The Challenge of Evolving Existing Systems to Service-Oriented
Architectures

John Hutchinson, Gerald Kotonya, James Walkerdine, Peter Sawyer, Glen Dobson and Victor Onditi

Abstract—Software systems are an integral part of
industrial processes at every level, from low-level production
control to enterprise planning. The maintenance challenge
presented by such systems is about finding an acceptable
balance between risk involved in evolving the system and
benefits offered by the update. Service-Oriented Architecture
(SOA) promises to leverage software systems to become more
efficient and responsive to change through service reuse and
process agility. However, for existing systems, this compounds
the maintenance problem as SOA represents a “paradigm-
shift”. It leaves business leaders facing a difficult problem:
how to minimise the risk to their investment (existing software
systems) and exploit the benefits of migrating a SOA. We
describe a pragmatic strategy for addressing the problem and
outline the significant challenges that remain.

1. INTRODUCTION

SOFTWARE systems are an integral part of industrial
processes at every level, from low-level production
control to enterprise planning. This suggests a strong
relationship between a business’ success and the “fitness for
purpose” of the software systems that it relies on. There is a
well-established understanding that the usefulness of a
given software system is dependent on its continued
maintenance and evolution to reflect the needs of its
changing environment [1]. This poses the difficult problem
of how to maintain and extend existing systems that support
critical business processes. The situation is further
complicated when a change involves migration to a new
development paradigm. The advent of service-oriented
architectures (SOA) presents such a change. The growing
interest in SOA is driven by the promise that it will allow
businesses to achieve broad-scale interoperability of their
software systems (through service reuse and process
agility), while maintaining the flexibility required to

Manuscript received January 25, 2007. This work was supported in
part by the SeCSE project (EU IST 511680).

J. Hutchinson is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: hutchinj@comp.lancs.ac.uk).

G. Kotonya is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: gerald@comp.lancs.ac.uk).

J. Walkerdine is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: walkerdi@comp.lancs.ac.uk).

P. Sawyer is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: sawyer@comp.lancs.ac.uk).

G. Dobson is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: dobsong@comp.lancs.ac.uk).

V. Onditi is with the Lancaster University Computing Department,
Lancashire, UK (e-mail: onditi@comp.lancs.ac.uk).

continually adapt these systems to changing business needs.
In 2004, Leavitt cited a report predicting that worldwide
spending on web service-based software projects would
increase ten-fold in the five years to 2008, to around $11
billion [2].

That said, the adoption of service oriented computing
(SOC) by industry will bring with it a series of new
activities that are peculiar to the paradigm, such as
discovery, coordination (orchestration/choreography), etc.
Although they represent significant challenges in
themselves, they do not explicitly contribute to the
maintenance of investment that is central to the aim of
evolving existing systems to SOAs.

We believe that SOA provides a viable means for
industry to support changes in business while leveraging
past IT investments, through a process of progressive
evolution rather than wholesale replacement. However, we
also believe that there are significant challenges that must
be addressed if the migration of existing systems to SOA is
to be successful.

The remainder of this paper is organized as follows:
Section 2 outlines the main advantages of services, which
are prompting so much attention in business; Section 3
describes some process-oriented approaches to evolving
existing systems; Section 4 presents a brief analysis of the
nature of systems that integrate existing systems with
services, which leads to our summary, in Section 5 of the
key challenges that threaten this process. Section 6 provides
some concluding remarks.

II. A SERVICE-ORIENTED FUTURE?

Conceptually, services bring together a layer of business
functionality and a layer of technological implementation.
Technologically, Brown et al [3] provide an excellent
summary of what services are, whilst suggesting that it is
not the individual features that matter, but the aggregation
of them. So, we expect services to be “coarse grained”,
“discoverable”, “loosely coupled”, etc. From a software
engineering perspective, services are the embodiment of
interface-based design — and thus can be seen as
progression of a trend that has brought modular design,
object-orientation and software components.

