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Abstract. Recent years have seen significant research being carried out into 

peer-to-peer (P2P) systems. This work has focused on the styles and 

applications of P2P computing, from grid computation to content distribution; 

however, little investigation has been performed into how these systems are 

built. Component based engineering is an approach that has seen successful 

deployment in the field of middleware development; functionality is 

encapsulated in ‘building blocks’ that can be dynamically plugged together to 

form complete systems. This allows efficient, flexible and adaptable systems to 

be built with lower overhead and development complexity. This paper presents 

an investigation into the potential of using component based engineering in the 

design and construction of peer-to-peer overlays. It is highlighted that the 

quality of these properties is dictated by the component architecture used to 

implement the system. Three reusable decomposition architectures are designed 

and evaluated using Chord and Pastry case studies. These demonstrate that 

significant improvements can be made over traditional design approaches 

resulting in much more reusable, (re)configurable and extensible systems. 

Keywords: Peer-to-peer (P2P), overlays, component based engineering, 

configuration, adaptation, functional evolution. 

1   Introduction 

Over recent years there has been an explosion in the number of peer-to-peer (P2P) 

systems under development, addressing a number of issues, ranging from grid 

computation to content distribution [1][12][23][24]. Whereas much effort has been 

put into the development of these novel systems, little research has been promoted 

into how these overlays are built. This has led to a huge array of development 

approaches being utilised, ranging from the use of standardised APIs [8] to simple 

monolithic designs. 

This non-formalised approach, however, ignores the potential that software 

engineering principles can bring. One particular approach that has found much 

success in the field of middleware systems is the use of component based design to 

facilitate such things as configurability, adaptability and reusability. These systems 

separate functionality into independent pluggable entities called components. These 

systems can then be constructed and reconstructed from such components to 



specialise performance for different environments. In the field of P2P overlays this 

involves nodes being constructed from a subset of components from a repository to 

offer optimal performance for the existing network constraints and requirements. 

Further to this, the nodes can be dynamically reconfigured to respond to various 

events in the system by plugging in different components. Alongside these 

advantages, the use of components also brings greater software engineering benefits, 

promoting the reuse of components and functional extensibility for easy development, 

deployment and maintenance of systems. 

The effectiveness of a component based system is largely dependent on the way in 

which functionality is separated into the components. These components then make 

up an architecture, or pattern, in which they are interconnected. This paper presents 

and analyses three such component patterns aimed at the design of P2P overlays. 

These patterns are based on the Gridkit Overlay Framework [14] and are designed to 

assist developers in the rapid development of (re)configurable overlays for 

deployment in heterogeneous environments. Through this approach we have 

implemented a number of overlays, including SCAMP [13], SCRIBE [6], PAST [10] 

and TBCP [18]. To aid in this investigation, however, we focus on the development of 

two component based overlays, Chord [24] and Pastry [23]. An alternate evaluation of 

this work can be found in [27], focussing on re-configurability aspects of a variety of 

different overlays. 

We show that, by designing P2P overlays in this fashion, a large number of 

advantages can be gained. Existing work in has focussed on coarser grained patterns, 

however, we investigate the potential of exploiting the properties of finer grained 

approaches. It is found that (re)configuration of node behaviour can be dynamically 

and effectively carried out in a much more elegant and extensible manner compared 

to more conventional parametric adaptation or coarser grained alternatives. Further to 

this, design complexity and software engineering aspects are also investigated to 

show the benefits for software developers. 

This paper is presented as follows; Section 2 offers a background overview of the 

area. Section 3 gives a description of the proposed component architecture. Section 4 

then provides a short overview of the evaluative implementation we carried out. 

Following this, in Section 5, is a detailed overview of (re)configuration in the 

architecture. Section 6 then provides an evaluation of the non-functional, performance 

and engineering, properties of the approach. Finally, Section 7 provides a conclusion 

and shows a number of future areas of work that could be carried out in the field. 

2   Related Work 

There has been a large body of work carried out in the area of P2P networking. This 

technology involves utilising the resources of end-hosts to provide a service. One 

example of such a service is distributed object lookup in which nodes self-arrange to 

allow them to build a distributed hash table. Examples of these systems are Pastry 

[23] and Chord [24]; they both share similar facets in that they both build a ring 

topology. However, whilst Chord routes messages over the ring, Pastry also builds a 

Plaxton [20] routing tree to pass messages through. 



One frequently cited issue with developing such P2P overlays is the extensive 

coding effort that must be taken to implement a new system. To assist in this, a 

number of approaches to ease the development costs have been proposed. 

MACEDON [22], OverML [2] and P2 [16] are high level definition languages that 

allow developers to define the workings of their overlays without the intensive coding 

process of dealing with lower level functionality. P2, for instance, allows Chord to be 

defined using 47 logical rules which can be compared to the original MIT 

implementation containing thousands of lines of C++ code. However, these produce 

fixed implementations that cannot be adapted once generated and deployed. 

