
Migrating to
SOAs by Way of
Hybrid Systems
John Hutchinson, Gerald Kotonya, James Walkerdine,
Peter Sawyer, Glen Dobson, and Victor Onditi

A progressive-evolution strategy for migrating systems to service-
oriented architectures should minimize the risk to investments in
existing software systems while letting businesses exploit the benefits
of services.

S oftware systems let many businesses
stay competitive, creating a relation-
ship between a business’s success and
its software systems’ fitness for pur-

pose. To remain fit for purpose, systems must
evolve, and a given software system’s usefulness
depends on how well it reflects the needs of its
changing environment.1

You might view service-oriented architec-
tures as just another phase in this evolution.
But SOAs represent a major shift in how or-
ganizations implement and, potentially more
importantly, deliver new business functional-
ity to users. The flexibility offered by services
and SOAs poses a real threat to investments in
existing software systems. A pragmatic solu-
tion is for businesses to migrate their systems

to SOAs by developing hybrid systems through
a process of progressive evolution.

Providing adequate processes and tools for
achieving this evolution hasn’t been a particu-
larly active area of research within the com-
munity. In this article, we look at some of the
issues and motivations, and describe some ap-
proaches that might contribute to the develop-
ment of suitable methods. We also examine
some of the remaining challenges.

Adopting SOAs
SOAs present a compelling vision for busi-

nesses. Conceptually, services bring together
a layer of business functionality and a layer of
technological implementation. From a business
perspective, services are about the appropriate

34	 IT Pro January/February 2008	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 1520-9209/08/$25.00 © 2008 IEEE

SERVICE-ORIENTED ARCHITECTURE

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

packaging of functionality and flexibility. Cap-
turing system knowledge in a way that’s appro-
priate for both business users and developers is
difficult.2 However, services provide a mecha-
nism for packaging functionality in a meaningful
unit for development, provision, sale, and con-
sumption. This combines with a business model
that affords services a high degree of flexibility
to both providers and consumers. This means
that businesses can become more responsive to
individual customer and market needs.

Major shifts in how business functionality is
packaged and offered threaten to make existing
systems obsolete. The impact of these shifts is
compounded for services because they appear
to offer freedom from such a legacy tie-in: if
another service provider offers a new improved
service, you simply change service providers.

How should we migrate existing systems—
often providing core, or even critical, business
functionality—to SOAs? Although there’s
probably no single answer, it’s necessary to
unpack the likely motivations for businesses
wishing to adopt SOAs. For many businesses,
services’ true value isn’t the possibility of dy-
namic service discovery and late binding. In-
stead, it’s the ability to rationalize their existing
systems into chunks of business functionality
that they can reconfigure easily and quickly to
exploit new business opportunities. In other
words, the relative immaturity of the standards
for service discovery and service-centric system
engineering isn’t necessarily an impediment to
SOA adoption. The real hindrance is the lack
of methods for the daunting task of unraveling
existing systems’ architectures.

Although the technical challenges of refac-
toring a substantial, mission-critical system
are considerable, the associated business chal-
lenges are just as great. Companies must de-
termine which business processes, supported
by existing or legacy systems, should be liber-
ated as services in a SOA. In some cases, when
these processes are implemented as services,
businesses will identify new revenue streams
associated with providing their services to ex-
ternal consumers. Conversely, businesses will
also identify which of their business processes
don’t align with their core competencies, mak-
ing them prime candidates for outsourcing (es-
sentially equating to “dogs” in a growth-share
matrix). In a SOA world, replacing in-house

services with third-party services should be
seamless and painless.

We believe that progressive evolution is the
best way to migrate existing systems to SOAs.
This process might involve many intermedi-
ate stages, in which an organization integrates
core existing systems into SOAs. Initially, this
might involve adding functionality as a service,
but progressively, obsolete functionality will be
replaced by more independently implemented
services. We characterize the many forms of
intermediate systems as hybrids.

