
Fine Grained Component Based Engineering of

Adaptive Overlays: Experiences and Perspectives

Gareth Tyson, Paul Grace, Gordon Blair and Andreas Mauthe

Computing Department, InfoLab21, Lancaster University, Lancaster, UK

{g.tyson, p.grace, gordon, andreas}@comp.lancs.ac.uk

Abstract. Recent years have seen significant research being carried out into

peer-to-peer (P2P) systems. This work has focused on the styles and

applications of P2P computing, from grid computation to content distribution;

however, little investigation has been performed into how these systems are

built. Component based engineering is an approach that has seen successful

deployment in the field of middleware development; functionality is

encapsulated in ‘building blocks’ that can be dynamically plugged together to

form complete systems. This allows efficient, flexible and adaptable systems to

be built with lower overhead and development complexity. This paper presents

an investigation into the potential of using component based engineering in the

design and construction of peer-to-peer overlays. It is highlighted that the

quality of these properties is dictated by the component architecture used to

implement the system. Three reusable decomposition architectures are designed

and evaluated using Chord and Pastry case studies. These demonstrate that

significant improvements can be made over traditional design approaches

resulting in much more reusable, (re)configurable and extensible systems.

Keywords: Peer-to-peer (P2P), overlays, component based engineering,

configuration, adaptation, functional evolution.

1 Introduction

Over recent years there has been an explosion in the number of peer-to-peer (P2P)

systems under development, addressing a number of issues, ranging from grid

computation to content distribution [1][12][23][24]. Whereas much effort has been

put into the development of these novel systems, little research has been promoted

into how these overlays are built. This has led to a huge array of development

approaches being utilised, ranging from the use of standardised APIs [8] to simple

monolithic designs.

This non-formalised approach, however, ignores the potential that software

engineering principles can bring. One particular approach that has found much

success in the field of middleware systems is the use of component based design to

facilitate such things as configurability, adaptability and reusability. These systems

separate functionality into independent pluggable entities called components. These

systems can then be constructed and reconstructed from such components to

specialise performance for different environments. In the field of P2P overlays this

involves nodes being constructed from a subset of components from a repository to

offer optimal performance for the existing network constraints and requirements.

Further to this, the nodes can be dynamically reconfigured to respond to various

events in the system by plugging in different components. Alongside these

advantages, the use of components also brings greater software engineering benefits,

promoting the reuse of components and functional extensibility for easy development,

deployment and maintenance of systems.

The effectiveness of a component based system is largely dependent on the way in

which functionality is separated into the components. These components then make

up an architecture, or pattern, in which they are interconnected. This paper presents

and analyses three such component patterns aimed at the design of P2P overlays.

These patterns are based on the Gridkit Overlay Framework [14] and are designed to

assist developers in the rapid development of (re)configurable overlays for

deployment in heterogeneous environments. Through this approach we have

implemented a number of overlays, including SCAMP [13], SCRIBE [6], PAST [10]

and TBCP [18]. To aid in this investigation, however, we focus on the development of

two component based overlays, Chord [24] and Pastry [23]. An alternate evaluation of

this work can be found in [27], focussing on re-configurability aspects of a variety of

different overlays.

We show that, by designing P2P overlays in this fashion, a large number of

advantages can be gained. Existing work in has focussed on coarser grained patterns,

however, we investigate the potential of exploiting the properties of finer grained

approaches. It is found that (re)configuration of node behaviour can be dynamically

and effectively carried out in a much more elegant and extensible manner compared

to more conventional parametric adaptation or coarser grained alternatives. Further to

this, design complexity and software engineering aspects are also investigated to

show the benefits for software developers.

This paper is presented as follows; Section 2 offers a background overview of the

area. Section 3 gives a description of the proposed component architecture. Section 4

then provides a short overview of the evaluative implementation we carried out.

Following this, in Section 5, is a detailed overview of (re)configuration in the

architecture. Section 6 then provides an evaluation of the non-functional, performance

and engineering, properties of the approach. Finally, Section 7 provides a conclusion

and shows a number of future areas of work that could be carried out in the field.

2 Related Work

There has been a large body of work carried out in the area of P2P networking. This

technology involves utilising the resources of end-hosts to provide a service. One

example of such a service is distributed object lookup in which nodes self-arrange to

allow them to build a distributed hash table. Examples of these systems are Pastry

[23] and Chord [24]; they both share similar facets in that they both build a ring

topology. However, whilst Chord routes messages over the ring, Pastry also builds a

Plaxton [20] routing tree to pass messages through.

One frequently cited issue with developing such P2P overlays is the extensive

coding effort that must be taken to implement a new system. To assist in this, a

number of approaches to ease the development costs have been proposed.

MACEDON [22], OverML [2] and P2 [16] are high level definition languages that

allow developers to define the workings of their overlays without the intensive coding

process of dealing with lower level functionality. P2, for instance, allows Chord to be

defined using 47 logical rules which can be compared to the original MIT

implementation containing thousands of lines of C++ code. However, these produce

fixed implementations that cannot be adapted once generated and deployed.

There are also middlewares and application toolkits that provide principled support

for P2P application development. JXTA (www.jxta.org) is a framework where P2P

applications are developed atop a resource search abstraction; this supports grouping

and contacting nodes. This abstraction can be implemented using a number of overlay

topologies (e.g. Chord or Pastry). However, implementation follows a black-box

approach below the abstraction; this restricts configurability in diverse environments,

dynamic adaptation and software re-use.

