Frameworks for Enhancing Temporal
Interface Behaviour through Software
Architectural Design

Devina Ramduny-Ellis

A thesis submitted in partial fulfilment of the
requirements of Staffordshire University for the
degree of Doctor of Philosophy

December 2002

Abstract

Frameworks for Enhancing Temporal Interface
Behaviour through Software Architectural Design

Devina Ramduny-Ellis

A thesis submitted in partial fulfilment of the requirements of Staffordshire
University for the degree of Doctor of Philosophy

December, 2002

The work reported in this thess is concerned with understanding aspects of tempord
behaviour. A large part of the thesis is based on andytical studies of tempord properties
and interface and architectura concerns. The main areas covered include:

(i) andysng long-term human processes and the impact of interruptions and delays

(i) investigating how infrastructures can be designed to support synchronous fast pace
activity

(i) design of the Getting-to-Know (GtK) experimenta notification server

Thework is mativated by the failure of many collaborative systems to effectively manage the
tempora behaviour at the interface level, as they often assume that the interaction is taking
place over fadt, reliable locad area networks. However, the Web has chalenged this
assumption and users are faced with frequent network-related delays. The nature of
cooperative work increases the importance of timing issues. Collaborative users require
both rapid feedback of their own actions and timely feedthrough of other actions.

Although it may appear that software architectures are about the internals of system design
and not a necessary concern for the user interface, internal details do show up at the surface
in non-functiona aspects, such as timing. The focus of this work is on understanding the
behavioura aspects and how they are influenced by the infragtructure. The thess has
contributed to several areas of research:

(& thegudy of long-term work processes generated atrigger analysis technique for task
decompadtion in HCI

(b) theandysisof architectures was later applied to investigate architectura options for
mobile interfaces

(c) theframework for notification servers commenced a design vocabulary in CSCW for
the implementation of natification services, with the am of improving design

(d) theimpedance matching framework facilitate both god- directed feedthrough and
awareness

In particular, (c) and (d) have been exercised in the development of the GtK separable
notification server.

Acknowledgements

| would like to thank my supervisor, Alan Dix, for his guidance and support throughout the
duration of thisresearch. His criticd comments on drafts of this thes's have been invauable.

| would dso like to share this achievement with my parents and parents-in-laws who have
been wondering what | have been doing for so many years.

Finaly, aspecid thank you to my husband, Geoffrey, for his patience and encouragement. |
am dso very graeful for his ussful suggestions on the find draft of thisthess.

Table of contents

Table of contents

F N 05 1 o SRR i
ACKNOWIEAGEMENTS.......ooiie et re e sae e et e e s re e e reenneas i
TaADIE Of COMENTS.......eiiiieieee ettt s sb et e ne e naeeneas iii
IS o (o U (-SSR Xi
IS 0 = o[- TSR Xiv
(@ gF=To] (= gl RN o 1 0o [F o: [0 o I RSP 1
1.1 Background to the problem...........cccceeieii e 2
1.2 Objectives Of the WOrK.........ccoviiiieiiecc e 4
1.3 Approach Of tREWOIK........c.coiiiiiieiie e 4
1.4 Novd characteristics Of tNEWOrKooeriiiiiiiiiie e 7
1.5 Contributionsto the reSearch area..........oceeveieeneeie e 7
1.6 SHUCIUrE Of tNETNESIS. .. .eiieeecee e e 8
Chapter 2 Timeand INtEraCtiVity........ccoceieeieiiece e 11
P25 R = 7o (o (0 11 o S 12
2.1.1 The HUMaN MEMONY.......ccccieiiecie et cee et 12
2.1.1.1 WOrKing MEMONYcccueiiecieeie e cteecte e see e s e e 12
2.1.1.2 LoNg-teM MEMOIY ...c.evviiieiesieeesieeesreeesires s s 13
2.1.1.3 Effect of INEmUptionScceeeeeeeviieieeesecce e 13
2.1.2 CognitiVE MOTESccoeceecrieiece e 13
2121 GOMSMOUEccoiiriirieieie e 13
2.1.2.2 Keystroke-Level Modd...........cccooveivieeiiciece e, 14
2.2 Timeand the iNteraCtiVe PrOCESS.........ccoueeeeieeiie e s et eee st e e 15
AV R 0= 00 0 <0 1] 01 SR 15
2.2.2 1IMpPact Of AEHAYScccveeeeciee e 17
2.2.3 Need for feedback.........ooviririeiiiese s 18
224 Typesof feedDatkccoceeieieiiesece e 19
2241 AlETDOX ..coiiiiiiiseeieee e 19
2.24.2 Progress INdiCatOr..........cccvvevueeieeieeie e 19
2.25 COpPING SrAEIES.....eciveeeecreeieeeeceeste e ste et ae e e e aesree s 19
2.3 Interaction OVer the WED..........cccoviiirieeee e 20
2.3.1 ProblEM @rEBS.......coeieriiriiriiniieieee e 21
2311 REJPONSEUME....ceciieieeeeceee et ee e 21