What Is a Hybrid System?
In principle, hybrid systems combine servic-

es with nonservice elements. A strict definition
of a service is not particularly easy to come by,
nor is it particularly helpful because, as Alan
Brown and his colleagues note, the aggrega-
tion of likely features is what generally defines
a service best, including:3

Coarse grained. Services usually deal with
more varied information and support more
functionalities than similar components.
Interface-based design. A single service might
implement multiple interfaces, and multiple
services might implement the same single
interface.
Discoverable. Services are published to make
them discoverable at design or runtime us-
ing their interface descriptions or other
specifications.
Single instance. A provider can replicate com-
ponents to match the number of requests,
but services are only single entities with
which many clients can interact.
Loosely coupled. Services use document-based
message exchange (such as XML) to support
interoperability and reduce coupling.
Asynchronous. Services usually don’t wait for
replies, so although not compulsory, services
typically use asynchronous communication.

•

•

•

•

•

•

	 January/February 2008 IT Pro � 35

In a SOA world, replacing in-
house services with third-party
services should be seamless
and painless.

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

36	 IT Pro January/February 2008

SERVICE-ORIENTED ARCHITECTURE

Other characterizations of a service are pos-
sible. Clemens Szyperski stresses that “a service
is not the software,” continuing, “The entire
tower of abstractions, right down to the physi-
cal machine, still doesn’t deliver a service …
A software service is the pairing of an operat-
ing agent and infrastructure with the software
itself, implementing the service functionality
and offering it through some interface.”4

Szyperski’s characterization of a service es-
tablishes three enabling components—an
operating agent, the infrastructure, and the
software—for delivering service functional-
ity via some interface. These components are
separate from the principles, attributes, and
features described earlier. They’re essential if
functionality is to be implemented using the
service model.

We don’t base our characterization of service-
oriented computing (SOC) on “necessary and
sufficient conditions,” but on a rather nebu-
lous collection of principles, likelihoods, and
tendencies. As such, it might reflect SOC’s
real-world relevance, rather than it being an
artificial, technology-led construct. It does,
however, complicate the identification of hy-
brid systems. We can consider deviations from
the norms of SOC in terms of provision, pro-
cess, and technology.

Provision
Service provision is an important aspect of

SOC. We’re particularly concerned with the
provider–consumer relationship and the as-
sumption that these two entities are separate.
Assuming they are, the other elements that
Szyperski considers integral to the service
model—the software and infrastructure—are
part of the provider’s operation. Consequently,
the consumer (or service-centric system de-
veloper) has no control over these aspects of
the service’s provision. Therefore, potential
consumers must satisfy themselves that a can-
didate service offers the required function, or
operations, and they must also reason about
the service provision’s nonfunctional proper-
ties (including service-level agreements and
the provider’s reputation) although they can’t
directly influence them.

Merging the provider and consumer roles is
an important consideration for determining
what constitutes a hybrid system. It removes

from the consumer the need to interact with
third-party, or off-the-shelf, services and might
contribute to the migration of an existing sys-
tem to a SOA.

Process
Two distinct processes are associated with

SOC: service engineering and service-centric
system engineering.

Service engineering. No real expectations
exist in SOC about how services should be
developed, only an expectation that services
exhibit certain behavior types. Where the
service-engineering process involves making
an existing or legacy system capable of op-
erating in a service environment, the devel-
oper might not be able to address all of these
expectations, with possible implications for
how the resulting service will be used. If a
provider developed a service this way and of-
fered it to external consumers, service speci-
fication might become an issue. The most
obvious examples of the likely deviations
include communication and state issues. An
existing or legacy application element might
be designed to interact in a stateful way and
interact synchronously with other application
elements. Developers might be able to buffer
this communication to achieve a more service-
based interaction style, but it might not be
possible, and the resulting service might pose
problems for later composition.

Service-centric system engineering. Several
aspects of service-centric system engineering
might deviate from SOC norms. These include
conflating the provider and consumer, the dis-
covery and binding processes, and the related
issue of integrating nonservice elements into
the developed system. The service model as-
sumes that services are published to a reposi-
tory, where potential users can discover them
and bind to them when needed.

