
Designing and Deploying Service-Centric Systems:
The SeCSE Way

The SeCSE Team
c/o Engineering Ingegneria Informatica

Via S. Martino della Battaglia, Roma, Italy

ABSTRACT
In spite of recent research, designing and deploying large-
scale service-centric systems remains a challenge. The SeCSE
project tries to tackle this challenge by creating new meth-
ods, tools and techniques for requirements analysts, sys-
tem integrators and service providers that support the cost-
effective development and use of dependable services and
service-centric applications. The results achieved in the
project are being experimented in the European automotive
and telecommunication sectors. In this paper we presents
the demo that we have been developing for the last two
project years. The goal is to show the tools available to a
service integrator that creates a new service relying on oth-
ers that are already existing and are offered either by the
project partners or by other players in the Internet. The
paper also describes how this resulting service behaves at
runtime.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Domain Specific architectures, Data mapping, Distributed
objects

1. INTRODUCTION
In spite of recent research, designing and deploying large-
scale service-centric systems remains a challenge for system
designers and integrators, a challenge that the EU-funded
integrated project called SeCSE (Service-Centric Systems
Engineering) is tackling [1].

SeCSE’s mission statement is to create new methods, tools
and techniques for requirements analysts, system integrators
and service providers that support the cost-effective devel-
opment and use of dependable services and service-centric
applications in the European automotive and telecommuni-
cation sectors. The four-year research project covers four

main activity areas:

Service engineering: how to model, specify and publish
services in service registries to be discovered, composed, in-
voked and monitored in service-centric systems;

Service discovery: how to find and retrieve services from
service registries, at design time, so that these services are
compliant with requirement and architecture models, and at
run-time, so that it is possible to find alternative services to
invoke in a service-centric application;

Service-centric systems engineering: how to create ser-
vice compositions able to reconfigure themselves at runtime
based on their execution context and on the status of ser-
vices they are using;

Service delivery: how to expose services in a distributed
environment, monitor whether services comply with require-
ments, and therefore support system reconfguration in re-
sponse to service failure or divergence from these require-
ments.

SeCSE methods, techniques, and software tools are exper-
imented in the automotive and telecommunication sectors
through involvement of some industrial partners.

2. THE SECSE METHODOLOGY
Supported by a reference scenario, SeCSE is presented in
this paper as an integrated working environment allowing
the users to develop service-centric systems.

The steps that so called Service Integrators [6] should follow
encompass several activities, ranging from the definition of
its business requirements to the publication of these in a
federation of heterogeneous service registry:

1. Business requirements definition. This is an iterative
phase allowing the stakeholders to provide in some
form the business requirements (functional and non
functional) expected for a service-based system. A set
of services somehow fitting with the provided require-
ments are retrieved. The description supporting these
services will be used by the users to refine their re-
quirements and enable more accurate discovery. This
set of services will be the input for phase 2.

2. Composition. The services obtained by the previous



phase must be now composed by means of a BPEL-
like ([3]) workflow. These services will be described
as abstract specifying only their functional behaviour.
A discovery tool named Architectural Service Discov-
ery will find those concrete services that, matching
the specified functional behaviour, can replace the ab-
stract services. The Service Integrator can select one
or more concrete services for each related abstract one
to be then dynamically bound at run-time. Moreover,
he/she can define the rules and the constraints that
will determine at runtime the binding to specific ser-
vices. This binding can depend on various aspects
including the context in which the composition final
user operates, the possible faults caused by the used
services, the publication of new, appealing services.

3. Instrumentation - Monitoring rule definition. Once
the service centric system has been designed (phase 2),
a policy will be set to monitor that the execution works
as expected. If an undesired situation is detected, the
rules defined in phase 2 will be fired.

4. Service regression testing. Anytime a service integra-
tor will acquire or use a service necessary for its com-
position (see phase 2), he/she will have the opportu-
nity to test the corresponding functionality by means
of regression testing tools to check that what the ser-
vice has declared in its interface, and, possibly, agreed
with the service-centric system is actually respected.