Component-based middleware is an approach that resolves these issues. This sees

middleware being constructed from a set of independent pluggable entities called

components. A component is described as a self contained body of code that is

accessible by a predefined interface [26]. Overall, the benefits of the component

approach are as follows: i) it promotes a high level of abstraction in software design,

implementation, deployment and management, ii) it fosters third-party software reuse

[8], and iii) it facilitates flexible configuration (and, potentially, run-time

reconfiguration) of software. Well-known component models include: EJB [25] and

Microsoft .NET [19]; however, these are typically heavyweight and application

focused.

In response to this, lightweight component models have emerged (e.g Fractal [4],

OpenCOM [7], k-Components [9], Koala [29], Pebble [17] and THINK [11]).

Notably, the first three also support reflection-based dynamic adaptation. Reflection

allows the current component structure and behaviour to be inspected and adapted at

runtime. Their lightweight nature allows them to be used for developing system

software as well as applications. For example, they are the enabling technology

behind reflective middleware, e.g. OpenORB [3], DynamicTAO [15] and RAPIDware

[21]. These middlewares can be configured from a subset of potential components

allowing them to be specialised and adapted to different scenarios and environments,

making them more flexible and extensible. Further, dynamic adaptation of the

constituent configurations brings substantial benefits to the system improving

performance and efficiency in the face of fluctuating conditions. Reusability is also a

further benefit as the use of standardised components allows different systems to

exchange components. We believe that the benefits from such component

technologies can similarly better support the development of P2P overlay software.

3 Component Patterns for Overlay Decomposition

One of the fundamental issues involved in designing a component based system is

how the developer can most effectively separate the system’s functionality into

components. The most important decision in designing component architectures is the

granularity of decomposition; this represents to what extent the functionality of the

overlay has been compartmentalised. A coarse architecture may only consist of a few

components whereas a fine grained architecture typically uses a much larger number.

 The granularity can be defined in two dimensions: namely, width and depth; the

width refers to the number of identifiable aspects that a system (or component) can be

separated into, whist the depth refers to how individual aspects of the system are

further decomposed. Hence, our software decomposition diagrams follow a tree

structure, where each branch of the tree is a component decomposition.

There are a number of pros and cons involved in using such architectures, often

making a trade-off between flexibility and complexity. The reasons for using complex

architectures are abundant; fine grained component separation allows independent

access to a larger number of components in the system which in turn allows

independent access to more specific aspects of the overlay. Therefore, finer grained

architectures allow much smaller, more specific aspects of the system to be inspected

and modified. By possessing access to these individual aspects of the overlay,

increasingly significant levels of (re)configurability can be attained. This, however, is

not the only tangible gain to be made; as well as this, other software engineering

benefits can be gained such as the easy reuse and extension of functionality.

This section presents three component-based patterns for the implementation of

overlay networks, based on the Gridkit Framework [14]. These architectures mandate

that the implementation of overlays is performed in a specific manner, separating the

functionality of the system into a number of independent components.

3.1 Pattern I: Coarse Grained Decomposition

From the highest level, the architecture can be seen to separate functionality into

three separate elements as mandated by the Gridkit Framework [14], shown in Figure

3.1. Gridkit is a component based middleware designed to address the heterogeneous

design requirements of modern grid applications. To achieve this, it utilises pluggable

P2P overlay components allowing a variety of interaction paradigms and services to

operate over a variety of overlay networks. These P2P overlay networks are

implemented in three independently pluggable components. The first is the Control

component which deals with controlling a node’s behaviour such as joining it to the

network. The second component is the Forwarding mechanism which contains the

required algorithms to route information through the overlay. Finally, there is the

State component; every other component uses this to store persistent information in,

so to facilitate the reconfiguration of the overlay without concern over the state

maintained in individual components.

Control Forward State

Overlay

Figure 3.1. Pattern I Overview

When looking at the system from this perspective, it can be seen to suffer from a

number of problems. The separation is based on generic, high level definitions of the

functionality, deconstructing the overlay into families of algorithms rather than

elements that are specifically designed for processes such as reconfiguration or

reusability. An example of this is the Control component which encompasses a

number of algorithms that manage the overlay ranging from joining procedures to

maintaining the network. This approach has been identified as being a suitable

methodology for a number of existing overlays such as Chord [24]. However during

the implementation of more complex overlays such as Pastry [23] it becomes

insufficient. It is therefore necessary to take a closer look at each component to

identify the independent aspects that can be extracted and separated out.

3.2 Pattern II: Intermediate Grained Decomposition

A closer look at the architecture outlined previously reveals that the large

monolithic elements discussed actually contain a number of individual algorithms. To

gain benefits such as configurability, each of these algorithms must be analysed to

ascertain the utility of providing independent access to its functionality.

Control

Join Leave Maintenance Repair

Figure 3.2. Pattern II Control Components

As shown in Figure 3.2, the Control component can be seen to possess a number of

individual aspects. The Join component deals with a node joining an overlay; the

Leave deals with leaving an overlay; the Maintenance deals with monitoring the

status of the overlay whilst, finally, the Repair deals with repairing any problems

identified. It can be seen from the outset that these elements represent a substantial

amount of the functionality and dictate, to a large extent, performance. For example,

the majority of overhead in an overlay will be created by the algorithms embodied in

the Maintenance and Repair aspects of the implementation. It is because of this, that

these aspects can offer a number of beneficial properties when separated from the rest

of the system. This can be clearly seen by looking at heterogeneous environments in

which some nodes reside on reliable, wired hosts whilst other run on far more

unreliable hosts. In such a scenario it is likely that a superior overlay can be built if

each host chose optimal Control components for their environment.