Binding is linked to the technologies used.
However, it’s also related to the integration of
nonservice system elements, such as legacy sys-
tems or software components. In some cases,
the norms of service interaction (such as asyn-
chronous communication and document-based
messaging) place unacceptable overheads on
the system being developed, and developers

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

	 January/February 2008 IT Pro � 37

must use other technologies
for the required functional-
ity. A similar scenario is pos-
sible when services provide
additional or exceptional
functionality in an otherwise
nonservice-centric system (for
example, providing exchange-
rate information in an online
purchasing system). In both
scenarios, the process used to
develop the intended system
might significantly differ from
those used to develop purely
service-based systems.

Technology
SOC isn’t defined purely

in terms of the technologies
it uses. Service technologies
can serve simply as an imple-
mentation mechanism for a
system developed without the
use of third-party services.
Alternatively, service provid-
ers can implement their ser-
vices, according to the norms
we outlined, using novel tech-
nologies. Therefore, technol-
ogy isn’t particularly useful for defining hybrid
systems. Although this is counterintuitive, it
reflects the subtlety of what constitutes a ser-
vice and a service-centric system.

Hybrid systems in practice
Although we can characterize hybrid sys-

tems as those deviating from service model
norms in terms of provision, process, or tech-
nology, in practice we’ll likely face a more
limited set of scenarios (see Figure 1). Busi-
nesses will have existing systems, or prod-
ucts, that are central to their core function
and will require some new functionality to
better support their current business needs.
Thus, developers will need to address two
questions:

Will the existing system be turned into
services?
Will an external provider supply the new
functionality, which we assume to be a
service?

•

•

Although obviously a simplification, the an-
swers to these questions gives rise to four dif-
ferent types of system, as Table 1 shows.

Type 1. Essentially, we’re concerned here with
service technologies as an implementation
mechanism only. Developers modify existing
system elements, but only to enable integra-
tion, so these systems can be classified as ad
hoc. Service technology adoption can repre-
sent a first step into an SOC world.

Type 2. This type of hybrid system imposes
stricter adherence to SOC norms and expecta-
tions. You can’t adjust the externally provided
service to overcome difficulties, so you might
have to significantly modify the existing system
to make it compatible. This strategy might de-
liver some of the off-the-shelf benefits of servic-
es and SOAs, but it won’t result in the difficult
adoption of a genuine business-service culture.
Core business functionalities will remain static
and fixed, but the benefits of using externally

Services

Existing/
legacy
assets

Components

Custom
build

Service
oriented

or
other?

Input Process Output

Diverse software
elements
composed
together into
a single SOA.

Wrapped existing/
legacy assets and
components
integrated
into a SOA.

Existing/legacy
assets split and
“reengineered”
as services for
use in a SOA.

1 Possibilities for hybrid system development.

Table 1. Evolved system types.

	 Provider/consumer relationship

Existing system	 Same	 Different

As is	 Ad hoc (type 1)	 Hybrid (type 2)
Converted to services 	 Hybrid (type 3)	 Service-oriented
		 computing (type 4)

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

38	 IT Pro January/February 2008

SERVICE-ORIENTED ARCHITECTURE

provided services might generate enthusiasm for
and commitment to further SOA adoption.

Type 3. Added services to existing systems (for
example, wrapping systems to offer functional-
ity as a set of service-based operations) for use
with internally provided services suggests a
much greater commitment to SOC than type
1 systems. However, control over provision and
consumption still affords greater flexibility in
the face of problematic difficulties (for example,
the resulting services’ statefulness). The key fac-
tor in a type 3 system is whether the process of

creating the service is a lip-service provision of a
service interface or a thorough realignment of an
existing system provision with identified busi-
ness services. In the latter case, the use of inter-
nally developed services to extend functionality
is incidental to the commitment to adopt SOA.

Type 4. This system type represents a whole-
hearted commitment to adopting SOC within
an organization, especially if it represents the
culmination of the business-service-analysis
process described earlier.

Progressive evolution could be a gradual shift
from a type 1 system, through types 2 and 3,
to a type 4 system. Whether such a strategy
would deliver the necessary business benefits
would depend on the circumstances, but, for
some businesses, it might represent a lower
risk migration route to SOAs.