There are also middlewares and application toolkits that provide principled support 

for P2P application development. JXTA (www.jxta.org) is a framework where P2P 

applications are developed atop a resource search abstraction; this supports grouping 

and contacting nodes. This abstraction can be implemented using a number of overlay 

topologies (e.g. Chord or Pastry). However, implementation follows a black-box 

approach below the abstraction; this restricts configurability in diverse environments, 

dynamic adaptation and software re-use. 

Component-based middleware is an approach that resolves these issues. This sees 

middleware being constructed from a set of independent pluggable entities called 

components. A component is described as a self contained body of code that is 

accessible by a predefined interface [26]. Overall, the benefits of the component 

approach are as follows: i) it promotes a high level of abstraction in software design, 

implementation, deployment and management, ii) it fosters third-party software reuse 

[8], and iii) it facilitates flexible configuration (and, potentially, run-time 

reconfiguration) of software. Well-known component models include: EJB [25] and 

Microsoft .NET [19]; however, these are typically heavyweight and application 

focused. 

In response to this, lightweight component models have emerged (e.g Fractal [4], 

OpenCOM [7], k-Components [9], Koala [29], Pebble [17] and THINK [11]). 

Notably, the first three also support reflection-based dynamic adaptation. Reflection 

allows the current component structure and behaviour to be inspected and adapted at 

runtime. Their lightweight nature allows them to be used for developing system 

software as well as applications. For example, they are the enabling technology 

behind reflective middleware, e.g. OpenORB [3], DynamicTAO [15] and RAPIDware 

[21]. These middlewares can be configured from a subset of potential components 

allowing them to be specialised and adapted to different scenarios and environments, 

making them more flexible and extensible. Further, dynamic adaptation of the 

constituent configurations brings substantial benefits to the system improving 

performance and efficiency in the face of fluctuating conditions. Reusability is also a 

further benefit as the use of standardised components allows different systems to 

exchange components. We believe that the benefits from such component 

technologies can similarly better support the development of P2P overlay software. 



3   Component Patterns for Overlay Decomposition 

One of the fundamental issues involved in designing a component based system is 

how the developer can most effectively separate the system’s functionality into 

components. The most important decision in designing component architectures is the 

granularity of decomposition; this represents to what extent the functionality of the 

overlay has been compartmentalised. A coarse architecture may only consist of a few 

components whereas a fine grained architecture typically uses a much larger number. 

 The granularity can be defined in two dimensions: namely, width and depth; the 

width refers to the number of identifiable aspects that a system (or component) can be 

separated into, whist the depth refers to how individual aspects of the system are 

further decomposed. Hence, our software decomposition diagrams follow a tree 

structure, where each branch of the tree is a component decomposition. 

There are a number of pros and cons involved in using such architectures, often 

making a trade-off between flexibility and complexity. The reasons for using complex 

architectures are abundant; fine grained component separation allows independent 

access to a larger number of components in the system which in turn allows 

independent access to more specific aspects of the overlay. Therefore, finer grained 

architectures allow much smaller, more specific aspects of the system to be inspected 

and modified. By possessing access to these individual aspects of the overlay, 

increasingly significant levels of (re)configurability can be attained. This, however, is 

not the only tangible gain to be made; as well as this, other software engineering 

benefits can be gained such as the easy reuse and extension of functionality. 

This section presents three component-based patterns for the implementation of 

overlay networks, based on the Gridkit Framework [14]. These architectures mandate 

that the implementation of overlays is performed in a specific manner, separating the 

functionality of the system into a number of independent components.  

3.1   Pattern I: Coarse Grained Decomposition 

From the highest level, the architecture can be seen to separate functionality into 

three separate elements as mandated by the Gridkit Framework [14], shown in Figure 

3.1. Gridkit is a component based middleware designed to address the heterogeneous 

design requirements of modern grid applications. To achieve this, it utilises pluggable 

P2P overlay components allowing a variety of interaction paradigms and services to 

operate over a variety of overlay networks. These P2P overlay networks are 

implemented in three independently pluggable components. The first is the Control 

component which deals with controlling a node’s behaviour such as joining it to the 

network. The second component is the Forwarding mechanism which contains the 

required algorithms to route information through the overlay. Finally, there is the 

State component; every other component uses this to store persistent information in, 

so to facilitate the reconfiguration of the overlay without concern over the state 

maintained in individual components. 
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Figure 3.1. Pattern I Overview 

 

When looking at the system from this perspective, it can be seen to suffer from a 

number of problems. The separation is based on generic, high level definitions of the 

functionality, deconstructing the overlay into families of algorithms rather than 

elements that are specifically designed for processes such as reconfiguration or 

reusability. An example of this is the Control component which encompasses a 

number of algorithms that manage the overlay ranging from joining procedures to 

maintaining the network. This approach has been identified as being a suitable 

methodology for a number of existing overlays such as Chord [24]. However during 

the implementation of more complex overlays such as Pastry [23] it becomes 

insufficient. It is therefore necessary to take a closer look at each component to 

identify the independent aspects that can be extracted and separated out. 

