system is similar to the one described by Guo and

Ammar [GA04]. ey used periodic broadcast over ALM, supported by server based

patching. ey showed promising results, however, their workload was an artiëcial

start-to-ënish.
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5.3.3 Experiment

ree key variables to be considered for a delivery system are the size of the audience,

the nature of the content (workload) and the network resources available. We also vary

peer-to-peer usage, in terms of the number of connections they are allowed to make to

other peers. For example, if in an unrestricted environment there were 200 peers, a

value of 10% P2P usage would reduce the number returned to just 20. By varying

this value, the effect of peer-to-peer patching on the hybrid method can be observed:

at 0% usage, the method is identical to the normal periodic broadcast over ALM,

whereas at 100% usage, the peer-to-peer scheme is made use of as much as possible.

e increasing effect of the peer-to-peer patching system in the hybrid approach can

therefore be observed in an incremental fashion relative to both the pure ALM and

pure P2P delivery methods. Naturally, this does not affect the pure ALM approach,

as no variance is seen in its results for plots of this type.

To obtain results that provide a comparison of how particular delivery schemes

may handle different pieces of content, varied workloads are considered. ese can

be classiëed as follows:

Start-to-Finish Used for baseline comparison, where clients do not use any interac-

tivity features. Media is viewed in a start-to-ënish fashion, although the start and

end points are not necessarily the same between clients.

Interactive is workload is derived from the analysis and modelling conducted in

Chapter 4. In essence, the unique aspect of these workloads is large pieces of con-

tent with relatively short areas of high interest, highlighting how well a particular

approach handles large differences in popularity between segments.

Beyond the workloads, the metrics used are selected to reìect both network

provider and user satisfaction, based on resource usage efficiency and perceived qual-

ity of service respectively. e ërst metric considered, therefore, is network stress in

terms of the amount of data delivered on the network, normalised to the worst case
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in a given simulation.

e second metric used is ‘timely’ segments, i.e, one which arrived before its play-

back deadline. An average fraction of timely segments received per client is therefore the

average value, on a per-client basis, for the total number of timely segments divided

by the total number of segments required by that client.

Finally, segment utility is considered: the number of media segments actually used

in playback in comparison with the total number sent over the network. Given that

a client may receive segments superìuous to their requirements (e.g., buffering ëve

minutes when the client only watches one. is metric provides a measure of network

efficiency relative to the data that clients actually consume.

A high-level overview of the experimental setup is as follows: 1,000 routers exist

in a GT-ITM generated topology graph [CZ]. e graph is of a realistic transit-stub

conëguration, wherein a single node exists per transit domain, but many exist per

stub. Content node(s) (those sourcing the media) are attached to the aforementioned

transit node(s), whereas clients are attached to randomly selected members of the stub

domain(s). e content node(s) are connected via highly provisioned links, whereas,

the clients are limited to a typical asymmetric link (1Mbit down, 256kb up).

e group size used in the simulations is 500 clients, and delivery of some subset

of the piece of content per client is made using the appropriate method described for

each simulation. Each client possesses an individual playback buffer, which should

not underìow if user-satisfaction is to be achieved.

In our custom simulation environment, the overall delivery process is modelled

in a number of steps over several iterations, whereas the content itself is handled as a

series of sequential ‘segments’. Firstly, a realistic workload is generated (according to

the models from Chapter 4), wherein the clients are provided with individual lists of

segments they will be required to obtain within the timeframe of the simulation.

Following workload generation, clients must interact with the delivery structures

to begin the acquisition of segments. In the pull peer-to-peer approach, delivery pro-
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(b) User satisfaction during delivery

Figure 5.7: Delivering a Interactive workload with varied group size

ceeds as described in Subsection 5.3.2.2. e push and hybrid approaches, however,

primarily use TBCP periodic broadcast trees, meaning the initial step is for clients to

determine which tree(s) will contain the segment(s) they require, and where they are

rooted (i.e., the address to join). In the simulations this is achieved through a lookup

process on a single node for simplicity, although in a real-world deployment with

numerous videos of many segments each, a more sophisticated arrangement may be

appropriate.