Table of contents

2.3.1.2 Network [aenCycccccceeveeiieecee e 21

2.3.1.3 Collaborative iInteraCtion............ccoveereereereenesienseeseeseens 21

2.3.2 COPING SIrAEJIES......cccueeeieeiieeeieesiee et e s e sre st e ere e ere e e saeenneas 22

2.3.3 Potentid SOIULIONSocueiiiieieieeese e 23

2.4 Tempord properties of INteractive SYSEMS.........ccvveeieevie v 23
241 Interface DENAVIOUNccooeiiiie e 23
24.1.1 BEvents datusand agents..........ccceeeeeeiieicieeneesieesee e 23

24.1.2 Mediding FAUS........cccvveeieeiieeiie e see s see s 24

2.4.2 Pace of INLEraCION.........cceieeieeie e 24
24.2.1 Paceof communication channdc.ccooeeviiiiienicnens 25

2.4.2.2 PaCe Of taSK....cceieiiiiiieieierie e 25

24.2.3 PaCeOf USEIS....cceiiiiiecieseeie e 25

2424 DEBYS.....cceeeeecteeeeeee e 26

2425 CopingWithddays.......c.ccoeviieiiieciecse e 26

2426 TiMmegranUaity........ccoccveeieeiiieiee e 27

2.5 SUMIMEAIY ...ttt st be e e e be e sae e e be e e neeesne e saneenneeenns 28
Chapter 3 Single-user Interface and ArchitecturelSsues.........ccoeveeeceeieeciecciee, 30
3.1 REQUITEIMENES.ceiiiieciieitie sttt ettt s te e sbe e s et e sare e sbe e e b e e nse e enneenreeenns 30
TN IR S o - [0 o (OSSR 31

3.1.2 Direct ManipuIaion.........cc.eeieeiiieeieesie e 31

313 FEEUDACK ... 31

G0 NV S 000 S 1S (00, R S 32

3.2 ArchiteCtural MOOEISooeeiieiecie e 32
321 SeeheMMOOEccooeieiieee e e 32

3.2.2 Arch/Sinky moddcccoeiiiiiieecec e 33

3.2.3 Model-View-Controllercocoovieneniinieeee e 34

3.24 Presentation Abstraction-Control...........coceveeieveenenieneeseee e 36

3.3 Andysng architecturd MOJEIS..........ccvviieeiiecie e 37
3.3.1 Conceptua arChiteCtUNE..........eeecveeiieecieesee e 37

3.3.2 Physca aChiteCtUre..........c.cooeiiiiieiie e 38

3.4 Interface develOPMENE LOOIS........coiiieiieceece e 39
G0 VY1070 o 1Y T o BS VS (= 1S TSP 39

I Lo o | (| SRS STRR 40

3.4.3 User Interface Management SyStems........coccveveecieevee e siee s, 40

3.4.4 User Interface Development Environments.........occceeveevciecveecciecnen, 41

RSB ISS T gl o7 7= 0 [g SRS 41
351 BEVEM-DESEd ..o 41

Table of contents

3.5.2 Object-0rented.........ccoeiiieiieceecee e 42

3.5.3 Congrant-basedccccoviieieiieieresese s 42

354 CAlDACK......ceeieiiiiee st nea 43

3.0 SUMIMEAIY ...ttt sttt st be et e e sar e e be e e s e e sne e saneenneeenns 44
Chapter 4 Multi-user Interface and Architecture Issuesfor Collaboration............. 46
4.1 REQUITEIMENTS. ...ccuvieiuiecieecieeeteesee et e ste et e saaeesseessteesbeessaeenseessseesbeesnseesseesnseens 47
v R RS = o o o 1SS 47