3.2   Pattern II: Intermediate Grained Decomposition 

A closer look at the architecture outlined previously reveals that the large 

monolithic elements discussed actually contain a number of individual algorithms. To 

gain benefits such as configurability, each of these algorithms must be analysed to 

ascertain the utility of providing independent access to its functionality.  
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Figure 3.2. Pattern II Control Components 

As shown in Figure 3.2, the Control component can be seen to possess a number of 

individual aspects. The Join component deals with a node joining an overlay; the 

Leave deals with leaving an overlay; the Maintenance deals with monitoring the 

status of the overlay whilst, finally, the Repair deals with repairing any problems 

identified. It can be seen from the outset that these elements represent a substantial 

amount of the functionality and dictate, to a large extent, performance. For example, 

the majority of overhead in an overlay will be created by the algorithms embodied in 

the Maintenance and Repair aspects of the implementation. It is because of this, that 

these aspects can offer a number of beneficial properties when separated from the rest 

of the system. This can be clearly seen by looking at heterogeneous environments in 

which some nodes reside on reliable, wired hosts whilst other run on far more 

unreliable hosts. In such a scenario it is likely that a superior overlay can be built if 

each host chose optimal Control components for their environment. 



The Forwarding and State components have less identifiable benefits when they are 

separated. This is because forwarding algorithms are generally uniform in their 

procedures and comprise of smaller amounts of functionality. For instance, in Plaxton 

routing [20], to ensure determinism, it is necessary for messages to follow a specific 

path in the overlay. It is therefore difficult to deconstruct the algorithm further as 

(re)configuration in this manner could severely compromise the system. Similarly to 

this, State aspects are limited in areas such as (re)configurability as they are not 

involved with distributed interactions and behave in a passive manner. 

This separation pattern will therefore be effective for overlays which place a high 

value on basic (re)configurability. The separation of the control elements allow a node 

to be specialised for individual scenarios. Overlays developed in this manner will not, 

however, be well suited to reusability as at this granularity most components will still 

maintain overlay specific functionality that will make it hard to use in a generic way. 

For instance, the State component will contain all data structures relating to an 

individual overlay; this will make it inefficient to port to a different system. It is 

therefore beneficial to inspect an even finer grained approach. 

3.3   Pattern III: Fine Grained Decomposition 

A number of overlay aspects have been looked at in the previous sections, however 

it is now necessary to outline an approach to be used that is both generic enough to be 

used for multiple overlays but specific enough to provide the necessary attributes 

outlined earlier. Pastry and its data structures have been used to illustrate this pattern; 

however it is possible for any overlay to be developed in this fashion. 
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Figure 3.3. Pattern III Overview 

Figure 3.3 shows an in-depth view of the proposed component architecture. The 

further levels of decomposition have been highlighted with dotted lines. The Control 

element outlined in Pattern II has been separated as suggested into its four constituent 

elements. Similarly the State component is separated down into a second tier of 

deconstruction, so to provide for the reusability of its data structures. The Forward 

component, however, remains as a single unitary element as proposed in Pattern II. 

As well as the previously described modules, it can also be seen that the 

Maintenance and Repair components have been further broken down to embody the 

various algorithms relevant to maintaining the individual state aspects of the Pastry 



design. This improves the reusability of these aspects substantially as reusing entire 

maintenance or repair components is difficult especially when porting them to 

different overlays. Each Maintenance and Repair component will now ensure that its 

respective state table is correct according to some degree of accuracy. This allows the 

Maintenance and Repair aspects of the system to be reused in accordance with the 

individual State components; for example, if the Pastry Leaf Set was to be ported to a 

Chord overlay, it could be done together with the Maintenance and Repair 

components.  

Further to this, the (re)configurability of the system is improved dramatically. This 

is because, now, the maintenance and repair procedures for each state entity are 

totally independent. The means that the system can (re)configure these aspects 

separately without having to interchange both the maintenance and repair algorithms. 

This is highly beneficial in a number of circumstances as, often, the repair algorithms 

will remain constant whilst the maintenance elements change. For example, during 

periods of high node activity, a lazy maintenance algorithm might be selected in 

which failures are detected passively. Alternatively, if the nodes cease to interact 

frequently, a probing maintenance algorithm might be employed. Despite these two 

different approaches, the repair algorithms will remain constant.  

Further to this, there are a large number of other potential (re)configurations. For 

instance, if there is a high turnover in the leaf set an intensive maintenance algorithm 

might be employed whilst not affecting the routing table maintenance. Alternatively, 

if misbehaviour is detected in the routing process more secure maintenance and repair 

algorithms might be installed whilst leaving the leaf set maintenance unmodified. 

4   Implementation 

To investigate the effectiveness of the component patterns described in Section 3 we 

have developed a number of overlays, including SCAMP [13], SCRIBE [6], TBCP 

[18] and PAST [10]. We focus, however, on an implementation of Chord [24] using 

Pattern I and a Pastry [23] overlay developed using Pattern III. Chord was selected 

due to its inherent simplicity whilst Pastry was selected due to the complexity of its 

routing and state elements. This allows a more substantial evaluation and comparison 

to be performed using a non-component implementation of Pastry as a benchmark. 