Following location of the correct tree for the required segment(s), a client must

then wait on the periodic broadcast to roll-around to the required playback point for

consumption. In the hybrid approach, the peer-to-peer mechanism can now be used

to speed this process somewhat, by attempting to rapidly patch required segments

that the client would otherwise have to wait for. Note that clients also have to use the

knowledge of segment-tree mappings obtained from the lookup service to anticipate

when trees must be switched, as to avoid suboptimal resource usage through nodes

being present in a tree unnecessarily.

5.3.4 Results

Figure 5.7a shows the resulting network cost across the delivery methods for an in-

teractive workload with varying group sizes. e amount of traffic created for the

ALM-based methods is shown to be lower than pull peer-to-peer; signiëcantly so for
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(b) Delivery of a start-to-ënish workload

Figure 5.8: Overall segment utility during delivery with varied group size

large groups. A delivery method being low cost, however, is of little use unless it can

deliver an equivalent quality of service. Figure 5.7b shows that this is not the case

for pure ALM, as an initially high level of timely segments reduces rapidly with in-

creasing group size. Such a result may be indicative of this approach being unable to

handle large, interactive groups well, possibly due to the joining overhead associated

with switching between highly populated broadcast trees. Indeed, when delivering

a ‘start-to-ënish’ workload (not shown), pure ALM was found to provide a level of

performance similar to the other methods for the considered metrics.

Figure 5.8 show the average fraction of useful segments that were delivered during

each simulation on a per client basis. Interestingly, Figure 5.8a indicates that for a

high-interactivity workload, up to 40% of segments on the network could be sent

fruitlessly, with the factor of interactivity separating the delivery methods noticeably.

In contrast, Figure 5.8b shows that when the workload is start-to-ënish, each of the

schemes achieves a similar level of overall utility, working at an efficiency of around

85% upwards at all times, with little to separate the methodologies. e ‘wasted’

segments in these cases are most likely due to congestion, and accordingly show an

increase with group size.

5.3.4.1 Varying Peer-to-Peer Usage

Figure 5.9a shows the network stress in terms of data delivered per link for an interac-
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(b) Delivery of a start-to-ënish workload

Figure 5.9: Network cost of delivery with varied peer-to-peer size
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(b) Delivery of a start-to-ënish workload

Figure 5.10: User satisfaction during delivery with varied peer-to-peer size

tive workload, normalised to the ‘worst case’ of full peer-to-peer usage. As simulations

run to the point where clients no longer have any interest in receiving segments, the

reduced traffic in the low usage scenarios for the peer-to-peer case is to be expected.

Two notable points on this plot are around 25% and 50% peer-to-peer usage, where

the pull method crosses over the ALM and hybrid approaches respectively. Following

the latter intersection, the hybrid method appears to level off while pull P2P contin-

ues to increase. Dependent on the user satisfaction for these schemes at these points,

this indicates that the hybrid method can produce a consistently lower amount of

network traffic relative to push P2P, although the addition of patching is resulting

in twice the amount produced by ALM alone. A key point to consider regarding

the high network cost of pull P2P is that the ALM-based approach is exploiting the
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concept of locality in building shortest-path trees to the highly provisioned content

nodes. In the pull peer-to-peer case, this does not happen, and many segments are

likely being sent lengthy distances between groups of clients viewing the same section

of video, potentially across multiple network transit/stub domains.

If the ërst ëgures are considered as showing network cost, then the likes of Fig-

ure 5.10a show the resultant level of ‘user satisfaction’, in terms of the average frac-

tion of timely segments per client. Recall that two particular points of interest in

Figure 5.9a were around the 25% and 50% peer-to-peer usage marks. In this ëgure,

however, no signiëcant improvement over pure ALM is shown until around the lat-

ter of these points: the 50-60% mark. It therefore seems that without the ability to

disseminate a large amount of P2P data, the use of the pull P2P approach just results

in additional overhead for this type of workload. As the usage increases beyond this

point, however, the number of timely segments being delivered increases signiëcantly

for both the schemes that make use of P2P. In almost all cases, however, the hybrid

method outperforms pull P2P, although not by a large amount. is may be due to

the sequential nature of the media playback – when periodic broadcast is used, most

of the data that clients need will be pushed to them anyway – the pull approach may

only be particularly useful when clients have to seek to new points in the media. e

high level of interactivity in the workload used for this particular ëgure may therefore

explain the relatively poor performance of pure ALM.