From a business perspective, services are about
appropriate packaging of functionality and flexibility.

Capturing system knowledge in a way that is appropriate for
business users and developers is difficult [4], but services
provide a mechanism for packaging functionality in
meaningful unit for development, provision, sale and
consumption. Moreover, they do so in a way and with a
business model that affords a high degree of flexibility to
provider and consumer alike. It is for this reason that they
promise to allow businesses to become more responsive
than ever to the needs of individual customers and markets.
However, it is not just business systems that promise to
benefit from the service model, it is envisaged that
embedded systems will also be able to augment their
functionality in the face of unusual, or even exceptional,
circumstances. It is not surprising that business leaders
identify services and SOC with acquiring and maintaining
business advantage.

The problem that accompanies a major shift in the way
business functionality is packaged and offered is that it
effectively makes what already exists obsolete, even when
existing systems represent massive investment. This effect
is compounded in the case of services because they appear
to offer freedom from such a legacy “tie-in”: if a new
service provider offers a new improved service, you change
service provider. Of course, much of the hype surrounding
the arrival of service and service-oriented marketplace both
fuels and feeds upon these issues.

The problem still remains, though: how should existing
systems, in many cases providing core, or even critical,
business functionality, be migrated to SOAs? We believe
that the answer lies in progressive evolution of existing
systems towards SOAs, involving possibly many
intermediate stages where core existing system
functionalities are integrated into what amount to SOAs.
Initially, this may involve adding functionality as a service,
but progressively, obsolete functionality will be replaced by
more and more independently implemented services.

III. PROCESS APPROACHES AND SYSTEM RE-ENGINEERING

Although little work has been done explicitly on the
problem of migrating existing systems to SOAs, a number
of different methods and strategies have been described for
evolving systems that are, in part, applicable to the problem.
Here we provide brief summaries of three approaches which
address different issues that arise. First we look at
Renaissance, which takes a reengineering approach to
maintenance. Then we describe biefly COMPOSE, a
service-oriented process for developing systems using
software components. Finally, we describe some aspects of
business process analysis approach, called SOSA.

A. Renaissance

In response to an appreciation of both the functionality
offered by existing systems and the investment that they

represent, the Renaissance method [5] presents a set of
strategies that place reengineering over replacement, whilst
recognising that, ultimately, replacement is the evolution
strategy required if all else fails. This is the implicit
foundation of any approach that proposes any form of
progressive evolution. The four key requirements that
motivate the approach (Table 1) help to identify how it can
contribute to the evolution of existing systems to SOA.

Many of the specific details of Renaissance are beyond
the scope of this summary. However, having identified the
dilemma that exists between maintenance and replacement
[6], the method stresses that an effective way of mitigating
the costs and risks associated with replacement, system re-
engineering — especially with a view to ongoing system
development is an attractive approach.

TABLE 1
RENAISSANCE REQUIREMENTS.

No Requirement
1 The method should support incremental evolution.
2 Where appropriate, the method should emphasise
reengineering, rather than system replacement.
3 The method should prevent the legacy phenomena
from reoccurring.
4 It should be possible to customise the method to

particular organisations and projects.

Renaissance goes on to list six evolution strategies (Table
2). Examination of these strategies reveals something quite
interesting with respect to evolving an existing system to
SOA: namely that all of these strategies could contribute to
successful evolution of this sort. This limits the direct
applicability of Renaissance, but does not diminish the
importance of the recognising that progressive evolution
should contain an element of reengineering as part of the
evolution approach.

TABLE 2
RENAISSANCE EVOLUTION STRATEGIES.
Strategy Description

Continued The accommodation of change in a

Maintenance system, without radical change to its
structure, after it has been delivered and
deployed.

Revamp The transformation of a system by
modifying or replacing its user interfaces.
The internal workings of the system
remain intact, but the system appears to
have changed to the user.

Restructure The transformation of a system’s internal
structure without changing any external
interfaces.

