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Abstract. This paper proposes the use of neural networks as a tool for studying 
navigation within virtual worlds. Results indicate that network learned to 
predict the next step for a given trajectory, acquiring also basic spatial 
knowledge in terms of landmarks and configuration of spatial layout. In 
addition, the network built a spatial representation of the virtual world, e.g. 
cognitive-like map, which preserves the topology but lacks metric accuracy. 
The benefits of this approach and the possibility of extending the methodology 
to the study of navigation in Human Computer Interaction are discussed.    

1 Introduction 

This study is part of an ongoing research whose purpose is to identify the procedural 
and strategic rules governing user navigational behavior within virtual space. It aims 
to extract a spatial grammar underlying spatial knowledge acquisition.  

The environmental psychology provides a basis enriched by an experimental 
support, for a better understanding of how humans perceive and understand the space. 
The work being carried out confirmed the idea that acquiring an internal 
representation of the environment is a very complex process involving primarily 
landmarks identification and understanding of spatial layout configuration. These two 
basic procedures are well known as route-based knowledge and survey knowledge [8]. 
Without underestimate the role of traditional methods, we propose the use of neural 
networks as an alternative tool for studying navigation within virtual worlds.  

Neural networks have proven particularly suited to finding patterns in large 
amounts of complicated and imprecise data, and detecting trends that are too complex 
to be noticed by humans [2]. While neural networks have been fruitfully exploited by 
artificial intelligence researchers, their adoption within HCI is very limited. They 
were primarily applied to pattern recognition [16]. Finlay identified four areas of HCI, 
which involve pattern recognition problems, such as task analysis and task evaluation, 
natural interaction methods such as gesture, speech, handwriting, and adaptive 
interfaces [5].  



 

Neural networks provide a very powerful toolbox for modeling complex non-linear 
processes in high dimensionalities [13]. ANNs have many advantages over the 
traditional representational models, in particularly distributed representations, parallel 
processing, robustness to noise or degradation and biological plausibility [10]. We 
consider that at least part of these strengths can be harnessed to model user’s behavior 
in terms of spatial knowledge acquisition.  

This research is part of an ongoing program applying neural networks in modeling 
user’s spatial behavior within VEs. A simple recurrent network [4] has feedback 
which embodies short-term memory. This makes it suitable for application to 
symbolic tasks that have a sequential nature. 

2   Navigation within Virtual Environments 

Virtual environments (VE) have become a rich and fertile arena for investigating 
spatial knowledge. Within the VE, the user set of actions is restricted, consisting 
mainly of navigation and locomotion, objects selection, manipulation, modification 
and query [6]. As Sayers (2000) observed navigation has been found to be central to 
the usability of interfaces to VEs on desktop systems [21]. VEs offer the context for 
training and exploration, enabling the replacement of training and exploration within 
the physical world. This proves partially attractive when experiencing the real world 
is expensive, dangerous or hard to be achieved [3].  

Evidence of significant similarities in the acquisition of spatial knowledge from 
real and VEs has been identified [11]. A further advantage consists of their powerful 
tractable characteristic [1], which enables accurate spatio-temporal recording of users’ 
trajectory within the virtual space. Attempts to understand spatial behavior in both 
real and artificial worlds were primarily concerned in highlighting the symbolic 
representation of spatial knowledge. 

2.1   Symbolic Cognitive Models of Navigation  

The study of navigation in the area of HCI has developed mostly in the field of 
cognitive modeling, beneficing from inputs provided by both environmental 
psychology and geography [14]. Several models where described by Kuipers [12] and 
Darken [3]. Modeling of spatial knowledge has constituted a central research theme 
for the last four decades. Golledge elegantly presented different models of declarative 
knowledge acquisition, together with their relevant applications in the area of spatial 
cognition [7]. Kuipers developed several computational models for navigation, 
underlying the procedural knowledge embedded in the spatial representations [12]. 
The basic idea resides in the individuals’ set of interactions with the environment, 
which facilitates a structured storage of perceptual experiences. These memorized 
experiences would enable users to build a more generalized structure for exhibiting an 
emergent spatial behavior unperformed before [7].  



2.2   Connectionist Models of Navigation 

Previous studies have shown that recurrent neural network can predict both circular 
and figure eight trajectories [4,9,17,19,22]. However, due to fact that the figure eight 
trajectory crosses itself, the training was more difficult for this type of trajectory. In 
our case, the trajectories covered by users are more complex than a circle or figure 
eight, even though some of them resemble a circular shape.  