5. Deployment of the service composition. The service
centric system is deployed to the run-time engine to
be executed.

6. Service Centric system description. Once deployed,
the service centric system is described. This is done
with a facets approach providing a mechanism to de-
scribe services (simple and composite) from different
perspectives leaving to the user flexibility margins. A
set of predefined facet is provided for general service
description, functional description, the QoS proper-
ties, commercial aspects, non functional behaviour and
the test cases.

7. Service Centric system publication. The latest steps
concern the publication of this service description. It
will be possible to publish this service in a SeCSE
Registry taking part to a federation of heterogeneous
registries linked by replication policies. The SeCSE
registry is an XML registry able to host the service
description based on facets.

When all of these steps are successfully terminated (of course
the development process may not follow a waterfall model),
the service-oriented system is ready for execution. At run-
time the system will be able to evolve by changing the bind-
ings to the external services on the basis of the rules that
have been defined through its design and instrumentation.
In the following of the paper we provide more details on the
design time and runtime aspects by referring to the specific
example that we propose to demonstrate.

3. DEMONSTRATION SCENARIO
The following demonstration scenario was provided by the
pilot users of the SeCSE project, operating in the automo-
tive and telecom domains.

Roberto, a system integrator at Company X, intends to im-
plement a BusinessTrip (composed) service, to help users
with planning a car trip according to their appointments. In
particular, the service should be accessible from the car, so
that appointments in agenda can be confirmed or changed,
based on the current geographical position of the car. In
case the next scheduled appointment is not feasable, the ser-
vice should automatically open a telephone call with a secre-
tary of the business man to rearrange the agenda. When the
driver arrives at his destination, the service should suggest
him the nearest parking lots that have free spaces.

In the following, we first show how the SeCSE tools are used
by Roberto in the activities of the service development pro-
cess, according to the methodology described in Section 2,
and then illustrate some usage scenarios by different users to
highlight the self-(re)configuration capabilities of the com-
position, enabled by the run-time tools.

3.1 Design Time
3.1.1 Requirements analysis
At this stage, Roberto can form queries from his require-
ments specification to discover services that are related to
the requirements in some form. Descriptions of these dis-
covered services are retrieved and explained to him, then
used to revise and refine his requirements specification to
enable more accurate service discovery. But let’s see how
this works. SeCSE’s iterative and incremental requirements
process is supported with a suite of software components.
The UCaRE component provides Roberto with two main
capabilities. Firstly, it enables Roberto to specify UML use
case specifications and VOLERE requirements [9] on sys-
tems that might or might not be implemented using services.
It extends UML use case specifications with requirements
expressed using the VOLERE shell. Both use cases and re-
quirements are specified in structured natural language, con-
sistent with how Roberto specifies requirements in the Ra-
tional Unified Process. Secondly, it enables Roberto to gen-
erate service queries directly from use case and requirements
specifications using the simple tick boxes demonstrated in
Figure 1. Once Roberto created a service request, UCaRE
passes it to EDDiE, SeCSE’s service discovery engine. Af-
ter some manipulation on the natural language (see the pa-
per by Zachos et al. [11] for more details), query matching
is in two steps: (i) XQuery text-searching functions to dis-
cover an initial set of services descriptions that satisfy global
search constraints; (ii) traditional vector-space model infor-
mation retrieval, enhanced with WordNet, to further refine
and assess the quality of the candidate service set. This
two-step approach overcomes XQuerys limited text-based
search capabilities. Services retrieved from the registry are
reported to Roberto through the Service Browser component
shown in Figure 2.