Both Pastry and Chord were developed using the OpenCOM (v 1.4) component 

model [7] in Java. Chord’s component interactions are performed solely using direct 

method invocations between the components; each component offers services through 

public interfaces and consumes services through predefined receptacles. The decision 

engine therefore dynamically selects the optimal components and then attaches their 

receptacles to the appropriate interfaces; this forms connections between the 

components. These connections can then be dynamically modified during runtime.  

Pastry, alternatively, utilises an event based interaction system. Using this approach, 

components generate notifications to inform other components of events that have 

occurred. Alternatively, events can also be generated to request services from other 

components. These events traverse the component tree shown in Figure 3.3. It is 

therefore the decision of each component in the tree how an event is interpreted and 



whether they pass it or not. This allows different types of events to be dealt with 

differently, based on policies implemented in each component. The purpose of this is 

to allow the effective and extensible addition of functionality to the system without 

having to reconfigure other aspects of the architecture. Therefore, by decoupling 

components through events it is only necessary to ensure that all events can be dealt 

with in the system rather than looking at how they are dealt with. 

5.   Evaluation of Overlay (Re) Configurability  

One of the primary aims of utilizing a fine grained model is the ability to 

(re)configure its behaviour by the architectural modification of the components 

resident in the system. Configurability refers to a system’s ability to be specialised for 

a particular environment whilst re-configurability refers to its ability to modify itself 

dynamically to adapt to changes in its environment. Coarse grained approaches are 

distinctly limited in their (re)configurability as it is only possible to perform 

architectural modification on each component in the system. Therefore, if there are 

three components in the system (Control, Forward, State), then it is only possible to 

configure these three elements independently. Such (re)configurability can be driven 

by a number of factors consisting of both system requirements and environmental 

constrains; these can exist in one or more levels: 

i) Network Level – (Re)Configuration can take place to respond to network 

variations e.g. bandwidth, packet loss, jitter etc 

ii) Overlay Level – (Re)Configuration can take place to respond to overlay level 

variations e.g. malicious peers, routing performance, neighbour selection etc 

iii) Application Level – (Re)Configuration can take place to respond to application 
level requirements e.g. data types, interface responsiveness, security etc 

To investigate the (re)configurability of the architecture, a maintenance case study 

is looked at. This highlights how different maintenance and repair algorithms can be 

utilised based on both application level requirements and environmental limitations. 

In an un-trusted and unreliable environment (e.g. the Internet), it is beneficial to use 

rigorous and security conscious algorithms. However, in a closed, trusted, reliable 

environment (e.g. a campus network), lower overhead algorithms are utilised. This 

process involves both the Maintenance and Repair components. The Maintenance 

component implements the different monitoring algorithms whilst the Repair 

component implements different responses. During bootstrapping, the decision engine 

selects the optimal components. Run-time variations in the environment and 

requirements are then responded to accordingly by dynamically interchanging the 

necessary components.  

In the non-component Pastry, sophisticated (re)configuration is not possible. It can 

only occur in a parametric manner, supporting such things as increasing the size of the 

leaf set in unreliable environments. The only alternative to this is the process of 

‘hacking’ to modify existing code. This is both time-consuming and inelegant; this, 

therefore, clearly offers much less flexibility than required to achieve the case study. 

The Chord implementation similarly struggles to deal with this type of fine-grained 

(re)configuration as it is necessary to modify the system on a very coarse level. The 



Control component, therefore, has to be (re)configured as one unit. This is clearly 

inefficient as the join and leave procedures have to be reconfigured alongside the 

maintenance and repair to achieve adaptability. It also creates a burden on developers 

as large amounts of code have to be repeated in multiple components even when 

changes only affect very small parts. Further, coarse granularity also creates issues for 

the decision engine responsible for making component selections. This is because 

components that possess large amounts of functionality can have elements that are 

well suited to their environment but also aspects that are not. This greatly complicates 

the decision process as it now becomes necessary to weigh off the different trade-offs 

within the components itself. For instance, in Pattern I, a Control component could 

contain optimal maintenance functionality but ill-suited repair functionality. 

The component Pastry implementation, however, achieves the objective effectively. 

By separating out the maintenance and repair procedures into independent 

components, the system can now (re)configure itself efficiently without thought to the 

other aspects, relating to control elements. Further, it is possible to take an even finer 

grained approach by exploiting independent access to the individual algorithms 

responsible for each overlay data structure. This allows, for instance, easy adaptation 

in the routing table whilst not affect the ring topology maintained in the leaf set. As 

well as this, through the architecture’s open event model, it is easy to combine the 

functionality of multiple components. Therefore multiple Maintenance and Repair 

components can exist in the architecture, working in cooperation. This allows 

components implementing new capabilities to augment existing ones without the 

necessity to repeatedly implement base functionality. Table 5.1 shows the component 

configurations used to achieve the case study. It is easy to identify obvious 

configurations; for instance, when operating in the Internet, Pastry uses full leaf set 

broadcasts to maintain the topology. However, in a campus environment it utilises the 

lower overhead approach of periodic keep-alive messages as the reliable, low latency 

nature of the environment makes this sufficient.  