Architectural Mismatch Challenges
David Garlan and his colleagues performed

the reference work on architectural mismatch-
es when integrating independently developed
systems.5 Not all of this work is directly ap-
plicable to services and hybrid systems, but the
lessons learned might be relevant.

The problems encountered included code
bloat, poor performance, the need to modify
existing components, the need to reimplement
existing functions, unnecessarily complex
code, and error-prone construction processes.
Although development-related problems (such
as coding and compilation) arguably might not
be relevant in a SOA using third-party servic-
es, these problems came as developers sought
solutions for the underlying architectural mis-
matches (that is, from conflicts between the
architectural assumptions made by the vari-
ous components).

To understand architectural mismatch, it’s
helpful to view a system as a set of components
(the system’s high-level computational and
data-storage entities) and connectors (the inter-
action mechanisms among the components)—a
view that’s relevant to service-based systems.

Garlan and colleagues concluded that as-
sumptions relate to four main items:

The components’ nature. For example, inad-
equate documentation of the requires inter-
face can lead to false assumptions about the
infrastructure.
The connectors’ nature. Examples include as-
sumptions made about interface semantics
and protocols.
The global architectural structure. In SOC, ex-
amples might include assumptions made
about orchestration or choreography.
The construction process. For example, assump-
tions about the instantiation order.

When service provider and consumer are
separate, tremendous scope exists to make the
kinds of assumptions that we describe here,
and that separation is inherent in much of the
promise of services and SOA.

Process Approaches
and System Reengineering

Researchers have described several meth-
ods and strategies for evolving systems that
are partly applicable to the problem of migrat-
ing existing systems to SOAs. Here, we briefly

•

•

•

•

Although development-related
problems (such as coding and
compilation) arguably might not
be relevant in a SOA using third-
party services, these problems
came as developers sought
solutions for the underlying
architectural mismatches.

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

	 January/February 2008 IT Pro � 39

summarize three approaches that address dif-
ferent issues.

Renaissance
In appreciation of both the functionality of-

fered by existing systems and the investment
they represent, the Renaissance method pres-
ents a set of maintenance strategies that put
reengineering above replacement.6 This is the
implicit foundation of any approach that pro-
poses progressive evolution. Identifying the
dilemma between maintenance and replace-
ment,7 the method stresses that system re-
engineering can effectively mitigate the costs and
risks associated with replacement—especially
with a view to ongoing system development.

Renaissance lists six evolution strategies:

Continued maintenance—accommodating change
in a system, without radically changing its struc-
ture, after it’s been delivered and deployed.
Revamp—transforming a system by modify-
ing or replacing its user interfaces. The sys-
tem’s internal workings remain intact, but it
appears to have changed to the user.
Restructure—transforming a system’s inter-
nal structure without changing any external
interfaces.
Rearchitecture—transforming a system by
migrating it to a different technological
architecture.
Redesign for reuse—transforming a system by
redeveloping it, using some of the legacy sys-
tem components.
Replace—totally replacing a system.

While not directly applicable to evolving an
existing system to SOA, these strategies sug-
gest that understanding the range of available
techniques will be a valuable resource. Howev-
er, Renaissance lacks an explicit recognition of
the business context. Thus, the evolution strat-
egies are primarily selected on technical and
organizational grounds (for example, system
knowledge and documentation availability).

Compose
Because of the similarities between compo-

nents and services, a process for evolving an ex-
isting system using COTS components is a good
candidate for evolving systems to SOAs. Two
of us (Kotonya and Hutchinson) have used the

•

•

•

•

•

•

Component-Oriented Software Engineering
(Compose) method to evolve a legacy freight-
tracking system to support the demanding re-
quirements of a company’s larger customers.8
This method includes the following aspects:

It interleaves planning and negotiation, de-
velopment and verification. Compose does
this because many of the challenges of using
COTS components stem from limitations of
available documentation. Verification em-
beds activities that check system viability at
every stage, while negotiation allows for cor-
rective action.
It incorporates a viewpoint-oriented require-
ments approach.9 Viewpoints provide an
excellent mechanism for modeling legacy
system elements and other concerns as ser-
vice consumers.
It uses the notions of service providers and
service consumers to model the system
being developed. It uses required services
to map system requirements to available
components.