3   Methodology 

Research in the area of navigation within VEs has been generally focused on large-
scale virtual worlds [3]. In this study we utilized ECHOES1 [16], as experimental test-
bed. It is a virtual reality system, which offers a small-scale world, dense, static and 
with a consistent structure. Adopting a physical world metaphor, the ECHOES 
environment comprises a virtual multi-story building, each one of the levels 
containing several rooms: conference room (Fig.1), library (Fig.2), lobby etc.  

 

           
 

     Fig. 1.  Virtual Conference Room                       Fig. 2.  Virtual Library 

The present study captures the spatial behavior of users exploring an unfamiliar 
VE. Users can navigate from level to level using a virtual elevator. The rooms are 
furbished and associated with each room there is a cohesive set of functions provided 
for the user. These features enable ECHOES to offer an intuitive navigational model. 

A sample of 30 postgraduates in the Computer Science Department was asked to 
perform two tasks within the virtual world, namely exploration and searching. In 
order to gain familiarity with the environment and learn movement control, the 
subjects were asked to look for a particular object within the virtual building for about 
20 minutes. This exploratory task provided the primary data for the neural network 
approach. Furthermore, subjects were asked to find a particular room in the virtual 
building, namely the library. We considered the time and length of trajectory involved 
in this searching task as performance indicators. Based on these, we identified the 
quality of spatial knowledge acquisition and the efficiency of the exploratory strategy. 

                                                           
1 ECHOES (European Project Number MM1006) is partially founded by the Information 

Technologies, Telematics Application and Leonardo da Vinci programmes in the framework 
of Educational Multimedia Task Force. 



 

A comprehensive set of data consisting of users’ positions was recorded 
throughout the experiment. Each movement greater than half a virtual meter, and each 
turn greater than 30o were recorded.  

We present a connectionist simulation to test whether a network can build a 
cognitive map as an internal representation of environmental information [8] in terms 
of both landmarks and configuration of the spatial layout. The basic idea is that by 
mapping an input vector consisting of current Cartesian coordinates together with 
information about the nearest landmark is sufficient to induce the internal abstractions 
to predict the next position. To test our hypothesis, an Elman simple recurrent neural 
network was used to learn the trajectory and to predict the next step. The 
implementation was carried out by using Stuttgart Neural Network Simulator 
(SNNS). The network architecture [4] is presented in Figure 3 and consists of 6 input 
nodes, 12 hidden nodes, 12 context nodes and 6 output nodes.  

The network input consists of a sequence of users’ trajectories. At each time step t, 
an input vector is presented consisting of user’s position, orientation angle, distance to 
the nearest landmark (the distance to the nearest point of the landmark) and its 
associated position (coordinates of the center of the landmark).  For this simulation 
we considered only the trajectories performed on the ground floor of virtual building. 
Figure 4 presents an overhead image of this level. After each trajectory was entered, 
an input representing “reset” is presented, for which the network is supposed to zero 
out the outputs [15]. The output pattern represents the input vector of time t+1. All the 
input values were normalized. 
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Fig. 3.  Network Architecture            Fig. 4. Ground Floor 

Using backpropagation learning procedure [4] the network was taught to predict for 
each current position the next position in time. Table 1 presents an example of 
input/output vectors.  

    input 1  -0.000  0.109  0.999  0.031  0.000  0.078 
    output 1  -0.000  0.109  0.999  0.031  0.000  0.078 
    input 2  -0.000  0.109  0.999  0.031  0.000  0.078 
    output 2  -0.000  0.156  0.999  0.078  0.000  0.078  

Table 1.  Input / Output  Vectors Exemplification  

 



At this stage of our work, we expanded the notion of landmark to any feature added to 
spatial layout. Therefore, apart from any piece of furniture, we considered also the 
choice points such as doors and lift entrance. Identifying which ones among these 
features prove to be salient and able to capture attention – being thus an authentic 
landmark – is a task to be solved by the network.  
    We divided randomly the entire set of data into five parts, using three of them for 
training, one for validation and one for testing. The network was trained for 1000 
epochs, with 24 trajectories composed of 4668 input vectors. It was tested with 12 
trajectories consisting of 1573 input vectors. The average trajectory length was 160 
vectors. The learning rate was 0.001, the initial weights set within a range of 0.5 and 
the momentum was 0.  