The Forwarding and State components have less identifiable benefits when they are

separated. This is because forwarding algorithms are generally uniform in their

procedures and comprise of smaller amounts of functionality. For instance, in Plaxton

routing [20], to ensure determinism, it is necessary for messages to follow a specific

path in the overlay. It is therefore difficult to deconstruct the algorithm further as

(re)configuration in this manner could severely compromise the system. Similarly to

this, State aspects are limited in areas such as (re)configurability as they are not

involved with distributed interactions and behave in a passive manner.

This separation pattern will therefore be effective for overlays which place a high

value on basic (re)configurability. The separation of the control elements allow a node

to be specialised for individual scenarios. Overlays developed in this manner will not,

however, be well suited to reusability as at this granularity most components will still

maintain overlay specific functionality that will make it hard to use in a generic way.

For instance, the State component will contain all data structures relating to an

individual overlay; this will make it inefficient to port to a different system. It is

therefore beneficial to inspect an even finer grained approach.

3.3 Pattern III: Fine Grained Decomposition

A number of overlay aspects have been looked at in the previous sections, however

it is now necessary to outline an approach to be used that is both generic enough to be

used for multiple overlays but specific enough to provide the necessary attributes

outlined earlier. Pastry and its data structures have been used to illustrate this pattern;

however it is possible for any overlay to be developed in this fashion.

Join Leave Maintenance Repair Leaf Set Routing Table
Neighbourhood

Set

Leaf Set

Maintenance

Routing Table

Maintenance

Neighbourhood

Set

Maintenance

Maintenance

Leaf Set

Repair

Routing Table

Repair

Neighbourhood

Set Repair

Control Forward State

Repair

Pastry Overlay

Figure 3.3. Pattern III Overview

Figure 3.3 shows an in-depth view of the proposed component architecture. The

further levels of decomposition have been highlighted with dotted lines. The Control

element outlined in Pattern II has been separated as suggested into its four constituent

elements. Similarly the State component is separated down into a second tier of

deconstruction, so to provide for the reusability of its data structures. The Forward

component, however, remains as a single unitary element as proposed in Pattern II.

As well as the previously described modules, it can also be seen that the

Maintenance and Repair components have been further broken down to embody the

various algorithms relevant to maintaining the individual state aspects of the Pastry

design. This improves the reusability of these aspects substantially as reusing entire

maintenance or repair components is difficult especially when porting them to

different overlays. Each Maintenance and Repair component will now ensure that its

respective state table is correct according to some degree of accuracy. This allows the

Maintenance and Repair aspects of the system to be reused in accordance with the

individual State components; for example, if the Pastry Leaf Set was to be ported to a

Chord overlay, it could be done together with the Maintenance and Repair

components.

Further to this, the (re)configurability of the system is improved dramatically. This

is because, now, the maintenance and repair procedures for each state entity are

totally independent. The means that the system can (re)configure these aspects

separately without having to interchange both the maintenance and repair algorithms.

This is highly beneficial in a number of circumstances as, often, the repair algorithms

will remain constant whilst the maintenance elements change. For example, during

periods of high node activity, a lazy maintenance algorithm might be selected in

which failures are detected passively. Alternatively, if the nodes cease to interact

frequently, a probing maintenance algorithm might be employed. Despite these two

different approaches, the repair algorithms will remain constant.

Further to this, there are a large number of other potential (re)configurations. For

instance, if there is a high turnover in the leaf set an intensive maintenance algorithm

might be employed whilst not affecting the routing table maintenance. Alternatively,

if misbehaviour is detected in the routing process more secure maintenance and repair

algorithms might be installed whilst leaving the leaf set maintenance unmodified.

4 Implementation

To investigate the effectiveness of the component patterns described in Section 3 we

have developed a number of overlays, including SCAMP [13], SCRIBE [6], TBCP

[18] and PAST [10]. We focus, however, on an implementation of Chord [24] using

Pattern I and a Pastry [23] overlay developed using Pattern III. Chord was selected

due to its inherent simplicity whilst Pastry was selected due to the complexity of its

routing and state elements. This allows a more substantial evaluation and comparison

to be performed using a non-component implementation of Pastry as a benchmark.

Both Pastry and Chord were developed using the OpenCOM (v 1.4) component

model [7] in Java. Chord’s component interactions are performed solely using direct

method invocations between the components; each component offers services through

public interfaces and consumes services through predefined receptacles. The decision

engine therefore dynamically selects the optimal components and then attaches their

receptacles to the appropriate interfaces; this forms connections between the

components. These connections can then be dynamically modified during runtime.

Pastry, alternatively, utilises an event based interaction system. Using this approach,

components generate notifications to inform other components of events that have

occurred. Alternatively, events can also be generated to request services from other

components. These events traverse the component tree shown in Figure 3.3. It is

therefore the decision of each component in the tree how an event is interpreted and

whether they pass it or not. This allows different types of events to be dealt with

differently, based on policies implemented in each component. The purpose of this is

to allow the effective and extensible addition of functionality to the system without

having to reconfigure other aspects of the architecture. Therefore, by decoupling

components through events it is only necessary to ensure that all events can be dealt

with in the system rather than looking at how they are dealt with.