3.1.2 Design
Based on the results from the requirements analysis phase,
Roberto identifies the activities for the Business Trip and



Figure 1: UCARE GUI

draws a workflow model as in Figure 3. Indeed, he realizes
that he needs the following service operations:

• findDuration to compute the distance of two geograph-
ical points;

• calculateTime to compute the time to cover that dis-
tance by car;

• checkSchedule to get the next appointment in agenda;

• makeCall and getCallInformation to automatically open
a telephone connection between the user and his/her
secretary, and to check when the call ends;

• sendSms and getSmsStatus to send a notification to the
user of appointment confirmation, and to check that
the sms is actually sent;

• PointInPoly to know the current position of the car;

• findParking to find the list of the nearest parkings.

Then Roberto starts using the Composition Designer tool
(CD) to focus on the low level design of the system. In par-
ticular, he finalizes the interfaces of these services in WSDL
documents and sketches the interaction with them in terms
of BPEL fragments. From these data the CD generates a
UML model that is recognized by the SeCSE Architecture-
time Service Discovery (ASD) tool (described in the paper
by Zisman and Spanoudakis [12]) as a query to search for
services in the registry that match. Roberto could itera-
tively refine the search to get results with higher precision.
In this case, Roberto prefers to have a wider, even if less pre-
cise, view of the services available so that he can eventually
modify/adapt the model at functional or just syntactic level,
according to what he is getting. Figure 4 shows the list of
services returned by the ASD tool for the service operation
checkSchedule.

Figure 2: Service browser

In order to both make the Business Trip service adaptable
to different user preferences, and increase the overall quality,
e.g., availability and reliability, Roberto finds quite conve-
nient to enrich the description of his service with binding
and monitoring rules, and constraints and preferences, pro-
vided by the SeCSE languages.

Dependency constraints specification. Roberto indi-
cates that the operations makeCall and getCallInformation
should be provided by the same service as they are state-
dependent. This also applies to the operations sendSms and
getSmsDeliveryStatus.

Service list preferences definition. For the demostra-
tion’s purpose, the SeCSE registry has been populated with
a number of services. In particular, those used in the pro-
posed scenario are the following (a service is real wherever
its provider is explicity said):

trip duration: XnavigationCEFRIEL, XnavigationULISSE,
and TimeServiceCEFRIEL;

agenda management: CalendarServiceEMIC (offered by Mi-
crosoft), and CalendarServiceCEFRIEL (built with API from
Google);

phone call: ThirdPartyCallTLAB (operated by Telecom Italia
Lab), ThirdPartyCallCEFRIEL, ThirdPartyCallPHONE, and
ThirdPartyCallIND;

sms: SendSmsTLAB (operated by Telecom Italia Lab), SendSm-
sCEFRIEL, and SendSmsPHONE;

car position: MapProxyCEFRIEL, and MapProxyCRF (op-
erated by CRF);

car parking search: Microsoft Mappoint, and PointOfInter-
est (operated by CRF).



Figure 3: The Business Trip workflow

Figure 4: The ASD result for checkSchedule

From the results of the ASD search, Roberto indicates a
subset of these services in a preference list, which will be
used to select the bindings at run-time. The other services
will be discovered through the RSD tool as explained later.

Binding rules definition. These are Event-Condition-
Action (ECA) expressions that regulate the bindings selec-
tion at run-time. The event part may be, for example, of
type ActivityBinding, which means that the rule is triggered
when the activity of the process, specified in the rule, is not
bound. In this case, the action part contains the binding to
be applied if the condition of the rule is evaluated to true.
Another type of rule is related to a property violation event,
to specify what to do in that case, for example start some
recovery action. More details on the types of rules and the
language to express them are in the paper by Colombo et al.
[7]. Roberto defines the following rules of ActivityBinding
type:

checkSchedule: (E: ActivityBindingEv; C: true; A: Bind to
the agenda in the user info), i.e., the binding should be with
the agenda service indicated by the user;

Figure 5: The composition design artifacts

makeCall and sendSms: (E: ActivityBindingEv; C: provider
= bestPrice; A: select the best price provider from the list of
variants), i.e., the best price telecom operator (among those
already available to the system) should be selected for phone
services; and (E: ActivityBindingEv; C: provider = best-
Price; A: select the best price provider using the RSD), i.e.,
the best price telecom operator should be searched through
the SeCSE Run-time Service Discovery (RSD) tool and bound
to the related activities.

findParking: (E: ActivityBindingEv; C: destination = Torino;
A: Bind to PointOfInterest), and (E: ActivityBindingEv; C:
destination != Torino A: Bind to Mappoint), i.e., the ser-
vice PointOfInterest has to be used to look for parkings in
Torino, and the service Mappoint in other locations.