 

Environment Configuration 

Internet 

Maintenance:  -  Leaf Set Member Broadcast 

                        -  Lazy Routing Table Failure Discovery 

Repair:            -  Standard Repair 

                        -  Local Black-List Repair 

Campus 

Maintenance:  -  Leaf Set Keep-Alive 

                        -  Lazy Routing Table Failure Discovery 

Repair:            -  Standard Repair 

-   Administrator Notification Repair 

-   Centralised Black-List Repair 

Table 5.1 Pattern III Case Study Component Configurations 

As well as this, more sophisticated configurations can also be utilised. Most notably, 

it is possible to exploit the combination of multiple components. When operating in 

the Internet, Pastry utilises two Repair components: Standard Repair and Local Black-

List Repair. This latter augments standard functionality by maintaining a black list of 

malicious and unreliable peers, installing itself above the Standard Repair component 



in the event tree. Therefore, on receipt of a routing table failure event, it locates a 

suitable (non black-listed) replacement before forwarding the event to the Standard 

Repair component. The Standard Repair component then updates the necessary state 

entities and notifies the appropriate nodes. This can be contrasted with the campus 

scenario in which the Standard Repair component is accompanied by the 

Administrator Notification Repair and the Centralised Black-List Repair components. 

In this environment, if a routing table failure is detected, the Centralised Black-List 

Repair component utilises a centralised database to validate the chosen replacement. 

Similarly, misbehaving peers (e.g. frequent failure and rejoins) are reported through 

the Administrator Notification Repair component which passively monitors joining, 

repairing and routing events. This rich variation in functionality is not possible with 

coarser grained models; this is because it is not possible to ‘mix and match’ 

components. Instead, it is necessary to implement a large number of Control 

components, each containing monolithic variations. This is resource intensive, highly 

complex and requires intensive coding. 

 

Maintenance Components Repair Components 

Leaf Set Member Keep-Alive Standard Repair 

Leaf Set Member Broadcasts Administrator Notification Repair 

Probabilistic Leaf Set Keep-Alive Local Black-List Repair 

Routing Table Member Keep-Alive Centralised Black-List Repair 

Lazy Routing Table Failure Discovery Certificate Validation Repair 

Table 5.2 Maintenance and Repair Components 

The fine-grained nature of Pattern III therefore allows substantial and effective 

(re)configuration to take place in the overlay. This, when compared to coarser models, 

can be seen to create strong functional incentives for development in this manner. 

Therefore, whilst coarser models offer high level adaptive properties and well 

structured implementations, they cannot support the diversity of environments and 

requirements that are possible through finer grained models. Table 5.2 shows a 

number of components that can be utilised with Pastry. These components are capable 

of supporting a range of constraints and requirements.  For instance, low overhead 

mechanisms can be employed such as lazy routing table maintenance, keep alive leaf 

set maintenance and the local black listing of peers. However, these can also easily be 

replaced to provide more reliable support e.g. routing table keep-alive maintenance 

and administrator notification. As well as this, variations in application level 

requirements can be easily implemented. For instance, secure and closed networks 

can utilise certificate validation in the join and repair procedures to only allow 

validated members. Vitally, such configurations are performed in conjunction with 

conventional existing, non-modified, components. An alternative evaluation that 

focuses on (re)configuration can also be found in our existing work [27]. 



6   Evaluation of Performance and Engineering 

Section 5 has provided an evaluation of the potential of functional (re)configuration. 

We evaluate the approach’s non-functional properties based on the following four 

criteria: 

i) Resource Overhead: Is the overhead incurred (in terms of performance 

throughput and memory costs) by fine-grained architectures acceptable? 

ii) Ease of Development: How easy is it for a developer to create, configure, and 

extend an overlay? 

iii) Reusability: To what extent can components developed for a particular overlay 

implementation be reused? 

iv) Functional Evolution: To what extent can the overlay evolve to include new 
functionality? 

6.1. Resource Overheads 

This section examines the performance overheads associated with implementing an 

overlay network using components. All tests were performed on a 1.7GHz Intel 

Pentium M processor; 512 Mb RAM; Sun JVM 1.6.0.1; the components were 

developed using the OpenCOM v1.4 framework [7] 

6.1.1. Throughput Overhead 

This section demonstrates the operation call throughput overhead of using 

components compared to traditional object orientated approaches. This highlights the 

overhead associated with implementing overlays in a component based fashion. The 

first experiment is to invoke a null operation (no parameters, and no operational logic 

to measure maximum overhead impact) 100,000 times on a Java object 

implementation; this experiment was repeated 5 times and the median value taken. 

The same procedure was repeated for invoking operations on an equivalent 

OpenCOM component through a receptacle call. The results of these experiments are 

illustrated in table 6.1. It can be seen that receptacle calls have a 57% decrease in 

throughput and are therefore more expensive than object based native method calls. 