5. Evaluation of Overlay (Re) Configurability

One of the primary aims of utilizing a fine grained model is the ability to

(re)configure its behaviour by the architectural modification of the components

resident in the system. Configurability refers to a system’s ability to be specialised for

a particular environment whilst re-configurability refers to its ability to modify itself

dynamically to adapt to changes in its environment. Coarse grained approaches are

distinctly limited in their (re)configurability as it is only possible to perform

architectural modification on each component in the system. Therefore, if there are

three components in the system (Control, Forward, State), then it is only possible to

configure these three elements independently. Such (re)configurability can be driven

by a number of factors consisting of both system requirements and environmental

constrains; these can exist in one or more levels:

i) Network Level – (Re)Configuration can take place to respond to network

variations e.g. bandwidth, packet loss, jitter etc

ii) Overlay Level – (Re)Configuration can take place to respond to overlay level

variations e.g. malicious peers, routing performance, neighbour selection etc

iii) Application Level – (Re)Configuration can take place to respond to application
level requirements e.g. data types, interface responsiveness, security etc

To investigate the (re)configurability of the architecture, a maintenance case study

is looked at. This highlights how different maintenance and repair algorithms can be

utilised based on both application level requirements and environmental limitations.

In an un-trusted and unreliable environment (e.g. the Internet), it is beneficial to use

rigorous and security conscious algorithms. However, in a closed, trusted, reliable

environment (e.g. a campus network), lower overhead algorithms are utilised. This

process involves both the Maintenance and Repair components. The Maintenance

component implements the different monitoring algorithms whilst the Repair

component implements different responses. During bootstrapping, the decision engine

selects the optimal components. Run-time variations in the environment and

requirements are then responded to accordingly by dynamically interchanging the

necessary components.

In the non-component Pastry, sophisticated (re)configuration is not possible. It can

only occur in a parametric manner, supporting such things as increasing the size of the

leaf set in unreliable environments. The only alternative to this is the process of

‘hacking’ to modify existing code. This is both time-consuming and inelegant; this,

therefore, clearly offers much less flexibility than required to achieve the case study.

The Chord implementation similarly struggles to deal with this type of fine-grained

(re)configuration as it is necessary to modify the system on a very coarse level. The

Control component, therefore, has to be (re)configured as one unit. This is clearly

inefficient as the join and leave procedures have to be reconfigured alongside the

maintenance and repair to achieve adaptability. It also creates a burden on developers

as large amounts of code have to be repeated in multiple components even when

changes only affect very small parts. Further, coarse granularity also creates issues for

the decision engine responsible for making component selections. This is because

components that possess large amounts of functionality can have elements that are

well suited to their environment but also aspects that are not. This greatly complicates

the decision process as it now becomes necessary to weigh off the different trade-offs

within the components itself. For instance, in Pattern I, a Control component could

contain optimal maintenance functionality but ill-suited repair functionality.

The component Pastry implementation, however, achieves the objective effectively.

By separating out the maintenance and repair procedures into independent

components, the system can now (re)configure itself efficiently without thought to the

other aspects, relating to control elements. Further, it is possible to take an even finer

grained approach by exploiting independent access to the individual algorithms

responsible for each overlay data structure. This allows, for instance, easy adaptation

in the routing table whilst not affect the ring topology maintained in the leaf set. As

well as this, through the architecture’s open event model, it is easy to combine the

functionality of multiple components. Therefore multiple Maintenance and Repair

components can exist in the architecture, working in cooperation. This allows

components implementing new capabilities to augment existing ones without the

necessity to repeatedly implement base functionality. Table 5.1 shows the component

configurations used to achieve the case study. It is easy to identify obvious

configurations; for instance, when operating in the Internet, Pastry uses full leaf set

broadcasts to maintain the topology. However, in a campus environment it utilises the

lower overhead approach of periodic keep-alive messages as the reliable, low latency

nature of the environment makes this sufficient.

Environment Configuration

Internet

Maintenance: - Leaf Set Member Broadcast

 - Lazy Routing Table Failure Discovery

Repair: - Standard Repair

 - Local Black-List Repair

Campus

Maintenance: - Leaf Set Keep-Alive

 - Lazy Routing Table Failure Discovery

Repair: - Standard Repair

- Administrator Notification Repair

- Centralised Black-List Repair

Table 5.1 Pattern III Case Study Component Configurations

As well as this, more sophisticated configurations can also be utilised. Most notably,

it is possible to exploit the combination of multiple components. When operating in

the Internet, Pastry utilises two Repair components: Standard Repair and Local Black-

List Repair. This latter augments standard functionality by maintaining a black list of

malicious and unreliable peers, installing itself above the Standard Repair component

in the event tree. Therefore, on receipt of a routing table failure event, it locates a

suitable (non black-listed) replacement before forwarding the event to the Standard

Repair component. The Standard Repair component then updates the necessary state

entities and notifies the appropriate nodes. This can be contrasted with the campus

scenario in which the Standard Repair component is accompanied by the

Administrator Notification Repair and the Centralised Black-List Repair components.

In this environment, if a routing table failure is detected, the Centralised Black-List

Repair component utilises a centralised database to validate the chosen replacement.

Similarly, misbehaving peers (e.g. frequent failure and rejoins) are reported through

the Administrator Notification Repair component which passively monitors joining,

repairing and routing events. This rich variation in functionality is not possible with

coarser grained models; this is because it is not possible to ‘mix and match’

components. Instead, it is necessary to implement a large number of Control

components, each containing monolithic variations. This is resource intensive, highly

complex and requires intensive coding.

Maintenance Components Repair Components

Leaf Set Member Keep-Alive Standard Repair

Leaf Set Member Broadcasts Administrator Notification Repair

Probabilistic Leaf Set Keep-Alive Local Black-List Repair

Routing Table Member Keep-Alive Centralised Black-List Repair

Lazy Routing Table Failure Discovery Certificate Validation Repair

Table 5.2 Maintenance and Repair Components

The fine-grained nature of Pattern III therefore allows substantial and effective

(re)configuration to take place in the overlay. This, when compared to coarser models,

can be seen to create strong functional incentives for development in this manner.