Figure 5.9b shows the result of a simulation similar to that conducted for Fig-

ure 5.9a, but with users consuming the content ‘start-to-ënish’. e network cost

is found to be closer between the three methods in this case than with a high-

interactivity workload, supporting the idea that user interactivity can be more costly

for certain delivery methods. Interestingly, when examined in conjunction with Fig-

ure 5.10a, it can be observed that the pull P2P approach outperforms the hybrid

method under these metrics when “peer-to-peer usage” is around the 40% mark. is

particular simulation result may therefore run contrary to the initial expectation that
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(b) Additional redundant-content nodes

Figure 5.11: Effect of additional nodes on overall network stress

periodic broadcast may be better suited than pull P2P for many users viewing the

media in a generally sequential fashion. Also note, however, that the average fraction

of timely segments for pure periodic broadcast in this low-interactivity scenario is sig-

niëcantly better; effectively double that of the high-interactivity workload, and more

akin to the results obtained for the high-interactivity workload with small group sizes.

is result is as expected, as reduced interactivity correspondingly results in fewer

clients jumping between broadcast trees, fewer setup delays, and thus fewer untimely

segments according to the clients’ demands.

5.3.4.2 Additional Nodes

In all cases, as shown in Figure 5.11a and Figure 5.11b, the addition of extra resources

in the form of additional content sources (i.e., the roots of trees or seeds in swarms)

is beneëcial, with similar trends observed regardless of the delivery method being

used. is is especially true of the case when content is made available in a redundant

fashion rather than simply being ‘striped’ across nodes. e exact placement of these

nodes also has some impact, albeit a less signiëcant one, with a slightly diminishing

effect as more nodes are made available.
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5.3.4.3 Key Observations

From these ëndings, several points become clear. Regarding network costs in terms

of traffic generated, pull P2P is relatively expensive in comparison with the simpler

ALM approach. is cost is offset, however, by a resilience to large group sizes and

high levels of interactivity in comparison with ALM. Fortunately, when the methods

are combined into the hybrid method, network cost is lower than the pull peer-to-

peer case, albeit higher than ALM alone, making it an effective compromise. In all

cases, larger group sizes result in an increase in the amount of network traffic, and

this also has a slightly negative effect on segment utility.

In terms of user satisfaction, larger groups have little effect on the fraction of

timely segments received when the peer-to-peer system is involved under any level of

interactivity. is is also largely true for the case of pure ALM when low levels of user

interactivity are observed, but when users begin to jump around within a video, ALM

performs signiëcantly worse. is effect can be attributed to the lengthy join delays

when the broadcast trees are particularly long, coupled with the standard waiting pe-

riod on the broadcast channel to receive the segment(s) the user requires. Naturally,

this does not affect the pull approach of the peer-to-peer method, and when this is

combined with the ALM scheme, the peer-to-peer system acts as a means of patch-

ing; providing the media segments required in an on-demand fashion until the push

scheme has stabilised. For similar reasons, segment utility is quite similar across all

methods for low interactivity workloads, but when high levels of interactivity occur,

there is a marked difference between the schemes. For instance, while the peer-to-

peer approach typically achieves high-levels of user satisfaction, a larger percentage of

segments are wasted relative to ALM. e naturally sequential nature of the broadcast

over ALM may therefore be acting in its favour here, given that users are highly likely

to want large numbers of media segments delivered in this fashion.
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5.3.5 Conclusion

From the results observed, we can conclude that while peer-to-peer methodologies

are certainly feasible for the delivery of interactive content from the user perspec-

tive, they are somewhat network-intensive. In contrast, a more traditional approach

based around classical periodic broadcast techniques over an application-level multi-

cast structure apparently work well for smaller numbers of passive viewers, but en-

counters problems when user interactivity and group size increase. e combination

of these two approaches, broadly pull and push, can, however, offer a good com-

promise that provides adaptability to varying conditions in terms of audience size,

interactivity levels, and the resources available. Across all the delivery methods con-

sidered, providing additional resources in terms of extra content nodes is beneëcial,

with their placement relative to clients being increasingly important dependent on

their abundance.