Because of these features, developers can
use Compose to model an existing system as
a series of refined subsystems that provide and
consume services. The resulting model can
then be used as, essentially, a roadmap for pro-
gressive evolution. However, it doesn’t explic-
itly address the development activity’s entire
business context.

Service-oriented solutions approach
SOSA’s principle contribution is to explic-

itly recognize that external reasons exist for
wanting to adopt a SOA.10 It identifies several
issues.

Critical business issues. Organizations con-
sidering a SOA solution do so because they’ve
identified critical business issues.

The organization develops the system to im-
plement a business strategy, not as an end in
itself.
The technical problem’s details aren’t im-
portant in themselves, only insofar as they
affect the business.
The organization might ultimately reject a vi-
able technical solution for business reasons

•

•

•

•

•

•

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

40	 IT Pro January/February 2008

SERVICE-ORIENTED ARCHITECTURE

(for example, it’s expensive or too slow); simi-
larly, business priorities might favor an inel-
egant technical solution.

Business process improvement. This pro-
vides the rationale for the development activi-
ties and involves modeling the existing process,
determining the changes to be made to solve
the relevant critical business issues, and an ex-
plicit attempt to estimate the return on invest-
ment associated with the proposals.

Enterprise service architecture. This is ef-
fectively a plan for the organization’s business
services bus.

Once developed, the ESA can act as a road map
for an incremental, or progressive-evolution,
process in which functionality provided by exist-
ing or legacy systems is moved to service-based
provision. However, SOSA is primarily intended
for companies that intend to implement their
SOA using bespoke development. As such, it ex-
plicitly addresses neither the challenges of using
third-party services, nor the process of provid-
ing service interfaces to existing systems.

Combining the approaches
These three approaches present some inter-

esting perspectives on the migration-to-SOA
challenge. None of them addresses all of the
challenges; however, together they highlight
many of the important issues.

For a business to fully engage in migration to
SOA, it must be prepared to convert its exist-

ing systems into services, be-
cause these systems support
the core business processes.
SOSA presents some pointers
for achieving this process. The
enterprise service model, if ad-
equately mapped onto existing
or legacy system functional-
ities, goes some way toward
identifying a business’s key
processes. However, SOSA
doesn’t offer a mechanism for
providing such a mapping.

Renaissance provides some
important pointers for de-
termining the viability of re-
engineering an existing sys-

tem into services. If developers used the SOSA
ESA as further input to the Renaissance pro-
cess, it might provide useful insights into the
service creation process’s feasibility.

You could use Compose to model an ESA
and map service definitions onto components
that can deliver those services. As such, you
could use it to express an ESA that one or more
existing systems deliver. However, it doesn’t
explicitly support identifying business services
provided by such systems.

Migration strategies
Table 1 distinguishes between existing sys-

tems used as is and those converted to services
in a wholesale fashion but it’s too simplistic to
represent concrete migration strategies that
organizations could apply in practice. A major
challenge facing the community is to identify
practical strategies on the continuum between
using existing systems as is and consuming
third-party services, and understanding the fac-
tors that will lead to the appropriate selection in
a given context. In practice, these strategies will
amount to practical solutions and partial solu-
tions reached in specific contexts. However, we’d
expect common types of solutions to recur. Fig-
ure 2 illustrates some possible strategies.

Glue represents the least invasive attempt to
make an existing system usable in a SOA con-
text. It amounts to, for example, intercepting
and redirecting a system call using some form
of adapter. Organizations typically use this
strategy when an existing system will consume
a service to augment its functionality. An or-

Hybrid development process

Restructure and
convert to services

Wrap

Glue

Rearchitect
and implement

Custom develop

Procure

Regulatory

Security

Processes

Context

Process
requirements

Technology
requirements

Resources

Project

Business

Expertise availability

Documentation availability

Code availability

Alignment with business process

Existing system

2 Migration strategies and the contextual features that will guide their use.

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

	 January/February 2008 IT Pro � 41

ganization might use this approach to intro-
duce new functionality, or replace failing or
obsolete functionality, when buying a service
from a third-party supplier. Alternatively, it
might be appropriate when in-house develop-
ment adopts a service model for delivery (for
example, as a long-term strategy) and integra-
tion is required.