Monitoring rules definition. Roberto realizes of a need
for a precondition on the makeCall operation, related to the
input phone number to be valid, and for a postcondition
on the findDuration operation concerning the output value
to be greater than 0. These pre/post conditions, expressed
in SECMOL, the SeCSE monitoring language [2], will be
verified at run-time by the SeCSE monitoring sub-system
(described in the paper by Baresi and Guinea [4]) and events
on their violation handled as specified in the binding rules
discussed above.

Global QoS constraints definition. In order to make
the Business Trip service more appealing to users, Roberto
defines a global constraint to guarantee that the price will
not exceed some value, e.g., 1.4 euros and that bindings
will be selected so that, at the end, the response time will
be the least possible. For this, Roberto needs to indicate
the probability of execution for each branch of the switch
construct of the workflow, and estimations for the number
of iterations of each loop. So, he decides that most probably
(60%) there won’t be conflicts in agenda, and that at most



(a) Faceted Specification Tool (b) Description Facet Form

Figure 6: Business Trip Specification

3 checks will be made for end of call, and 2 for sms sent.
This data is to allow the system to make estimations of the
QoS of possible global bindings of the workflow just before
execution. The estimation of the one selected will be refined
during execution, according to the monitored QoS of the
executed services and to the actual process data.

This configuration of the system will be alternative to that
described by the (local) binding rules specified earlier, as the
run-time selection of services will be based on QoS aspects
only, and without considering context information. Details
on the global binding mechanism are in the paper by Di
Penta et al. [8]. The global QoS constraints automati-
cally define monitoring rules (expressed as pre-conditions
for all the invoke activities of the process) to check their
respectance during execution. Also, they define a (global)
re-binding rule, where the trigger event is the precondition
violation by the monitoring system, and the recovery action
is re-binding of the process part still to be executed.

System deploy. All the artifacts produced by Roberto
are shown in the project view of the CD, as in Figure 5.
After completion, Roberto may run the automatic deploy
function of the CD. As an effect: proxy services (to enable
dynamic binding) are generated from each WSDL interface
he had previously defined (and used as input to the ASD
tool); the proxy services are statically bound to the BPEL
process; and the composed service is automatically deployed
in the SeCSE run-time environment. All of these operations
happen behind the scenes, so Roberto only sees that the
Business Trip service is now in place to be published and
executed.

3.1.3 Specification
Roberto proceeds to create a corresponding specification for
the Business Trip service, using the SeCSE Faceted Service
Specification approach [10]. This is a mechanism that sup-

ports the bringing together and ordering of specifications
(expressed in different schemes or languages) that address a
range of service properties.

Each facet focuses on one or more service properties (e.g.
general description, binding, etc). For example, an Oper-
ational Semantics facet may embed OCL or BPEL based
specifications, or both if desired, that describe service be-
haviour. By also supporting the use of third party specifica-
tion mechanisms, the Faceted Service Specification approach
can maintain compatibility with other approaches, and both
current and future developments. Currently in SeCSE we
support the following facet types: Signature, Description,
Operational Semantics, Exception, QoS, Commerce, Test-
ing and Management; each which can be populated with
corresponding specifications.