Receptacles, however, reduce coupling in the system and provide support for dynamic 

evolution and reconfiguration therefore creating a trade-off in performance.  

 

Type Throughput(Invocations/Second) 

Java 

Method Call 
208.768267  x 10

6
 (208 million) 

OpenCOM 

Receptacle Call 
91.785222 x 10

6
 (91 million) 

Table 6.1. Invocation Throughput 

In finer-grained component architectures where there are a large number of 

components, there will be an increasingly large number of component interactions 

required for functions to be performed. Therefore, the effects of component 



throughput will be directly based on how many components there are in the system. 

This, however, is not an issue that should be of concern unless the overlay is required 

to utilise the maximum operational throughput (~90 million/sec); this has never 

occurred in our implementations. Further to this, its distributed nature renders the 

decreased operational throughput as negligible. For instance, when performing a 

Pastry join over a small network the join time is 10.8 seconds. This will, at most, 

require 15 component interactions through the event passing framework. This shows 

that the overhead of component interactions constitute under 0.001% of the overall 

overhead. Therefore, in a distributed environment, the overhead of using component 

interactions is insignificant. Further, the ability to streamline and optimise 

implementations through configuration means that the overall system overhead (e.g. 

bandwidth utilisation) is decreased. 

 In the Pastry implementation, control is passed between components using either 

receptacles or event passing. All state and forwarding interactions were performed 

using receptacles. Alternatively, the control elements performed all interactions using 

event passing (although these events are similarly passed through receptacles). Table 

6.2 outlines the number of components traversed during negotiations.  

  

 Number of Components Traversed 

Process Node 1 Node 2 Node 3 Node 4 

Create New Network 3    

Join Node 2 15 12   

Join Node 3 15 5 12  

Join Node 4 12 5 15 15 

Fail Node 1  11 7 12 

Table 6.2. Component Event Traversals 

To initiate a network (i.e. starting up a new individual node) 3 component 

interactions are required which can be compared to 0 interactions required by a 

Pattern I control entity. When another node is then subsequently joined to the network 

a further 15 component interactions are required by node 1 to deal with the request. 

This process therefore requires an extra 0.163 microseconds for component 

interactions, creating 227% extra overhead compared to performing the same 

operations using native Java interfaces. There is therefore a noticeable overhead 

involved with increasing the granularity of the component pattern used. However, as 

the advantages of decoupling these functional aspects are significant, they therefore, if 

exploited, warrant the increased level in overhead. Further, the distributed nature of 

interactions means that the decreased operational throughput does not adversely affect 

the overall system performance. 

6.1.2   Memory Overhead 

This experiment investigates the static memory footprint of implementing overlay 

functionality in components when compared to conventional Java objects. For the 

experiment, six modules have been implemented as both OpenCOM components and 



Java objects. These types consisted of modules with increasingly larger numbers of 

interfaces and receptacles. An interface represents the services that a component can 

provide whilst a receptacle represents the services that a component requires. The 

memory footprints of the types were then measured, shown in Table 6.3. 

 

Module 
Component 

(bytes) 

Java Class  

(bytes) 

Overhead 

(bytes) 

One (1 intf, 0 recps) 990 623 367 

Two (2 intf, 0 recps) 1703 1307 396 

Three (3 Intf,  recp) 2123 1703 420 

Four (1 Intf, 1 Recp) 2999 2051 941 

Five (1 Intf, 2 recp) 3299 2051 1248 

Six (1 intf, 3 recp) 3555 2051 1504 

Table 6.3.Memory Overhead of using Components 

Developing a component with no receptacles adds approximately 370 bytes of 

overhead compared to a conventional Java object, with another 20 bytes for each 

additional interface.  This can be compared to approximately 300 bytes extra for each 

receptacle. This means that, component based overlay implementations will have a 

marginally larger memory size compared to monolithic or object oriented 

developments. This overhead, however, is limited to only a small increment compared 

to alternative approaches. Further, the ability to construct systems from the minimum 

number of required components means that the overall memory footprint can be 

reduced by only distributing and loading the necessary components.  

6.2   Ease of Development 

One interesting area of investigation is how the use of components affects the 

development process. This section will look at the amount of coding required and the 

pros and cons related to component management. 

6.2.1   Code Complexity 

 

This section investigates the ease of implementing overlays in a fine grained 

component architecture when compared with more traditional approaches. This is 

done because fine grained components involve additional code complexity in the form 

of dealing with event passing and controlling interactions between components. 

Another major issue is the occasional requirement for components to repeat 

functionality to ensure the independence of components. This problem can be 

rectified through the use of even finer grained architectures that place these shared 

elements into independent components although this might result in greater 

complexity. 