Wrap is a more general attempt to make an
existing system usable as part of a SOA. An in-
terface component—adapter or facade—must
be developed that mediates all communica-
tion between the existing system and the out-
side world. This is an appropriate strategy for
a system whose operations resemble those of a
service. This approach might be used, for ex-
ample, to offer services to external consumers
or business partners.

The restructure and convert to services approach
involves separating out the code supporting
different business processes and making them
available as separate services. Much of the
original source code will be reused, but only
those operations supporting current and fu-
ture business needs will be made available in
this way. This strategy represents an enormous
commitment to supporting SOA. It might be
more appropriate for companies who develop
or support software systems than for the sys-
tem users. However, highly specialized users
who can’t procure software off-the-shelf when
adopting SOAs might also use it.

In the rearchitect and implement strategy, the
existing system’s form isn’t amenable to re-
structuring or appropriate for significant reuse.
However, it embodies important business logic
and resource elements that must be retained.
An organization develops new services to ex-
ploit these resources, which conform to some
of the existing business processes. Clearly, the
key difference between this and converting the
existing systems to services is the availability
and reuse of significant amounts of code. This
strategy might therefore be appropriate when
system documentation is available, but not sig-
nificant amounts of usable code.

Custom develop is most appropriate when the
match between the existing system and impor-
tant business processes isn’t close, but some
functionality must be retained. We envisage
new services to provide this functionality.
These services might still use existing re-

sources, such as data. An obvious implication
is that the existing system no longer properly
supports the business processes using it. This
would clearly constitute a serious business fail-
ing, so it might be more sensible to use this
strategy when integrating diverse systems fol-
lowing a merger or acquisition.

Procure discovers third-party services to de-
liver the required functionality. In the context
of existing system reuse, this strategy is only
appropriate if there are considerable problems
associated with reusing some or all of the exist-
ing system and the required services are read-
ily available from an external supplier.

Clearly, these strategies represent different
approaches to reusing existing systems as well
as different opportunities to do so. In other
words, the prevailing context will determine
which strategy an organization will adopt. In
practice, this will likely mean that the unique
combination of factors related to the particular
migration activity (for example, whether code
is available for the existing system, what re-
sources are available, and whether regulatory
constraints prohibit the use of third-party ser-
vices) will make a given set of solution types,
or strategies, available in the context. An or-
ganization’s attitude toward the existing sys-
tem, its commitment to SOA adoption, and the
available strategies will determine its choice of
a particular strategy. Furthermore, in practical
circumstances, the prevailing factors will like-
ly result in a combination of strategies—some
gluing along with some procurement, for ex-
ample, representing a possible low-risk venture
into service consumption.

While considering migration strategies, we
noted that the procurement of third-party ser-
vices represented one end of the continuum. In
part, this is because shifting from an existing
system to an entirely new service-based system,
while representing total commitment to servic-
es and SOAs, might also represent too high a
risk for the business concerned. Careful selec-
tion of appropriate strategies will let businesses
balance the benefits of using services in a SOA
with the security of relying on tried and trusted
systems. In other words, the required new sys-
tem is a development of the existing system, so
the new system’s implementation is essentially
a development of the existing system’s imple-
mentation. In this way, an organization might

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

migrate a substantial existing system to a SOA
through a series of relatively discrete develop-
ment cycles, or by progressive evolution. As
we’ve suggested, this might start as a low-risk
consumption of noncritical external services
to provide new, or replace obsolete, function-
ality. This strategy’s success, combined with
an increasingly mature service marketplace,
might make further service consumption an
attractive option when further updating of the
existing system is needed, requiring that some
part is turned into services, or rearchitected in
the absence of code. Ultimately, the business
might have a system that’s composed entirely
of third-party services and yet never replaced
more than a small part of the provided func-
tionality at one time.