4.1.2 FEEADACKccueeiieieieee st 47

4.1.3 Feadthroughoooeeiie i e 438

414 AWBBIENESS.......eeiiueieieeiieeetee sttt e s sbe e e sre e see e sreesreesseesnneenneeenes 48

v/ TSRS 07 1] 0o P 49

g G I (0 1 1 (o) OSSR 50

4.2 ArchiteCtural MOOEISooeiiieeiieiesieie e 50
4.2.1 Centralised aChiteCtUre...........cooviiveiiieeee e 51
4.2.1.1 Rendezvous Absraction-Link-View architecture.............. 51

4.2.2 Replicated arChiteCtUre..........cc.ocveeiieiiiesie e 52

4.2.3 Hybrid aChiteCtUre.........cccvveiieciee e 54

4.3 Interface deva OpmENt OOIS.........uiicieeiieciece e 56
4.3.1 Shaed WINAOW SYSIEIMS......cccoviiiieiieciee e esiee et 56

4.3.2 Shared ODjeCt SYSEMSvveiieceece e 57

4.3.3 Groupware tooIKItS.........ccoveeiiiiiie e 59

4.3.4 Multi-user User Interface Management Systems........cccceveevcveennenne, 59

4.3.5 Multi-user interface generator..........ccoceeveeeieevie e 61

VA DS S To a0 =6 [0 0 ST SRR 61
441 CONSTBINES....ccueevieierieerieeiesee et ee s re e sre et ee b eessee e 61

442 CAlDACKS ... oot 62

443 ACHVEVEIUBS........ooiiiieieeeeee e 62

S 00110 07 V7RSSR 63

Chapter 5 Why, What, Where, When: An analysis of Collaborative

ArchiteCtures on thEWED ... 65
5.1 Overview Of theWED..........coeoiieeece e 66

5.1.1 AFChITECIUNE.....cceee et 66

o3 2 I 101 = (0SSP 67

5121 ASYMMETICNAUE......cerieieieriere e 68

5.1.2.2 Lack Of @Wareness.......c.ecvveevieeiiieciecctee e 68

5.1.2.3 Redrictive architecturd arangementcccceeevevenennns 68

5124 FeedbaCk dalays.......ccoouririerenine e 68

5.2
5.3

54

5.5

5.6

5.7

5.8

5.9

Chapter 6

6.1
6.2

Table of contents

5.1.25 Unrdigbletransmission.........cccoceveeiinienennencn e 68

5.1.2.6 POOr User iNEface.ccoveriieiiereeee e 69

5.1.3 Improving funCionaitycccccueeiieiiiisee e 69
5131 USNG CGl SCHPLS....c.veiiieeiiieiieeiriecreesiee e sree e sneesneens 69

