Supporting Law Enforcement in Digital Communities through Natural Language Analysis

Hughes, Daniel and Rayson, P. and Walkerdine, J. and Lee, K. and Greenwood, P. and Rashid, A. and May-Chahal, Corinne and Brennan, M. (2008) Supporting Law Enforcement in Digital Communities through Natural Language Analysis. In: Computational Forensics. Lecture Notes in Computer Science . Springer, Washington DC, USA, pp. 122-134. ISBN 978-3-540-85302-2

Full text not available from this repository.


Recent years have seen an explosion in the number and scale of digital communities (e.g. peer-to-peer file sharing systems, chat applications and social networking sites). Unfortunately, digital communities are host to significant criminal activity including copyright infringement, identity theft and child sexual abuse. Combating this growing level of crime is problematic due to the ever increasing scale of today’s digital communities. This paper presents an approach to provide automated support for the detection of child sexual abuse related activities in digital communities. Specifically, we analyze the characteristics of child sexual abuse media distribution in P2P file sharing networks and carry out an exploratory study to show that corpus-based natural language analysis may be used to automate the detection of this activity. We then give an overview of how this approach can be extended to police chat and social networking communities.

Item Type:
Contribution in Book/Report/Proceedings
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
18 Aug 2008 14:10
Last Modified:
21 Nov 2022 14:32