In order to create the faceted specification, Roberto makes
use of the SeCSE specification tool which allows to him to
create, specify and manage the facets within his specifica-
tion. Figure 6 (a) shows the specification tool being used
to create the Business Trip service specification. In the top
right a table displays the facets that exist within the specifi-
cation, below this is a preview pane that can be used to view
the specifications within a selected facet. The tool provides
a set of forms that guide Roberto through the specification
process. Figure 6 (b) shows the form that Roberto used
for the Description facet specification - this form has been
specifically designed to support the process of Requirements
Based Service Discovery as described in sub-section 3.1.1.
Roberto used a similar approach for specifying the other
facets and then proceeds to publish his completed Business
Trip service specification.

3.1.4 Publication
Roberto realizes that for the Business Trip users working in
Spain the automatic selection of telephone service by some



(a) The Business Trip result (b) The binding list for first scenario

Figure 7: The execution GUIs

local provider would be the right choice. This means that
the service composition will also need to adapt to this new
context. Unfortunately, the SeCSE discovery tools described
earlier do not return any service for the sendSms operation
from spanish telecom providers.

Before thinking of any recovery action, to modify the pro-
cess in such a way it can be executed in the new context, the
SeCSE framework offers another option to Roberto. Instead
of considering only the local registry to search for the new
service, he can consider the whole publication infrastruc-
ture, that is, the set of the 4 SeCSE registries that publish
information about services. The publication infrastructure
links the different registries into a single abstract SeCSE
registry, where different (physical) registries can subscribe
to the classes of services they are interested in and as soon
as such information becomes available in the system, it is
sent to the requesting registry. This means that each single
registry does not contain the descriptions about all the ser-
vices available in the network. This framework is described
in the paper by Baresi and Miraz [5]. The local registry used
by Roberto can issue a subscription to service sendSms, or
to the class this service belongs to. The effect is that as soon
as one of the registries publish a service description that fits
Roberto’s needs, this information is immediately dispatched
to the local registry. Given the publish and subscribe policy
adopted by the publication infrastructure, all the infor-
mation about available services are re-transmitted after a
user-defined lease time. This way, we can be sure that, at
most after the lease time, any possible service description is
propagated towards the local registry.

In the proposed scenario, Roberto’s subscription is fruitful
and, after the lease time, a new service that fits the query
for the sendSms operation is found from the local registries.
Thus: either Roberto adds a dedicated binding rule to the
Business Trip description, or the spanish sendSms service
will be automatically discovered (and bound) at run-time
by the RSD tool, after the binding rule already defined for
that operation fires.

3.2 Run Time
Other than the BPEL process execution, the SeCSE run-
time environment provides the following functions: (i) Dy-
namic selection of the concrete services for the various

activities of the service composition, according to the re-
lated user preferences and context information. Addition-
ally, the RSD tool may be exploited to dynamically discover
other services, if needed; (ii) Monitoring pre/post condi-
tions surrounding some of the invoke activities of the pro-
cess; (iii) Recovery actions activation in case of failure of
some condition above.

In the sequel, we illustrate specific usage scenarios of the
Business Trip, where these innovative funtions come into
play.

3.2.1 Execution
We demonstrate the execution of the Business Trip by three
actors, namely: John Smith, Roberto Tola and Mario Rossi,
who use the service with different preferences and in dif-
ferent moments in time. Two graphical user interfaces are
provided: one is for the Business Trip end-user to insert
the input data and visualize the results on his on-board de-
vice; the other is for administration purposes, to show the
bindings selected and used by the system in the various ex-
ecutions.

First Scenario. John Smith’s preferences are as follows:
MS Exchange is hosting his agenda; the best price tele-
com operator (among those already available to the system)
should be selected for phone calls; his secretary is Matteo.
From his car, John invokes the service by specifying that
he is going from Milano to Torino. The service behaves as
follows: the system calculates the duration of the trip; it
dynamically binds to John’s agenda; there are no conflict-
ing appointments, so the trip is confirmed; at destination,
the Torino parking service is exploited. Figure 7 (a) shows
the result of the service execution as presented to John, i.e.,
the nearest parking lots in Torino, where he can find room
for his car. Instead, the list of bindings selected and used
by the system is shown in Figure 7 (b), labled with 1, and
Composition type BusinessTrip local, to mean that only
local constraints and preferences are used. To be noted that
the CalendarService hosted at Cefriel (which interfaces with
MS Exchange agenda) is used, as well as the PointOfInter-
est service (MappointProxy in the uri), which is only able
to look for parkings in Torino. Also, no phone call service
is bound to the process as no appointment changes need to
be made.