Therefore, whilst coarser models offer high level adaptive properties and well

structured implementations, they cannot support the diversity of environments and

requirements that are possible through finer grained models. Table 5.2 shows a

number of components that can be utilised with Pastry. These components are capable

of supporting a range of constraints and requirements. For instance, low overhead

mechanisms can be employed such as lazy routing table maintenance, keep alive leaf

set maintenance and the local black listing of peers. However, these can also easily be

replaced to provide more reliable support e.g. routing table keep-alive maintenance

and administrator notification. As well as this, variations in application level

requirements can be easily implemented. For instance, secure and closed networks

can utilise certificate validation in the join and repair procedures to only allow

validated members. Vitally, such configurations are performed in conjunction with

conventional existing, non-modified, components. An alternative evaluation that

focuses on (re)configuration can also be found in our existing work [27].

6 Evaluation of Performance and Engineering

Section 5 has provided an evaluation of the potential of functional (re)configuration.

We evaluate the approach’s non-functional properties based on the following four

criteria:

i) Resource Overhead: Is the overhead incurred (in terms of performance

throughput and memory costs) by fine-grained architectures acceptable?

ii) Ease of Development: How easy is it for a developer to create, configure, and

extend an overlay?

iii) Reusability: To what extent can components developed for a particular overlay

implementation be reused?

iv) Functional Evolution: To what extent can the overlay evolve to include new
functionality?

6.1. Resource Overheads

This section examines the performance overheads associated with implementing an

overlay network using components. All tests were performed on a 1.7GHz Intel

Pentium M processor; 512 Mb RAM; Sun JVM 1.6.0.1; the components were

developed using the OpenCOM v1.4 framework [7]

6.1.1. Throughput Overhead

This section demonstrates the operation call throughput overhead of using

components compared to traditional object orientated approaches. This highlights the

overhead associated with implementing overlays in a component based fashion. The

first experiment is to invoke a null operation (no parameters, and no operational logic

to measure maximum overhead impact) 100,000 times on a Java object

implementation; this experiment was repeated 5 times and the median value taken.

The same procedure was repeated for invoking operations on an equivalent

OpenCOM component through a receptacle call. The results of these experiments are

illustrated in table 6.1. It can be seen that receptacle calls have a 57% decrease in

throughput and are therefore more expensive than object based native method calls.

Receptacles, however, reduce coupling in the system and provide support for dynamic

evolution and reconfiguration therefore creating a trade-off in performance.

Type Throughput(Invocations/Second)

Java

Method Call
208.768267 x 10

6
 (208 million)

OpenCOM

Receptacle Call
91.785222 x 10

6
 (91 million)

Table 6.1. Invocation Throughput

In finer-grained component architectures where there are a large number of

components, there will be an increasingly large number of component interactions

required for functions to be performed. Therefore, the effects of component

throughput will be directly based on how many components there are in the system.

This, however, is not an issue that should be of concern unless the overlay is required

to utilise the maximum operational throughput (~90 million/sec); this has never

occurred in our implementations. Further to this, its distributed nature renders the

decreased operational throughput as negligible. For instance, when performing a

Pastry join over a small network the join time is 10.8 seconds. This will, at most,

require 15 component interactions through the event passing framework. This shows

that the overhead of component interactions constitute under 0.001% of the overall

overhead. Therefore, in a distributed environment, the overhead of using component

interactions is insignificant. Further, the ability to streamline and optimise

implementations through configuration means that the overall system overhead (e.g.

bandwidth utilisation) is decreased.

 In the Pastry implementation, control is passed between components using either

receptacles or event passing. All state and forwarding interactions were performed

using receptacles. Alternatively, the control elements performed all interactions using

event passing (although these events are similarly passed through receptacles). Table

6.2 outlines the number of components traversed during negotiations.

 Number of Components Traversed

Process Node 1 Node 2 Node 3 Node 4

Create New Network 3

Join Node 2 15 12

Join Node 3 15 5 12

Join Node 4 12 5 15 15

Fail Node 1 11 7 12

Table 6.2. Component Event Traversals

To initiate a network (i.e. starting up a new individual node) 3 component

interactions are required which can be compared to 0 interactions required by a

Pattern I control entity. When another node is then subsequently joined to the network

a further 15 component interactions are required by node 1 to deal with the request.

This process therefore requires an extra 0.163 microseconds for component

interactions, creating 227% extra overhead compared to performing the same

operations using native Java interfaces. There is therefore a noticeable overhead

involved with increasing the granularity of the component pattern used. However, as

the advantages of decoupling these functional aspects are significant, they therefore, if

exploited, warrant the increased level in overhead. Further, the distributed nature of

interactions means that the decreased operational throughput does not adversely affect

the overall system performance.

6.1.2 Memory Overhead

This experiment investigates the static memory footprint of implementing overlay

functionality in components when compared to conventional Java objects. For the

experiment, six modules have been implemented as both OpenCOM components and

Java objects. These types consisted of modules with increasingly larger numbers of

interfaces and receptacles. An interface represents the services that a component can

provide whilst a receptacle represents the services that a component requires. The

memory footprints of the types were then measured, shown in Table 6.3.

Module
Component

(bytes)

Java Class

(bytes)

Overhead

(bytes)

One (1 intf, 0 recps) 990 623 367

Two (2 intf, 0 recps) 1703 1307 396

Three (3 Intf, recp) 2123 1703 420

Four (1 Intf, 1 Recp) 2999 2051 941

Five (1 Intf, 2 recp) 3299 2051 1248

Six (1 intf, 3 recp) 3555 2051 1504

Table 6.3.Memory Overhead of using Components

Developing a component with no receptacles adds approximately 370 bytes of

overhead compared to a conventional Java object, with another 20 bytes for each

additional interface. This can be compared to approximately 300 bytes extra for each

receptacle. This means that, component based overlay implementations will have a

marginally larger memory size compared to monolithic or object oriented

developments. This overhead, however, is limited to only a small increment compared

to alternative approaches. Further, the ability to construct systems from the minimum

number of required components means that the overall memory footprint can be

reduced by only distributing and loading the necessary components.