It is therefore apparent that mixing a live distribution approach such as application-

level multicast with an appropriate peer-to-peer patching mechanism over a typical

network infrastructure (i.e., typically lacking in IP multicast support) can provide a

workable solution for delivery of on-demand video with interactivity support in a

CDN environment. Given the wide variety of possible workloads, delivery methods

and variables, much potential exists for future work in this ëeld.
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Conclusion

is chapter is divided into three main sections, ërstly, a brief overview of contri-

butions this thesis has made. Followed by a discussion of possible future work, and

ënally wrapped-up with concluding remarks.

6.1 Thesis Contributions

is thesis has provided several contributions for the research community. For the

ërst time, traces are now available from a highly interactive video-on-demand system,

which show behaviour not previously observed. ese traces have been analysed and

modelled, to produce detailed and thorough user workloads, which will aid in the

designing and testing of future video-on-demand techniques.

Additionally, the modelled behaviour exhibited usage patterns which were a com-

plete departure from the classic start-to-ënish models. When users are given a choice

and the media is of an appropriate genre, users will only seek to and view the areas

they are interested in. is is aided by the bookmark feature, which clearly inìuenced

what was viewed. e combination of this produced hotspots, areas of high interest,

which were common to all our videos.

With the models outlined in Chapter 4, it is clear that many existing delivery

techniques do not perform well any more, as they were originally designed under
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the assumption of the start-to-ënish model. However, with these new models it is

possible to create new techniques which exploit these new usage patterns. ree new

techniques were explained in Chapter 5. ese include a method for detecting and

moving ill-placed bookmarks, a method to pre-fetch far ahead of playback to popular

segments, and ënally, a new hybrid scheme which shows how peer-to-peer schemes

operate under high interactivity.

e pre-fetching schemes builds up knowledge in real-time from the live system of

what segments of the media are popular and in what order they are typically viewed.

Using this knowledge it was demonstrated that users can successfully pre-fetch seg-

ments or hotspots, which they will probably view in the near future.

e hybrid peer-to-peer section outlined how existing peer-to-peer solutions were

not appropriate for these interactive workload. is is supported by our experimenta-

tion which shows that a hybrid push/pull approach performed far better than existing

peer-to-peer approaches.

6.2 Future Work

As bookmarks in our system were very popular, in a fully autonomic system the book-

marks should perhaps be created automatically. is could occur after the system has

detected a large number of requests for a speciëc area of a video. A bookmark could

then be provisionally placed and its position reëned by a bookmark-moving algo-

rithm.

Hotspots should also be detected automatically by the system, as their position and

popularity can greatly be exploited. In this thesis we have only discussed the hotspot’s

length, but equally their start position can be inferred in the same (or similar) way

to a bookmark’s position. Alternative approaches could be taken which, for example,

rank all the segments of the media by their popularity, and decide the top-N% should

be hotspots. ese rankings could easily be obtained using a cache replacement policy

such as the least frequently used (LFU) or least recently used (LRU).
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During our experiment, users were unhappy that we “spoilt the experience” of

watching the sporting events covered somewhat, as the user could quickly determine

the ënal outcome of the event from the bookmark names. e suggestion was made

that we avoid labelling the bookmarks and instead simply describe them as points of

interest. is could equally work if the bookmarks were autonomically created, since

a system would be unable to name them itself. Note, unnamed bookmarks would

only be useful if they are typically accessed sequentially, and not based on their name

alone.

It was shown that pre-fetched bookmark hotspots only covered 35% of all viewed

segments. us, pre-fetching schemes should consider more segments. is, of

course, would make it harder to decide which segments to pre-fetch next. e cost

of making a wrong decision could be reduced if the pre-fetching technique was mod-

iëed, for example, pre-fetching more than one choice simultaneously.

Additionally, the data required for pre-fetching has not been fully exploited. ere

are numerous other uses for this data, such as producing management or business

reports, better caching algorithms, construction of peer-to-peer overlays, or even de-

ciding which segments to push to the user overnight. e cache algorithm could,

for example, take into account any segments of the video which depend on another

segment, and thus related segments are kept or evicted from the cache together. With

peer-to-peer overlays, the network topology could fundamentally be structured based

on the pre-fetching knowledge.

is thesis brieìy looked at peer-to-peer delivery and it is clear that as demand

for online media increases, techniques such as P2P will be used more. Many internet

service providers (ISPs) are worried about P2P, as their networks were not designed

or deployed to be symmetric. e typical home broadband connection has a higher

downstream bitrate than upstream making it asymmetric. Yet, it has been shown that

if the P2P topology is designed correctly, it can reduce the cost for the ISPs and content

providers, with only a minor decrease in performance for the users [KRP05, HLR07].
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is still needs further work to help balance the cost to ISPs, and the performance

impact to the user, especially when considering the highly interactive workloads.