Rearchitecture The transformation of a system by
migrating it to a different technological
architecture

Redesign with The transformation of a system by

Reuse redeveloping it utilising some of the
legacy system components.

Replace Total replacement of a system.

B. COMPOSE

There is an obvious parallel between services and
software components, particularly commercial-off-the-shelf
(COTS) components. A process for evolving an existing
system using COTS components might be a good candidate
for application to evolving existing systems to SOAs.
Kotonya and Hutchinson [7] describe the use of the
Component-Oriented Software Engineering (COMPOSE)
method to evolve a legacy freight tracking system so that it
supports the demanding requirements of a company’s larger
customers. The specific details of the process are beyond
the scope of this paper, but the following aspects of
COMPOSE important:

1) COMPOSE interleaves planning & negotiation,
development and verification. The purpose of this is
that many of the challenges of utilizing COTS
components stem from limitations of available
documentation. Verification embeds activities that
check the viability of the system at every stage, whilst
negotiation allows for corrective action.

2) COMPOSE incorporates a viewpoint (VP)-oriented
requirements approach [8]. VPs provide an excellent
mechanism for modelling legacy system elements, as
well as other concerns, such as service-consumers.

3) COMPOSE uses the notions of service providers and
service consumers as an integral model of the system
being developed. Required “services” are used to map
between system requirements and available
components. There are few significant differences
between third party services with COTS components.

These aspects of COMPOSE mean that it can be used to
model an existing system as a series of refined sub-systems
that provide and consume services. The resulting model can
then be used as, essentially, a roadmap for progressive
evolution.

A potential weakness of applying COMPOSE to
progressive evolution of existing systems to SOAs is that it
doesn’t explicitly address the entire business context of the
proposed activity.

C. SOS4

In the vast majority of cases, the need to utilize an SOA
is part of a process that is not itself technology-led. In other
words, there are external reasons for wanting to adapt an
existing system so that it can operate in a SOA, and there
are some aspects of the resulting challenge that relate more
to those reasons than to the technical challenge.

The Service-Oriented Solutions Approach (SOSA) [9]
attempts to address these. Again, many of the details are not
relevant, but there are a number of interesting elements,
including:

e C(ritical Business Issues. SOSA recognises that the
organization that is considering a SOA solution to its

system needs is doing so because it has identified
critical business issues that have to be addressed. This
reminds us that:

o The system is being developed to implement some
sort of business strategy, not as an end in itself.

o The details of the technical problem are probably
not important in themselves, only insofar as they
affect the business.

o An entirely viable technical solution may
ultimately be rejected for business reasons (e.g.
expensive, too long to deliver, etc); similarly,
business priorities may favour an inelegant
technical solution.

e Business Process Improvement. The rationale for the
development activities are determined as part of a
business process improvement exercise, which involves
modelling the existing process, determining the
changes that should be made to solve the relevant
critical business issues and an explicit attempt to
estimate the return on investment (ROI) associated with
the proposals. Of particular interest here are:

o Note the emphasis on the business context.

o The modelling activity. Even when analysts and
developers are familiar with the system being
adapted, this activity is necessary as proposals for
solutions are sought. However, in the very worst
cases of embedded legacy systems, this activity
will amount to a type of reverse engineering,
potentially providing a model and level of
understanding of the system that has long been
lost.

o Enterprise Service Architecture (ESA). This is
effectively a plan for the organisation’s business
services bus. SOSA’s ESA identifies a set of IT
services that:

o Are derived from an enterprise-wide business type
model;

o Offer operations that are business process-neutral
as well as being user interface-independent.

Importantly, once developed, this ESA can act as a
roadmap for an incremental, or progressive, evolution
process where functionality that is provided by existing,
legacy, systems is moved to service-based provision. SOSA
is primarily intended for companies which intend to
implement their SOA using “bespoke” development. As
such, it does not explicitly address the challenges of using
third party services.