6.2 Ease of Development

One interesting area of investigation is how the use of components affects the

development process. This section will look at the amount of coding required and the

pros and cons related to component management.

6.2.1 Code Complexity

This section investigates the ease of implementing overlays in a fine grained

component architecture when compared with more traditional approaches. This is

done because fine grained components involve additional code complexity in the form

of dealing with event passing and controlling interactions between components.

Another major issue is the occasional requirement for components to repeat

functionality to ensure the independence of components. This problem can be

rectified through the use of even finer grained architectures that place these shared

elements into independent components although this might result in greater

complexity.

To evaluate the impact that the use of components has on the system, the Join

component has been looked at to test the overhead related to coding the OpenCOM

and event based elements of the system. The Join component has 194 lines of overlay

related code in it, including 9 methods responsible for the various aspects of the join

operation. This component then has the addition of 3 new component references

(receptacles) to enable it to interact with the transport, state and forwarding aspects of

the system. Further to this an extra 129 lines of code were then attributed to the

OpenCOM related aspects of the class leading to a total of 325 lines of code, creating

an increase of 39.69% in code overhead and 4,532 bytes of extra static memory.

Measurement Chord Pastry

(excl events)

Pastry

(inc events)

Classes 5 35 53

Packages 4 10 13

Components 3 16 16

Table 6.4. Component Code Complexity

This clearly shows that providing objects with the added elements required to form

event passing components creates a noticeable coding overhead. However it should be

noted that this overhead comes in the form of template-like coding consisting mostly

of event registration and other such operations.

To better gain an understanding of the overhead involved in development, the fine-

grained Pastry implementation is compared to a coarse grained Chord implementation

(shown in Table 6.4). It can be seen that a much larger number of components,

involving a similarly larger number of classes, are used in the fine grained

implementation. This is partially attributable to Chord’s relative simplicity when

compared to Pastry but can also be attributed to the need to support far more

components along with the necessity to repeat certain elements of functionality. It can

therefore be derived that the use of the finer grained model introduces a noticeable

amount of extra classes and components; however this is obviously traded off against

the benefits documented in this paper.

6.2.2 Management and Dependency Complexity

The next type of complexity comes in the form of the overhead of managing a large

number of components in the system. The majority of benefits that are gained in the

system are achieved through the use of fine grained components rather than coarser

entities, however, as the number of components increase, as does the complexity

involved in managing and instantiating them. Figure 6.1 shows the primary

components (Pattern II) and their inter-dependencies

As shown in Table 6.3 the number of component in the Pastry implementation

increases from 3 to 16. These components form a well structured hierarchy installed

by a user written script or decision engine, and managed by an event based

framework. These components embody small sets of well defined functionality and

therefore create an improved management approach for the developer, as processes

such as dividing work loads between multiple engineers are made much easier.

However, when separating functionality into the intermediate level the chances of

requiring the repetition of functionality in multiple components increase.

As well as development complexity there is also runtime complexity as the system

will now be required to deal with a larger number of components and any subsequent

events that they generate. In a coarse, three component model there will only be three

generic event capabilities registered, however by decomposing these into finer

grained components, another 15 event capabilities need to be registered and handled.

This will create little complexity in terms of runtime overhead but will be more

evident in areas such as event management when attempting to ensure that all the

required events can be serviced correctly (i.e. dependency management).

Join

Leave

Maintenance

Repair

StateForward

Figure 6.1. Dependencies between Pattern II Components

Further, component compatibility must also be dealt with, as the more complex an

architecture is, the harder it is to ensure that all the components are compatible. For

instance, Figure 6.1. shows the inter-dependencies between a Pattern II Pastry

implementation. Each dependency must be resolved with a compatible components.

For Pattern I, the number of dependencies is only 3 when compared with 9 generated

by the Pattern II implementation. It is hard for a system to automatically ascertain

whether a component is compatible with the system as the concept of black box

development makes it hard to analyse how a component works. This therefore means

that developers will need to make a concerted effort to ensure that a re-configuration

maintains compatibility.

6.3 Reusability

A major benefit of embodying code in components is the possibility to reuse that

code without consideration to how it works. There are two case studies that can be

looked at in terms of reusability; the first is reusability with overlays of the same type

whilst the second is reusability with overlays of different types (portability).

The non-component Pastry implementation struggles to achieve either type of

reusability as it has been developed without thought to being used for different

systems. Even with the use of effective coding practises it becomes a burden for later

developers to reuse the code as it is necessary to take an introspective view at the

source code to derive potentially reusable aspects.

Chord makes substantial improvements in term of conventional reusability as the

Forward and State components can easily be reused in other Chord implementations

that simply wish to focus on the control aspects. This is because these components

play passive roles in the overlay rather than generating dependencies themselves.

Reuse of the Forward and State components is also the most likely scenario as there is

less utility in modifying these two components. Further to this, the process is simple

as there are only two components to deal with. Chord, however, cannot offer any real

level of portability as the components are too large to remove small aspects from.

Similarly reuse of a monolithic Control component becomes unbeneficial as it is

unlikely that developers would not wish to modify the control behaviour in their new

overlay. Reuse can therefore only be performed with the same type of overlay.