Many of the suggested solutions for delivering this content, such as peer-to-peer,

are relatively simple for a standard desktop PC to use, however, more and more media

is being consumed via mobile devices. 3G phones are being used to watch clips from

the internet and Apple iPods are automatically downloading audio and video podcasts

each day, providing their users with a “personal on demand broadcasting” service.

ese small mobile devices may not beneët from client-side improvements; instead

the network should perhaps become more intelligent to be able to serve this new

generation of device.

While not available today, future forms of interactivity may add an extra dimen-

sion to these problems. For example, systems which allow picture-in-picture (PiP),

the ability to display one main video, with one or more smaller supplementary videos

being displayed on top. Imagine a system where when watching a programme, areas

of the video could be highlighted to form a hyperlink to more information. is hy-

perlinked information would then be displayed with picture-in-picture technology.

is can be considered useful in many situations, for example, ënding statistics about

players in sporting events, viewing more information on a news article, or reading

reviews or production notes about a ëlm currently being shown. Now, videos could

hyperlink between each other, not just causing links between hotspots, but now be-

tween videos.

While not the case for all content, high levels of interactivity are becoming more

common, whilst users are both relying on and expecting video-on-demand services

to provide more advanced interactive functionality. Our study suggests that CDN

mechanisms must improve to handle more diverse applications, content and users.

To achieve this, the development of new algorithms must be driven by models derived

from realistic characterised workloads. e development of such strategies is reliant

on gaining a deeper understanding of the relevant workload parameters. e analysis
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and models presented in this thesis aim to aid in this endeavour.

6.3 Conclusion

We have presented a study and characterisation of user behaviour for our interactive

Video-on-Demand system. We note that by adding simple bookmarks to points of

interest within the media, the access patterns are greatly inìuenced. is behaviour

led to high levels of seeking which created relatively short and sparsely distributed seg-

ments whose popularity was orders of magnitude more popular than other segments.

Many existing delivery mechanisms are not designed for high levels of interactive

behaviour and are instead optimised for classic start-to-ënish streaming. Content

distribution techniques must therefore adapt to efficiently handle these kinds of access

patterns. ey could, for example, take advantage of the power-law distributions of

segment popularity by replicating those that generate the most demand. For instance,

we observed that 10% of segments accounted for 44% of all requests.

e departure from classic start-to-ënish playback encourages the design of agile

delivery mechanisms that allow quick seeking, and expect certain segments to be more

popular. We have seen that adding bookmarks will highly inìuence the order in which

users view the content, making the sequence of actions somewhat predictable. is

can then be exploited by allowing users to pre-fetch content that they are predicted to

need shortly, thus reducing any delays that they are likely to experience. However, we

noted that bookmarks could be harmful by causing unnecessary seeks if incorrectly

placed. is could be remedied for both client and server by simply moving the

bookmark autonomically based on observed user behaviour.

Advances in pull-based peer-to-peer VoD can aid in agile delivery, however the

overheads associated make it unacceptable in some situations. Instead, a combination

of push-based peer-to-peer delivery, which typically does not handle seeking well, and

pull-based, can produce an efficient delivery platform for these interactive workloads.

So far we have only considered bookmarks within music and sport videos, but
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bookmarks are equally applicable in many other genres. For example, bookmarks

are commonly found in the form of chapters on video DVDs. It is not clear if the

same high levels of interactivity would be observed in such media, or if the classic

start-to-ënish model would still be prevalent.

In conclusion, we are entering a new era of video-on-demand, one where media

is being consumed in abundance, on a myriad of devices. Our VoD systems must be

ìexible and agile to support current and future trends, as well as to take advantage of

new techniques such as peer-to-peer, or to expect new user behaviours such as those

demonstrated in this thesis. Overall, this is an exciting new future for online media,

and one which provides many opportunities for improvement.
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