IV. HYBRID SYSTEMS

An underlying assumption in the discussion of strategies
for achieving progressive evolution to SOAs is that an
existing system will continue to operate in conjunction with
some sort of service-oriented system. This could mean that

systems operate in parallel; the existing system providing
some subset of business functionality and the new service-
based system providing the novel functionality. However,
this is not what we envisage. Instead, it is expected that
some combination of the evolution strategies identified in
the Renaissance method will be used to integrate some part
of the existing system with some new part that is
implemented as a service, or a set of services.

Given the different types of system that exist in the
installed software base, their form and function and their
potential to be evolved for further use in a potentially
infinite number of new scenarios, very different systems
will result from attempts to evolve them. However,
particular types of system are likely to be prevalent. Their
nature will depend on the relationship between the provider
and consumer of the service element, and the treatment of
the existing system. Although obviously a simplification,
such a consideration gives four distinct types of system as
shown in Fig. 1.

We can consider the nature of these different types
separately:

Type 1: Combining parts of an existing system with
additional software elements that are implemented
internally as services will result from an attempt to use
services as an implementation mechanism only. The
primary benefits will be the adoption of an interface-driven
development strategy for the new functionality, and the
availability of a set of standards and protocols to guide the
development. The term “guide” is used to highlight the ad
hoc nature of the development process: difficulties may be
overcome by use of non-standard procedures. Certainly,
wider SOC activities, such as discovery, will not be relevant
in these situations.

Type 2: This type of system imposes stricter adherence
to the norms and expectations of SOC. The externally
provided service cannot be adjusted to overcome
difficulties and thus the existing system may require deeper
modification to make it compatible.

Type 3: “Servicising” the existing system (i.e., wrapping
it to offer its functionality as a set of service-based
operations) for use with internally provided services
suggests a much greater commitment to SOC than Type 1
systems. However, control over provision and consumption
still affords greater flexibility in the face of problematic
difficulties (e.g. the statefulness or otherwise of the
resulting services).

Type 4: This represents a wholehearted commitment to
adopting SOC within an organisation — a combination of the
“rearchitecture”, “redesign and reuse” and the “replace”
strategies identified in Renaissance.

There are obvious relationships between these types of
system and the evolution strategies identified in the
Renaissance method and the other process-oriented

Services: Provider/Consumer
Relationship
Same (Internal) | Different (External)

a(;slt;ng System: Type 1 (ad hoc) Type 2 (hybrid)
Existing System: .
“Servicised” Type 3 (hybrid) Type 4 (SOC)

Fig. 1. Different types of system result from the approach adopted
when integrating existing systems and services. Whether or not the
services consumed are provided externally is also an important factor.
The combination of these determines the type of the resulting system.

evolution approaches. The particular strategy adopted will
affect the resulting system, but all to one degree or another
share a hybrid nature. The inherently greater constraints
imposed on Type 4 systems should mean that the most
profound problem is wrapping the existing system as a
service that operates as a service is expected to operate. The
greater flexibility available for Type 1 systems may make
problems easier to overcome, by may result in issues that
affect maintainability into the future. Type 2 and Type 3
systems share constraint and flexibility in equal measure.
Whether systems of these types will behave as expected
raises some important questions. Experience in the
component-based software engineering world suggest that
there will be some significant challenges to overcome,
particularly in the area of architectural mismatches.

V. ARCHITECTURAL MISMATCH CHALLENGES

If we accept that the most pragmatic way to exploit
services whilst preserving the investment of the installed
software base is some kind of progressive evolution towards
SOAs, and then we have seen that most forms of integration
of existing systems with services result in what we can only
understand as hybrid systems, we need to consider the
viability of such systems. In many cases, such systems are
becoming the de facto development paradigm [9], but it
should not be assumed that there are no associated
difficulties. The similarities between services and software
components raise some important issues.