M igrating an existing system to a SOA
is as much a business challenge as it
is a technical one, which is why suit-

able processes must incorporate appropriate
business modeling. One thing is clear: the need
for such processes will only increase as SOC
adoption increases and businesses realize that
they must not be left behind.

The real challenge for the community is to
identify and document patterns of SOA intro-
duction and existing or legacy system migra-
tion, because some strategies can be applied in
multiple contexts. Certainly, the subtleties of
each development scenario will mean that no
one-size-fits-all solution will exist, but system-
atic analysis of the prevailing system, project,
and business factors must surely lead to mi-
gration strategies that can be applied reliably,
robustly, and efficiently.	

Acknowledgments
We performed this work as part of the Euro-

pean IST funded Service Centric System Engi-
neering Project (http://secse.eng.it).

References
M.M. Lehman and L. Belady, Program Evolution: Pro-
cesses of Software Change, Academic Press, 1985.
D. Dhungana et al., “Architectural Knowledge in
Product Line Engineering,” Proc. 32nd Euromicro Conf.
Software Eng. and Advanced Applications, IEEE CS Press,
2006, pp. 186-197.

1.

2.

A. Brown, S. Johnston, and K. Kelly, Using Service-
Oriented Architecture and Component-Based Development to
Build Web Service Applications, tech. report, IBM, 2002;
www.ibm.com/developerworks/rational/library/510.
html.
C. Szyperski, “Components and Web Services,” sd-
magazine.com, 1 Aug. 2001; www.sdmagazine.com/
documents/s=7208/sdm0108c.
D. Garlan, R. Allen, and J. Ockerbloom, “Architectur-
al Mismatch: Why Reuse is So Hard,” IEEE Software,
vol. 12, no. 6, 1995, pp. 17-26.
I. Warren and J. Ransom, “Renaissance: A Method to
Support Software Systems Evolution,” Proc. 26th Ann.
Int’l Computer Software and Applications Conf. (Comp-
sac), IEEE CS Press, 2002, pp. 415-420.
K. Bennet, “Legacy Systems: Coping with Success,”
IEEE Software, vol. 12, no. 1, 1995, pp. 19-23.
G. Kotonya and J. Hutchinson, “A COTS-Based Ap-
proach for Evolving Legacy Systems,” Proc. 6th IEEE
Int’l Conf. COTS-based Systems (ICCBSS 07), IEEE CS
Press, 2007, pp. 205-214.
G. Kotonya and J. Hutchinson, “Viewpoints for
Specifying Component-Based Systems,” Proc. Int’l
Symp. Component-based System (CBSE 07), LNCS 3054,
Springer, 2004, pp. 114-121.
“Hybrid System Development,” Service Centric Sys-
tem Engineering (SeCSE) Project (IST 511680) Doc-
ument A3.D7, 2006; http://secse.eng.it.

John Hutchinson is a research associate in the comput-
ing department at Lancaster University. Contact him at
hutchinj@comp.lancs.ac.uk.

Gerald Kotonya is a senior lecturer in the computing de-
partment at Lancaster University Contact him at gerald@
comp.lancs.ac.uk.

James Walkerdine is a research associate in the comput-
ing department at Lancaster University. Contact him at
walkerdi@comp.lancs.ac.uk.

Peter Sawyer is a senior lecturer in the computing depart-
ment at Lancaster University. Contact him at sawyer@
comp.lancs.ac.uk.

Glen Dobson is a research associate in the computing
department at Lancaster University. Contact him at dob-
song@comp.lancs.ac.uk.

Victor Onditi is a research associate in the computing de-
partment at Lancaster University. Contact him at onditi@
comp.lancs.ac.uk.

3.

4.

5.

6.

7.

8.

9.

10.

42	 IT Pro January/February 2008

SERVICE-ORIENTED ARCHITECTURE

Authorized licensed use limited to: Lancaster University Library. Downloaded on June 5, 2009 at 11:14 from IEEE Xplore. Restrictions apply.