To evaluate the impact that the use of components has on the system, the Join 

component has been looked at to test the overhead related to coding the OpenCOM 

and event based elements of the system. The Join component has 194 lines of overlay 



related code in it, including 9 methods responsible for the various aspects of the join 

operation. This component then has the addition of 3 new component references 

(receptacles) to enable it to interact with the transport, state and forwarding aspects of 

the system. Further to this an extra 129 lines of code were then attributed to the 

OpenCOM related aspects of the class leading to a total of 325 lines of code, creating 

an increase of 39.69% in code overhead and 4,532 bytes of extra static memory.  

 

Measurement Chord Pastry 

(excl events) 

Pastry 

(inc events) 

Classes 5 35 53 

Packages 4 10 13 

Components 3 16 16 

Table 6.4. Component Code Complexity 

This clearly shows that providing objects with the added elements required to form 

event passing components creates a noticeable coding overhead. However it should be 

noted that this overhead comes in the form of template-like coding consisting mostly 

of event registration and other such operations. 

To better gain an understanding of the overhead involved in development, the fine-

grained Pastry implementation is compared to a coarse grained Chord implementation 

(shown in Table 6.4). It can be seen that a much larger number of components, 

involving a similarly larger number of classes, are used in the fine grained 

implementation. This is partially attributable to Chord’s relative simplicity when 

compared to Pastry but can also be attributed to the need to support far more 

components along with the necessity to repeat certain elements of functionality. It can 

therefore be derived that the use of the finer grained model introduces a noticeable 

amount of extra classes and components; however this is obviously traded off against 

the benefits documented in this paper.  

6.2.2   Management and Dependency Complexity 

The next type of complexity comes in the form of the overhead of managing a large 

number of components in the system. The majority of benefits that are gained in the 

system are achieved through the use of fine grained components rather than coarser 

entities, however, as the number of components increase, as does the complexity 

involved in managing and instantiating them. Figure 6.1 shows the primary 

components (Pattern II) and their inter-dependencies 

As shown in Table 6.3 the number of component in the Pastry implementation 

increases from 3 to 16. These components form a well structured hierarchy installed 

by a user written script or decision engine, and managed by an event based 

framework. These components embody small sets of well defined functionality and 

therefore create an improved management approach for the developer, as processes 

such as dividing work loads between multiple engineers are made much easier. 

However, when separating functionality into the intermediate level the chances of 

requiring the repetition of functionality in multiple components increase. 



As well as development complexity there is also runtime complexity as the system 

will now be required to deal with a larger number of components and any subsequent 

events that they generate. In a coarse, three component model there will only be three 

generic event capabilities registered, however by decomposing these into finer 

grained components, another 15 event capabilities need to be registered and handled. 

This will create little complexity in terms of runtime overhead but will be more 

evident in areas such as event management when attempting to ensure that all the 

required events can be serviced correctly (i.e. dependency management). 

 

Join

Leave

Maintenance

Repair

StateForward

 

Figure 6.1. Dependencies between Pattern II Components 

Further, component compatibility must also be dealt with, as the more complex an 

architecture is, the harder it is to ensure that all the components are compatible. For 

instance, Figure 6.1. shows the inter-dependencies between a Pattern II Pastry 

implementation. Each dependency must be resolved with a compatible components. 

For Pattern I, the number of dependencies is only 3 when compared with 9 generated 

by the Pattern II implementation.  It is hard for a system to automatically ascertain 

whether a component is compatible with the system as the concept of black box 

development makes it hard to analyse how a component works. This therefore means 

that developers will need to make a concerted effort to ensure that a re-configuration 

maintains compatibility.  

6.3   Reusability 

A major benefit of embodying code in components is the possibility to reuse that 

code without consideration to how it works. There are two case studies that can be 

looked at in terms of reusability; the first is reusability with overlays of the same type 

whilst the second is reusability with overlays of different types (portability). 

The non-component Pastry implementation struggles to achieve either type of 

reusability as it has been developed without thought to being used for different 

systems. Even with the use of effective coding practises it becomes a burden for later 



developers to reuse the code as it is necessary to take an introspective view at the 

source code to derive potentially reusable aspects. 

Chord makes substantial improvements in term of conventional reusability as the 

Forward and State components can easily be reused in other Chord implementations 

that simply wish to focus on the control aspects. This is because these components 

play passive roles in the overlay rather than generating dependencies themselves. 

Reuse of the Forward and State components is also the most likely scenario as there is 

less utility in modifying these two components. Further to this, the process is simple 

as there are only two components to deal with. Chord, however, cannot offer any real 

level of portability as the components are too large to remove small aspects from. 

Similarly reuse of a monolithic Control component becomes unbeneficial as it is 

unlikely that developers would not wish to modify the control behaviour in their new 

overlay. Reuse can therefore only be performed with the same type of overlay. 