 

4 Results   

In Table 2 we present the results of testing the network, obtained by computing the 
Euclidean distance between the output vector predicted by the network and the 
expected output vector.  

 
Input description Percent 

Correct 
User’s next position – X coordinate 97.13% 
User’s next position – Y coordinate 92.30% 
User’s next orientation (heading) 86.90% 
Distance to next nearest landmark 99.87% 
Next nearest landmark position – X coordinate 90.27% 
Next nearest landmark position – Y coordinate 86.77% 

Table 2.  Prediction accuracy of each input element based on Euclidean distance 

 
   As it is shown, the network generalizes extremely well for all the input elements. 
However, for a prediction to be correct all the input elements should simultaneously 
be within specified limits (e.g. 1 virtual meter for Cartesian coordinates, 30 degree for 
rotation and 2.5 virtual meters for distance estimation). With respect to this composite 
criterion of accuracy, the network still performs very well, the success rate being 
67.57%. 

5 Discussions 

The preliminary results obtained by training the recurrent neural network proved 
promising, indicating that the network not only learns to predict the next step for a 
given trajectory, but it also learns the spatial layout in terms of landmark 
configuration.  In order to highlight the internal representation of the network, we 



 

performed a series of analyses. Firstly, we were concerned whether the network could 
learn any boundaries. Since all the vectors predicted were within the limits delineating 
the ground floor layout, it seems that the network did indeed learn level boundaries. 
Another issue we were interested in was whether the network built any cognitive map 
of the virtual space. Figure 5a presents the actual map of the virtual space, together 
with routes linking landmarks, while Figure 5b presents the “cognitive map” derived 
from network representation of landmark positions. 
 

  

 
 

 

 

 

Fig. 5a.  Actual Map                                     Fig. 5b. “Cognitive” Map 

As can be seen from these pictures, the “cognitive map” (the internal representation of 
space achieved by the network) conserves well the topology while its metric is less 
accurate. The same properties characterize the cognitive maps built by humans. In 
other words the network built a map of the space in a way similar to humans. For a 
better understanding of the network’s ability to discriminate between landmark 
features, we performed an analysis of network predictions regarding the attention it 
paid to each landmark. More precisely, we counted how many times a landmark was 
visited, or in other words how many times a given landmark was the nearest to the 
user. We took this measurement as an indicator of landmark saliency. The most 
important landmarks are the desk with a computer, the sofa in the center of the larger 
room, the door to the meeting room, the large elliptical table, the lift and the door 
between meeting room and library.  

The saliency of a landmark is related to the landmark’s location in the room, e.g. 
centrality, its size, and unique features (e.g. shelves in the library are all alike thus 
undistinguishable). A particular attention was given to connectivity/decision points 
such as doors and the lift.  



6   Conclusions 

This simulation was carried out with the purpose of showing that some abstract 
aspects related to spatial cognition are learnable.  The basic idea is that by mapping an 
input vector consisting of current Cartesian coordinates together with information 
about the nearest landmark such as distance to it and the coordinates of its center is 
sufficient to induce the internal abstractions to predict the next position. Moreover, 
the network is able to understand the spatial configuration of the virtual environment.  

The network predicted correctly the next position together with its nearest 
landmark at a rate of 67.57%. It was also able to learn the boundaries of the spatial 
layout, and even to build a cognitive-like map. At the same time, it did not over-
generalize. The spatial representation of the virtual world preserves the topology but 
the metric lacks accuracy.  The network was also able to assign saliency to landmarks, 
related to their location e.g. centrality in the room frame, their size and 
distinctiveness.   

A future direction will be to analyze the representations in the hidden layer in order 
to extract rules or procedural knowledge underlying the navigational behavior.   

Using neural networks as a tool in studying navigation can be beneficial for user 
modeling in the area of spatial knowledge acquisition. Permitting a comparative 
analysis between efficient and inefficient navigational strategies, this methodology 
could suggest how VEs might be better designed. Based on these results further work 
will be focused on assisting new users, to improve their spatial abilities in exploring a 
new virtual environment. After a period of navigation, users could be classified in a 
cluster according with the navigational patterns [20]. By predicting the user’s 
following trajectory, pertinent advice could be provided to reduce its offset from the 
desirable “good” trajectory. Thereafter this guidance will improve user exploration. 
Alternatively, a real-time dynamic reconstruction of the VE could assist the users in 
their tasks.  
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