5.1.3.2 Implementing dedicated serversand clients...................... 69

5.1.3.3 Augmenting Web interface.........cccoccveveeicvevie s, 69

5.1.3.4 Enhancing network protocol...........cccoceeviiveiiesieciie i, 70

F N g (o (0o USSP 71
Why — BENQVIOUrAl ISSUES........eoiuieciie ettt 72
5.3.1 FEEDACKcoieieiie e 72
5.3.2 Feathroughooovviiieeee e 72
5.3.3 AWEIENESS......eiiiiieiieetee et et e ste et e st ae e se e e sbe e s s e e sse e eaneenneesnneeneas 72
5.34 Shared ODJECES.......c.eeiiiiiiieiece e e 73
5.3.5 COMIOL...eiieieiieee et 73
What — architectural COMPONENES...........coceeiieeiie e 73
5.4.1 Presentalion......ccccoieeiieeiesiesie e 73
5.4.2 Shared data........ccoooeeiieriiiieiece e e 74
5.4.3 COMIIOL...eiitiiiieieee e 74
5.4.4 NOUFICAION......eeiiiiriesisieieieie et enens 74
Where — placement deCISIONS........cceeiiiiiieie e 75
5.5.1 Replication and Caching........ccccoveviiiiiiiie e 75
5.5.2 COMIOL...eiieieiieee et e 76
EESRC TN [0 1] {0 (oo SRS 78
5.5.4 Different Kinds Of remOteNESS.........covviiiiieiiceee e 78
When — moving information and COde...........ccocoeeiiiiiie i 79
5.6.1 MOVING A@........ccoiiieirieeieciie e 79
5.6.2 MOVING COUR.......ooiiieitiecie ettt sttt neas 80
Narrowing down optionsfor the WEbDccoocveiiiciie e 80
5.7.1 Remote exeCution a0 USE.........c.ciceeriereeneenieeie e 81
5.7.2 Loca exeCution a0 USE..........cooueieerieniineesieeie e 81
IMPACE ON TESEAICN ...ttt ere e 82
5.8.1 Behaviourd coNSAerations..........cccevereereenieriinsee e 83
5.8.2 Influence on arChiteCUre..........coveveerieiiireeee e 83
SUMIMIBTY ...ttt ettt st e et e ae e e se e s se e e be e eaeeanseesmnesareesneesnneennnas 84
Exploring the Design Space for Notification Serversccccceeeeevvecnenne 86
Need for notification MEChANISM........ccciiieriee e 87
SAUS-EVENT @NAlYSS.....ceeeieceece s 87

Vi

6.3

6.4

6.5

6.6

6.7

6.8

Chapter 7

7.1
1.2

7.3

174

7.5

Table of contents

6.2.1 KEY CONCEPLS.....oiiiiie e eiiee ettt e snne e 88
(272 V1= o = (Lo o 1O 88
SEAtUS ChaNQE AISCOVENY ..ottt e 89
6.3.1 Case LI WECH......ocueiieiieee e e 89
6.3.2 Ca2 .. 90
RS RS I O S SR - S S 90
6.3.4 Cased: QAEKEEDENcccveeieecie et 90
6.3.5 SOUrCEVS. INILIAIVE........coieeiiieieceee s 91
Notification Servers 8BS MeIaOrS..........oivereriereereeie e 92
6.4.1 Change discovery options without a Notification Server 92
6.4.2 Change discovery optionswith aNatification Server ... 93
Taxonomy of NOLIfiICAION SEVEIS.......c.cecieeiie e 95
6.5.1 Possblearangements.........ccccoviiieie i 96
6.5.2 Location of NOtIfiCaION SEVES........cooiiiiieeieeeesee e 98
N0 1] Y] 0 U S = £ S SPSPI 99
S R = = 11 o PSSRSO 99
NOLTICAION MOTEIS......c.eeieeerieeie e 100
6.7.1 BEVENE-DESEAoceiiicieeceeee e 100
6.7.2 SHAUS-OMENE ... e 100
SUMIMIBY ...ttt ettt e et e e s se e e se e s se e e abe e eaeeemseesanesareesneesnneennnas 101
Impedance M atching: Coping with Limited Resources...........cccevvveunne 103
Need for impedance MatChing..........ccocveiir i 104
Where to control pace of feedthrough...........c.cccceeviiiiecii i, 105
7.2.1 Interaction without notification SErver...........coceveeveiceveeieeesee, 105
7.2.2 Interaction with nOtiIfication SEVEr..........ccceviriiieeeee, 106
Impedance Maching POlICIES..........c.cccviiie i 107
7.3.1 Pace IMPEOANCE.......cccvrereeieiee e 107
7.3.2 Volume IMpPedanCe...........ccoeeiieiiie e 108
7.3.3 Impedance matching vs. QOS.........cooiiiieiiie e 108
7.3.4 ImMplementation ISSUES.........cceiieiiee et 108
EXPIONNg PaCE POIICIES.......veeiee ittt 109
7.4.1 FXEdUMEINIEIVE.......cccooiieieeeeee s 110
A 11100 = = SRS 111
7.4.3 VoluUmMe of MESSAOES.....ccviiieece et 111
TA4 MESSAE GZE ..cveeceee ettt enne e 112
Scenarios for impedance MatChing.........c.oocveiie i 112
7.5.1 Bulletin board SySIEM........cooiiiiecie e 112