Garlan et al [10] describe a number of significant
challenges that such systems face. Although this work
primarily focuses on component-based systems, its value
here comes about because (1) no similar analysis yet exists
for service/service and service/non-service integration and
(2) the defining feature was the integration of independently
developed software elements. They concluded that
attempting this usually results in the following deficiencies:
e Code bloat: Interacting programs may grew excessively

large in size.

e Poor performance. This is the result of the excessive
code size and the communication overhead caused by
architectural mismatches.

o Need to modify the existing components: Integrated

software systems usually have subtle incompatibilities
or deficiencies that required considerable time to
understand and remedy.

Need to reimplement existing functions: Even if a
capability is present in an existing component, it may
be sometimes necessary to reimplement it in order to
cooperate with other components.

Unnecessarily complex code: Simple sequential
programs often must become multithreaded tools
because of the need to provide concurrent access to
clients .

Error-prone construction process: Building a system
from its sources can be a very time-consuming process,
due to the high degree of interdependence between the
various components.

The problems can be traced back to architectural
mismatch (i.e., by conflicts between the architectural
assumptions made by the various elements). Note too that
some of these difficulties assume that elements can be
modified. If the existing software assets are off-the-shelf,
some of the problems encountered may be insurmountable.

In order to understand architectural mismatches, it is
helpful to view a system as made up of components (the
high-level computational and data storage entities in the
system) and connectors (the interaction mechanisms among

the

components). There are four primary categories of

assumptions that can lead to architectural mismatch:

1.

Nature of components:

Infrastructure: The assumptions a component makes
about the underlying support it needs to perform its
operations. This support takes the form of the
additional infrastructure that the component either
requires or provides in the form of operating system,
middleware, additional libraries and other
components. One of the main problems here is that
many software technologies do not require to
explicitly document the requires interfaces. A
prominent example is object-oriented technology
where only the provides interfaces are documented.
Control model: One of the most serious problems are
the assumptions made about what component holds
the main thread of control and how individual
components control the sequencing of actions. This
problem is especially serious if a number of
components, each holding its own event loop, are
integrated into the same process, as is often the case
for services. This may be a particular problem if
existing, or legacy, system elements are wrapped as
services.

Data model: Even if simple conversions of the data
format are performed by the underlying runtime
libraries, assumptions about the nature and
organization of the data a component will handle

2.

3.

remain critical.

Nature of connectors:
Interfaces: At the syntactic level, interface
mismatches are rather easily solved by the
introduction of glue software in the form of wrappers
and proxies. The semantic level is more subtle and
requires careful analysis. The problem here is that
the semantics of cooperating components are often
not specified at all, only informally specified or
formally specified by different formalisms (e.g.
pre/postconditions and ontologies). The first two
cases might result in a considerable test effort, while
the compatibility of specification mechanisms might
be a source of nasty problems in the third case.
Protocols: Once the interfaces are made compatible,
assumptions about the sequence of actions (the
protocol) constitute the next problem. Almost all
interfaces require particular sequences, be it only
that a component must be initialised before it can be
used. More subtle is the handling of message
sequences for a mix of synchronous calls and events
(e.g. generated by a publish/subscribe mechanism).
This problem is very relevant for services that often
use both communication mechanisms. This means
that the requester must do some bookkeeping in
order to properly pair requests and responses.
Data model: Just as the components make
assumptions about the kind of data the components
will manipulate, so also do they make assumptions
about the data that will be communicated over the
connectors. The call parameters of different
components can be of different types , requiring the
introduction of additional translation routines.

Global architectural structure:
Topology of the system's communication structure:
Entities that are central to a collection of
components often assume a star structure with no
direct interaction between the other participants. For
services, this is referred to as orchestration pattern.
The problem arises if other components assume
direct component-to-component communication.
This corresponds to the choreography pattern of
interaction. Conflicts between these two interaction
patterns can easily result in blocking and deadlocks.
Presence or absence of particular components or
connectors: If a composition of components is not
carefully modelled it is possible that not all elements
will be available. This is especially an issue given
the late-binding nature of SOAs.