Second Scenario. Mario Rossi uses the same preferences
as John Smith, but he invokes the Business Trip service by
specifying that he is going from Milano to Orbassano (a
small town close to Torino). Hence, the system calculates
the duration of the trip and dynamically binds to Mario’s
agenda. There are no conflicting appointments, so the trip
is confirmed. However, this time the sms service to be used
is searched through interaction with the RSD tool. Also,
at destination, the parking service provided by Mappoint is
exploited, as this service also operates outside Torino. The
new binding list for this execution is labled with 2 in Figure
8. To be noted that now the binding for the sendSms and
getSmsDeliveryStatus activities has changed to the service
provided by Telecom Italia operator.

Third Scenario. Roberto Tola’s preferences are as fol-
lows: Google Calendar is hosting his agenda; Telecom Italia
provider needs to be used for phone calls and sms; his sec-
retary is Elisabetta. Roberto invokes the service while he
is starting to drive from Milano to Torino. Thus, the sys-
tem calculates the duration of the trip and it dynamically
binds to Roberto’s agenda. This time there are conflicting
appointments, so the system establishes a phone communi-
cation between Roberto and his secretary. She moves some
appointments, and an sms is sent to Roberto, notifying that
his agenda has been updated. At destination, the Torino
parking service is exploited. From Figure 8, list 3, one can
see that now the activities makeCall and getCallInformation
have been bound as they are actually required by the pro-
cess, and the binding for checkSchedule has been changed to
the service Google Calendar, as specified in the binding rule
described in sub-section 3.1.2.

Fourth Scenario. At another time, Roberto Tola chooses
a global preference setting where the total price of the Busi-
ness Trip service execution is guaranteed to be within 1.40
euros and the response time the least possible. Also, now
he is driving from Milano to Orbassano. So, the system
first calculates the best configuration of services according
to the global QoS constraints, then the process is actually
started. The system calculates the duration of the trip, and
it dynamically binds to Roberto’s agenda. There are con-
flicting appointments, so a phone call needs to be made:
at this point, the monitoring system detects that the price
constraint could be violated as services considered with low
probability at design-time are actually required (i.e., make-
Call and getCallInformation). Therefore, rebinding is ap-
plied as a recovery action from the risk of not to be able to
satisfy the global constraints. The system replaces some of
the remaining services by choosing cheaper ones and relaxing
the response time optimization constraint. At destination,
the parking service provided by Mappoint is exploited. The
new binding list is shown in Figure 9, where the replaced
bindings are highlighted in dark grey. With the new bind-
ings, the final price results of 1.39 euros, while the response
time is slowed down of 60 seconds.

4. CONCLUSIONS
In this paper we have presented the results currently achieved
by the SeCSE project through a specific example from the
automotive domain. The example relies on existing services
that are either offered by the project partners or by other
players in the Internet.

Figure 8: The binding list for second and third sce-
narios

Figure 9: The global binding list

From this experience we have learned new requirements that
are being tackled in the second part of the project. In par-
ticular, we have had a confirmation of the importance of
discovery mechanisms offered at various steps of the devel-
opment and execution processes, and we have realized the
need for searching not only based on functional properties of
services, but also on their non-functional properties. More-
over, we have understood the importance of being able to
access to various distributed registries for search.