Vil

Table of contents

7.5.2 MuUlti-user Chat SYSEM......occvieiiecee e 113

7.5.2.1 Applying impedance matching...........ccccevveeceeieesiveesieene, 115

7.5.3 Avatar-based chat SyStemM......cccooiieiiicieece e 115

7.5.3.1 Applying impedance matching...........cccceevveeveeieesiieesieenn 116

7.6 FUMNEN ISSUES......eiieiiiiee ettt s nee e 118
7.6.1 Impact of ichmedia........c.ccoveeiieiiiece e 118

7.6.2 Ordering Of BVENLS.......ccoiiiiiece e 119

7.6.3 Priority of NOfICAION.cveeeieierese e 121

7.6.4 Generating notification of NOMFeVENtS..........cccceevieicieecie e 122

7.6.5 Optimigngthetiming of notification ddivery.........ccccvevieeieeiieciens 123

7.6.6 Impedance matching in Other areas.........cocvveceeiie e 123

S 11017 YR TUUR U P UPR PR 125
Chapter 8 Getting-to-Know: An experimental Notification Serverccccceveneee. 127
8.1 BaSiC AChItECIUME.........eeeieeieteeie ettt 128
8.2 Messaging and eVeNt laYES..........cociiecieeceece e e 128
8.2.1 Messaging ProtOCOL........cccueeieeiieeciee et 129

8.2.2 MeSSAgETOMMEooiveeciecee e 130
8.2.2.1 MESSAECIBSS......eeecveeceeeciee et 130

8.22.2 EVENthandIer......coccvviiieieeesee e 131

8.2.3 MeSsae eXChange........cocvieiii et 132

LSRG I \\[o 1] (o= (L0 g Y F= g7 o< SR 134
8.3.1 MaNTUNCHONSoviiiieiesiee e e 135

8.3.2 Managing INENEIS.....ccueeiieeiiee ettt 136
8.3.21 AddINErES......cceiveiieiieiee e 137

8.3.2.2 REMOVEINEIET ..o e 137

8.3.3 Broadcasting EVENES........cc.eeviiiiiecie e 137
8.3.3 L TEI Al 138

8.3.4 llludrating type trandaion............ccceecceeeiiee e 138

8.4 Augmenting GtK for Impedance Maching...........cccoccveevieiieenie s 140
8.4.1 PaCe PAIraMELENS......ceveeeieie ettt 140
8.4.1.1 FrequencCy ClasS......cccccceiiieiiie e 140

8.4.2 Managing interests with frequencycccoevevevee e, 141
8421 AddINIErESccvviveieieiieieere e 142

8.4.2.2 REMOVEINEIET ..o e 142

8.4.3 Event queue ManagemENt........ccocveeicieeinireeesieeesressssessssees e ssees 144
8431 Tl Al . 144

8.4.3.2 AlAM PIOCESS......ceeiteeereeitie e esiee st sre e saeeseesreesaeesneens 145

viii

Table of contents

8.4.4 AIENgG PaCce PATAMELENS.......c.eeiveeiree ettt 146
8.4.41 ChangefreqUENCYccoevieiiieeiie e 146

8.5 Example red-time online conferencing application...........ccccveveeecieeieeccieesieee, 147
8.6 SUMIMEAY ...ttt et s e e be e s e e e sne e san e e nneeenes 149
Chapter 9 Demongtration through an Exemplar..........cccceeveeiieiveeve e 151
(S R = V7 (07 (o g Ko 11 £ TSP 151
9.2 Interface DENAVIOUNoieiiiee s 152
0.2.1 Connect to aPPlICAIONccccveiieeiie e 152