The component based Pastry is by far the most reusable, offering high levels of

reusability alongside a limited degree of portability. The utility of reuse in Pattern III

becomes much greater as it possible to reuse much more specific aspects. This allows

developers to focus their work on much smaller areas whilst addressing all other

issues with reused components. Further, by manipulating events and utilising

interceptors between interfaces it becomes possible to reuse and specialise

components by simply augmenting existing functionality. Pattern III therefore

dramatically improves portability, as things such as the individual maintenance and

repair algorithms now become more generic. For example, the maintenance and repair

of a Pastry leaf set is comparable to the maintenance and repair of a Chord successor

table. Similarly, the state components that store this information can be ported. This is

clearly possible due to the topological similarities between Chord and Pastry whereas

porting between more diverse overlays such as Pastry and NICE [1] become much

more difficult. To achieve this it would therefore be necessary to further increase the

granularity of components to encompass and separate individual algorithms.

6.4 Functional Evolution

Another powerful concept is the ability to dynamically extend system functionality;

this is done through either adding or replacing components in the architecture. This

allows a node to evolve in its environment by obtaining extra components [28].

A case study that offers substantial benefits for an overlay developer is the ability to

dynamically extend a node’s join operation to be locally aware [5]. This allows a peer

to distinguish between nearby and distant nodes. This is highly advantageous

especially when dealing with such things as large scale content distribution. This

could be achieved by either replacing the join component in the system or

alternatively by adding extra components that deal with the locality issues for the

other components.

The non-component Pastry implementation cannot deal with these issues

effectively. It is possible for a developer to modify the join code but there is no

elegant or automated method of deployment. Further to this, the extension of this

system would require intricate knowledge of the implementation.

Chord similarly cannot deal with these issues without re-developing the entire

Control component. However, the deployment of such an update becomes easier

through the use of components as it is now possible to dynamically deploy

components between overlay nodes or through automated updates.

The component based Pastry, however, gains substantial functional evolution

through its use of Pattern III. By deconstructing the control aspects, developers can

gain direct access to the join elements. This allows an independent Join component to

be developed and deployed without dealing with other areas. Further to this, even

more efficient extensions are possible by simply adding components that deal with the

specific aspects of the extension.

The Join component receives events from other components informing it to perform

specific operations. This allows new components to be added that deal with a subset

of these events. The Join component deals with both, initiating the leaf set which is

not locality aware and initiating the routing table which is locality aware. To achieve

the case study in Pattern III, the original Join component is left to deal with the leaf

set whilst a new component is added to intercept events for the routing table. This

becomes possible through component decoupling and the use of shared state

components. This is because in Pattern III it is possible for any component to update

state information. This allows effective extensions to take place using fine grained

state components as a bridge between incompatibilities.

7 Conclusion and Future Work

This paper has investigated the issues surrounding the design, implementation and

deployment of peer-to-peer overlays in a fine grained component based fashion.

Using the Gridkit Overlay Framework [14] as a nucleus, a component architecture has

been developed mandating that overlays are constructed using a particular set of

components, to implement the various aspects of functionality resident in the overlay.

These components can then be added or removed dynamically in the confines of a

framework, to create a flexible, (re)configurable, reusable and extensible overlay.

Four different approaches have been considered ranging from monolithic designs to

fine grained component architectures. A number of pros and cons have been identified

with each approach; coarser grained components provide a well structured simple

approach to overlay design but lack flexibility in terms of reusability,

(re)configurability etc. This can be contrasted with fine grained components which

offer superior flexibility but with greater overhead.

The investigation has shown that any type of component architecture offers a

number of tangible benefits to overlay developers leaving non-component based

designs superior only in very simplistic overlays. Coarse grained architectures are

simple and provide an adequate model for developing relatively simple overlays with

limited levels of re-configurability, reusability etc. It has also been shown that

substantial benefits can be gained by utilising finer grained component approaches as

proposed in Pattern III. Such an architecture offers a powerful mechanism for the

(re)configuration and functional evolution of a system far beyond what is achievable

in non-component designs. Further, the advantages gained in reusability and

structured design creates implicit software engineering benefits allowing overlays to

be developed in a faster more elegant fashion. An evaluative summary is provided in

Table 7.1 with three stars constituting the best score.

Best Score = * * * Monolithic Pattern 1 Pattern 3

Resource Overhead * * * * * * *

(Re)Configurability * * * * * *

Development Complexity * * * * * * *

Reusability * * * * * *

Functional Scalability * * * * * *

Table 7.1. Summary of Evaluative Criteria

There is a variety of future work that can be carried out in this field. The use of

component based overlay design has largely been unexplored leaving a number of

potential areas of work. So far, the use of DHT systems has been used to investigate

the architecture outlined in this paper. It is therefore necessary to expand this work

into other areas, such as application level multicast [1], to look at how alternate

overlays perform. Further to this, alternative component architectures and even finer

grained models should be investigated. Work has already been carried out into

identifying fourth tier components including identifier generation, state collection and

data dissemination. This work will be continued to look into managing and reusing

such fine grained functionality alongside investigating more sophisticated interaction

and functional extension techniques. It is hoped that this will lead to the creation of

more sophisticated, holistic architectures.

References

1. Banerjee, S., Bhattacharjee, B., and Kommareddy, C. “Scalable application layer

multicast”. In Proc. ACM SIGCOMM Pittsburgh, Pennsylvania, USA, (2002).

2. Behnel, S., Buchmann, “A. Models and Languages for Overlay Networks”. In Proc. 3rd

Intl. VLDB Workshop on Databases, Information Systems and Peer-to-Peer Computing,

Olso, Norway (2005).

3. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,

Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and

Implementation of Open ORB V2”. In IEEE Distributed Systems Online (2001).

4. Bruneton, E., Coupaye, T., Leclerc, M., Quema, V., Stefani, J-B, “An Open Component

Model and its Support in Java”, In Proc. 7th Intl. Symposium on Component-Based

Software Engineering Edinburgh, Scotland (2004).

5. Castro, M., Druschel, P., Hu, Y., and Rowstron, A. “Exploiting Network Proximity in Peer-

to-Peer Overlay Networks”. In Technical Report MSR-TR-2003-82, Microsoft Research

(2002).

6. Castro, M., Druschel, P., Kermarrec, A., and Rowstron, A. “SCRIBE: A Large-scale and

Decentralized Application-level Multicast Infrastructure.” IEEE Journal on Selected Areas

in Communications, 20(8):1489–1499, October 2002. Communication, London, UK,

November (2001).

7. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, Jo, Sivaharan, T., "A

Generic Component Model for Building Systems Software". In ACM Transactions on

Computer Systems, 27(1):1-42, February (2008).

8. Dabek, F., Zhao, B., Druschel, P., Stoica, I. “Towards a common API for structured peer-

to-peer overlays”. In Proc. 2nd Intl. Workshop on Peer-to-Peer Systems, Berkeley, CA,

USA (2003)

9. Dowling, J., Cahill, V., “The K-Component Architecture Meta-Model for Self-Adaptive

Software”, In Proc. 3rd International Conference on Metalevel Architectures and

Separation of Crosscutting Concerns, Kyoto, Japan (2001).

10. Druschel, P. and Rowstron, A. “PAST: A Large-Scale, Persistent Peer-to-Peer Storage
Utility”. In Proc. 8th Workshop on Hot Topics in Operating Systems Oberbayerrn,

Germany. (2001).

11. Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G., “THINK: A Software Framework for

Component-based Operating System Kernels”. In Usenix Annual Technical Conference,

Monterey, CA (2002).

12. Foster, I. and Iamnitchi, A. “On death, taxes, and the convergence of peer-to-peer and grid

computing”. In Proc. 2nd Intl. Workshop on Peer-to-Peer Systems, Berkley, CA. (2003).

13. Ganesh, A., Kermarrec, A. and Massoulie, L. “SCAMP: Peer-to-peer lightweight

membership service for large-scale group communication”. In Proc 3rd Intl. Workshop on

Networked Group Communication, London, UK. (2001).

14. Grace, P, Coulson, G., Blair, G., Mathy, L., Yeung, W., Cai, W., Duce, D., and Cooper, C.

“GridKit: Pluggable Overlay Networks for Grid Computing”. In Proc. Intl. Symposium on

Distributed Objects and Applications, Cyprus, October (2004).

15. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., Campbell, R.H.,

“Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective

ORB”. In Proc. IFIP Intl. Middleware Conference, New York, NY (2000).

16. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I. “Implementing

Declarative Overlays”. In SIGOPS Operating Systems Review 75-90 Oct. (2005).

17. Magoutis, K., Brustoloni, J.C., Gabber, E., Ng, W.T., Silberschatz, A., “Building

Appliances out of Reusable Components using Pebble”. In Proc. SIGOPS European

Workshop 2000, Kolding, Denmark (2000).

18. Mathy, L., Canonico, R. and Hutchinson, D. “An Overlay Tree Building Control Protocol”.

In Proc. of the 3rd International COST264 Workshop on Networked Group

Communications, London, UK (2001).

19. Microsoft, .Net Home Page, http://www.microsoft.com/net

20. Plaxton, C. G., Rajaraman, R., and Richa, A. W. “Accessing nearby copies of replicated

objects in a distributed environment”. In Proc. 9th Annual ACM Symposium on Parallel

Algorithms and Architectures, Newport, Rhode Island (1997).

21. RAPIDware Project. Michigan State University, Department of Computer Science and

Engineering, http://www.cse.msu.edu/rapidware.

22. Rodriguez, A., Killian, C., Bhat, S., Kosti´c, D., Vahdat, A. “MACEDON: Methodology

for automatically creating, evaluating, and designing overlay networks”. In Proc.

USENIX/ACM Symposium on Networked Systems Design and Implementation, San

Francisco, CA (2004).

23. Rowstron, A., Druschel, P., “Pastry: Scalable, Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems”. In Proc. IFIP Intl Middleware Conference, Heidelberg,

Germany (2001).

24. Stoica, I., Morris, R., Karger, R.D., Kaashoek, M., Balakarishnan, H. “Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications”. In Proc. ACM SIGCOMM, San

Diego, CA (2001).

25. Sun Microsystems, Enterprise JavaBeans, http://java.sun.com/products/ejb/index.html

26. Szyperski, C. “Component Software: Beyond Object-Oriented Programming”, Addison-

Wesley, (1998).

27. Tyson, G., Grace, P., Mauthe, A., Blair G, Kaune S. “A Reflective Middleware to Support

Peer-to-Peer Overlay Adaptation. In Proc. 9th Intl. IFIP Conference of Distributed

Applications and Interoperable Systems, Lisbon, Portugal (2009).

28. Tyson, G., Grace, P., Mauthe, A., Kaune S. “The Survival of the Fittest: An Evolutionary

Approach to Deploying Adaptive Functionality in Peer-to-Peer Systems”. In Proc.

Workshop on Adaptive and Reflective Middleware, Leuven Belgium (2008).

29. Van Ommering, R., van der Linden, F., Kramer, J., and Magee, J. “The Koala Component

Model for Consumer Electronics Software”. In Computer 33, 3, March, (2000).