The component based Pastry is by far the most reusable, offering high levels of 

reusability alongside a limited degree of portability. The utility of reuse in Pattern III 

becomes much greater as it possible to reuse much more specific aspects. This allows 

developers to focus their work on much smaller areas whilst addressing all other 

issues with reused components. Further, by manipulating events and utilising 

interceptors between interfaces it becomes possible to reuse and specialise 

components by simply augmenting existing functionality. Pattern III therefore 

dramatically improves portability, as things such as the individual maintenance and 

repair algorithms now become more generic. For example, the maintenance and repair 

of a Pastry leaf set is comparable to the maintenance and repair of a Chord successor 

table. Similarly, the state components that store this information can be ported. This is 

clearly possible due to the topological similarities between Chord and Pastry whereas 

porting between more diverse overlays such as Pastry and NICE [1] become much 

more difficult. To achieve this it would therefore be necessary to further increase the 

granularity of components to encompass and separate individual algorithms. 

6.4   Functional Evolution 

Another powerful concept is the ability to dynamically extend system functionality; 

this is done through either adding or replacing components in the architecture. This 

allows a node to evolve in its environment by obtaining extra components [28]. 

A case study that offers substantial benefits for an overlay developer is the ability to 

dynamically extend a node’s join operation to be locally aware [5]. This allows a peer 

to distinguish between nearby and distant nodes. This is highly advantageous 

especially when dealing with such things as large scale content distribution. This 

could be achieved by either replacing the join component in the system or 

alternatively by adding extra components that deal with the locality issues for the 

other components. 

The non-component Pastry implementation cannot deal with these issues 

effectively. It is possible for a developer to modify the join code but there is no 

elegant or automated method of deployment. Further to this, the extension of this 

system would require intricate knowledge of the implementation. 



Chord similarly cannot deal with these issues without re-developing the entire 

Control component. However, the deployment of such an update becomes easier 

through the use of components as it is now possible to dynamically deploy 

components between overlay nodes or through automated updates. 

The component based Pastry, however, gains substantial functional evolution 

through its use of Pattern III. By deconstructing the control aspects, developers can 

gain direct access to the join elements. This allows an independent Join component to 

be developed and deployed without dealing with other areas. Further to this, even 

more efficient extensions are possible by simply adding components that deal with the 

specific aspects of the extension.  

The Join component receives events from other components informing it to perform 

specific operations. This allows new components to be added that deal with a subset 

of these events. The Join component deals with both, initiating the leaf set which is 

not locality aware and initiating the routing table which is locality aware. To achieve 

the case study in Pattern III, the original Join component is left to deal with the leaf 

set whilst a new component is added to intercept events for the routing table. This 

becomes possible through component decoupling and the use of shared state 

components. This is because in Pattern III it is possible for any component to update 

state information. This allows effective extensions to take place using fine grained 

state components as a bridge between incompatibilities.  

7   Conclusion and Future Work 

This paper has investigated the issues surrounding the design, implementation and 

deployment of peer-to-peer overlays in a fine grained component based fashion. 

Using the Gridkit Overlay Framework [14] as a nucleus, a component architecture has 

been developed mandating that overlays are constructed using a particular set of 

components, to implement the various aspects of functionality resident in the overlay. 

These components can then be added or removed dynamically in the confines of a 

framework, to create a flexible, (re)configurable, reusable and extensible overlay. 

Four different approaches have been considered ranging from monolithic designs to 

fine grained component architectures. A number of pros and cons have been identified 

with each approach; coarser grained components provide a well structured simple 

approach to overlay design but lack flexibility in terms of reusability, 

(re)configurability etc. This can be contrasted with fine grained components which 

offer superior flexibility but with greater overhead.  

The investigation has shown that any type of component architecture offers a 

number of tangible benefits to overlay developers leaving non-component based 

designs superior only in very simplistic overlays. Coarse grained architectures are 

simple and provide an adequate model for developing relatively simple overlays with 

limited levels of re-configurability, reusability etc. It has also been shown that 

substantial benefits can be gained by utilising finer grained component approaches as 

proposed in Pattern III. Such an architecture offers a powerful mechanism for the 

(re)configuration and functional evolution of a system far beyond what is achievable 

in non-component designs. Further, the advantages gained in reusability and 



structured design creates implicit software engineering benefits allowing overlays to 

be developed in a faster more elegant fashion. An evaluative summary is provided in 

Table 7.1 with three stars constituting the best score. 

 
Best Score = * * * Monolithic Pattern 1 Pattern 3 

Resource Overhead * * * * * * * 

(Re)Configurability * * * * * * 

Development Complexity * * * * * * * 

Reusability * * * * * * 

Functional Scalability * * * * * * 

Table 7.1. Summary of Evaluative Criteria 

There is a variety of future work that can be carried out in this field. The use of 

component based overlay design has largely been unexplored leaving a number of 

potential areas of work. So far, the use of DHT systems has been used to investigate 

the architecture outlined in this paper. It is therefore necessary to expand this work 

into other areas, such as application level multicast [1], to look at how alternate 

overlays perform. Further to this, alternative component architectures and even finer 

grained models should be investigated. Work has already been carried out into 

identifying fourth tier components including identifier generation, state collection and 

data dissemination. This work will be continued to look into managing and reusing 

such fine grained functionality alongside investigating more sophisticated interaction 

and functional extension techniques. It is hoped that this will lead to the creation of 

more sophisticated, holistic architectures. 
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