Construction process: Conflicting assumptions about

the order in which the various components and

connectors must be combined and instantiated to build

the system form another hurdle.

o Deployment dependencies: 1f the underlying
platform does not support shared code and resources,
these may have to be duplicated.

e Runtime dependencies: A similar problem occurs at
runtime if different components make different
assumptions about the sequence in which other
entities are instantiated.

Gacek and Boehm [11] also identify a set of conceptual
architectural features that can give rise to mismatches, such
as dynamism, concurrency, distribution, encapsulation,
predictable response time and re-entrance. This set of
architectural features is less generally applicable to SOC,
but illustrates that architectural assumptions may be
complex and not readily understood. Successful integration
of existing systems and separately developed services will
require very careful analysis of the assumptions made on
both sides.

VI. CONCLUSION

We believe that the progressive evolution of existing
systems to SOA and the resulting hybrid systems are a
persuasive way forward to ensure a continued realisation of
investment in existing systems — and an avoidance of costs
and risk associated with wholesale replacement. However,
the lessons learnt in the area of component-based systems
suggest that there are significant problems when trying to
integrate components, or services, from different sources.
Appropriate approaches for progressive evolution of
existing systems must address these challenges.

The range of architectural mismatches identified suggests
that there is a need for active research in this area.
Otherwise, businesses that urgently require the benefits
promised by SOC will be left to themselves to determine
how best to migrate their existing software assets, when in
fact they share problems faced by many. On the one hand,
any suitable process for supporting migration of existing
systems to SOA will involve detailed business process
analysis. On the other, it must surely also involve
appropriate architectural analysis. We are currently
embarked on delivering such a process and hope to report
on it in the near future.

REFERENCES

[1] M.M. Lehman and L. Belady, Program Evolution: Processes of
Software Change. London: Academic Press. 1985.

[2] N. Leavitt, “Are Web Services Finally Ready to Deliver?” IEEE
Computer, 37(11), 14-18, 2004.

[3] A. Brown, S. Johnston and K. Kelly, "Using Service-Oriented
Architecture and Component-Based Development to Build Web
Service Applications", October 2002.

[4] D. Dhungana, R. Rabiser, P. Griinbacher, H. Préhofer, Ch.
Federspiel and K. Lehner, “Architectural Knowledge in Product Line
Engineering”. Proc of the 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications , Croatia,
September 2006.

(8]

[10]

(11]

I. Warren and J. Ransom, "Renaissance: A Method to Support
Software Systems Evolution", Proc of 26th Annual International
Computer Software and Applications Conference (COMPSAC),
Oxford, UK, pp.415-420, August 2002.

K. Bennet, “Legacy Systems: Coping with Success”. IEEE Software,
12(1). 1995.

G. Kotonya and J. Hutchinson, "A COTS-Based Approach for
Evolving Legacy Systems", to appear in Proc of the 6th IEEE
International Conference on COTS-based Systems (ICCBSS 2007),
Canada, February 26 - March 2, 2007.

G. Kotonya and J. Hutchinson, "Viewpoints for Specifying
Component-Based Systems", in Proc of the International Symposium
on Component-based System (CBSE7), LNCS Vol 3054, Edinburgh,
UK, May 2004.

“Hybrid System Development”, Service Centric System Engineering
(SeCSE) Project (IST 511680) Document A3.D7.
(http://secse.eng.it) 2006.

D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch,
or, Why it's hard to build systems out of existing parts”, IEEE
Software, 12(6), Nov. 1995.

C. Gacek, and B. Boehm, "Composing Components: How Does One
Detect Potential Architectural Mismatches?," in Proceedings of the
OMG-DARPA-MCC Workshop on Compositional Software
Architectures, January 1998.G. O. Young, “Synthetic structure of
industrial plastics (Book style with paper title and editor),” in
Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill,
1964, pp. 15-64.