In our example we had to tackle with different services for
finding parking places that were defining different WSDL
interfaces. To enable dynamic binding for these, we had to
manually modify the code of the proxies automatically gen-
erated during the deployment phase. This has highlighted
the need for studying the problem of adaptation to different
WSDL interfaces more deeply.

The interaction with the telecom services offered by our end
users has raised the issue of Service Level Agreement (SLA)
definition, negotiation, and enforcement. We are analysing



the issue from the various aspects of the service life cycle,
ranging from the definition of its interface to identify so
called SLA templates, to the automatic support to the nego-
tiation process, to the automatic generation of monitoring
policies that can guarantee the enforcement of the agree-
ment.

At last, another important aspect that has been, again, ev-
identiated by the interaction with the telecom services con-
cerns the need for managing various approaches for com-
municating identities to the component services. In our ex-
ample, again, we had to manually rework proxies to solve
this issue. Currently, we are developing an identity man-
agement service that will abstract all other elements of a
service-based system from this specific aspect.

5. ACKNOWLEDGMENTS
This work is funded by the European Commission VI Frame-
work IP Project SeCSE (Service Centric System Engineer-
ing) (http://secse.eng.it), Contract No. 511680.

6. REFERENCES
[1] Service-Centric System Engineering.

http://secse.eng.it.

[2] A4-D8 - Policies Specification and Integration with
Existing Standards and Components. SeCSE
Deliverable, 2006. http://secse.eng.it.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
K. J., F. Leymann, L. K., D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services.
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/.

[4] L. Baresi and S. Guinea. Towards Dynamic
Monitoring of WS-BPEL Processes. In Proc. of the
3rd International Conference of Service-Oriented
Computing (ICSOC 2005), volume 3826 of Lecture
Notes in Computer Science, pages 269–282,
Amsterdam, The Netherlands, 2005.

[5] L. Baresi and M. Miraz. A Distributed Approach for
the Federation of Heterogeneous Registries. In Proc.
of 4th International Conference of Service-Oriented
Computing (ICSOC 2006), pages 240–251, Chicago,
IL, USA, 2006.

[6] M. Colombo, E. Di Nitto, M. Di Penta, D. Distante,
and M. Zuccalà. Speaking a Common Language: A
Conceptual Model for Describing Service-Oriented
Systems. In Proc. of the 3rd International Conference
of Service-Oriented Computing (ICSOC 2005), pages
48–60, Amsterdam, The Netherlands, 2005.

[7] M. Colombo, E. Di Nitto, and M. Mauri. SCENE: A
Service Composition Execution Environment
Supporting Dynamic Changes Disciplined Through
Rules. In Proc. of the 4th International Conference of
Service-Oriented Computing (ICSOC 2006), volume
4294 of Lecture Notes in Computer Science, pages
191–202. Springer, 2006.

[8] M. Di Penta, R. Esposito, M. L. Villani, R. Codato,
M. Colombo, and E. Di Nitto. WS Binder: a
framework to enable dynamic binding of composite
web services. In IWSOSE ’06: Proc. of the 2006
international workshop on Service-oriented software

engineering, pages 74–80. ACM Press, 2006.

[9] J. Robertson and S. Robertson. Volere Requirements
Specification Template.
http://www.volere.co.uk/.

[10] J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson,
and V. Onditi. A Faceted Approach to Service
Specification. In Proc. of the 2nd International
Conference on Internet and Web Applications and
Services (ICIW 2007), Mauritius, CA, USA, 2007.
IEEE Computer Society.

[11] K. Zachos, N. Maiden, X. Zhu, and S. Jones.
Discovering Web Services to Specify More Complete
System Requirements. In Proc. of the 19th
International Conference of Advanced Information
Systems Engineering (CAiSE 2007), pages 142–157,
Trondheim, Norway, 2007.

[12] A. Zisman and G. Spanoudakis. Uml-Based Service
Discovery Framework. In Proc. of 4th International
Conference of Service-Oriented Computing (ICSOC
2006), pages 402–414, Chicago, IL, USA, 2006.