0.2.2 Register with gopliCation...........cceeveeiiiiiie i 153

0.2.3 Create NEW CONFEIENCEcoiuereerieeieeie e e 154

9.2.4 JOIN COMTEIENCE.c.eiiieeieisteeiesee sttt se e re e sre e 154

9.2.5 Add CONIDULION.......cueiiiieieie e 155

9.2.6 Interact with multiple CONfErenCes.........ccoovvevevie e, 156

0.2.7 LeaVe CONFEIENCE......ceeiiireeetece et e 157

0.2.8 QUIt GPHCAION.......eeeiveeeieeciee e 157

9.3 Application implementation...........cccoceveeeiie e 158
9.3.1 Connect to Conference Manager..........ccocvvvveeieeciieesee e siee e 158

9.3.2 Regiger with Conference Managerccoccveveeecieevee e e, 158

9.3.3 Create NEW CONFEIENCEcoiuireerieeierie et 160

9.3.4 JOIN COMTEIENCE.eeeeeriiesteeie ettt e e e 162

9.3.5 Add CONtIIDULION. ..o 166

0.3.6 LEaVE CONFEIENCE......c.eeieieeeie e e 168

S RCAVARN© V1= o o 1o i oo ISP 169

9.4 Pace controlled feedthrough..........ccocie e 170
0.4.1 SATreqUENCY lEVES ..o 170

9.4.2 TraCk USEISTOCUS.....cccuiruiiriieierie sttt 171

0.4.3 Regier PACRINEIEc.eeeiieecieeciie e 171

9.4.4 Illlugrating pace impedance Machingcceveeeceevee e e, 172

0.5 SUMIMEAY ... s s ba e saa e snee s 183
Chapter 10 Architectural Evaluation.............ccccooeeiieie e 185
101 HEXIDIIIY oot 185
10.1.1 Current notification arangemeENtcccveveeieeveere e 186

10.1.2 GtK asapure notifiCation SEIVEXcccceeveeieeieceece e 188

10.1.3 Further architectura possbilities...........ccovevviceeiieieceecece e, 189

02 B 1=] o 1 [o ST 191
10.2.1 Exiging phySCal I0CAION.ccvrieeieieiiesie e 191

Table of contents

10.2.2 Posshility for supporting multiple data SOUrCeS...........cocveeveeiieecinnens 192

10.3 MODIIEY . cveceececeeeee e 193

10.3.1 Introducing mobility in the GtK frameworkccceveveieeiieinnns 193

10.3.1.1 POINt Of PrESENCE.......oiieierierieeiee e 194

10.3.1.2 Interaction throughthe POPccccceeiieiieiiee e, 194

10.3.2 Pace issuesin mobile INteraCtion...........coeeveeeereenieneesiesie e 196

10.4 Event ManaOeEmMEN.......cccoceieeieieeieeeee ettt snesne e 197

10.4.1 Event ordering in the GtK frameworK...........ccceveeiciveieecieeseeciens 198

10.4.2 Maintaining event ordering with impedance matching.............cccc...... 199

10.4.2.1 LiMItaONS ...ecvveeieieieieiesee e s enas 199

10.5 Interacting with eXiing daa............ccceviueiiiiiieciec e 200

O S U 110 7= RS SR 201

(@ gF=To1 (= g I B 0 0 Tox L1 Lo o ISR 203
11.1 Issuesraised by andytical SUAIES........cceeeveeiiecee e 204

11.2 Mesting the objectives of the WOrkcccccveveeiieciie e, 208

11.3 Broader resealCh themes.......c..oooiiiiiie e 213

11.3.1 TrigQEr @NAYSS...ccveecieiciie ettt 213

11.3.2 Andysing architecturd options for mobileinterfaces............cccce..... 214

11.3.3 Requirements for notification mechaniamS.........ccccevveevieeciieeseecneens 214

114 FNA FEMAK. ..ot e 216
REFEIBNCES ...t et b e 215
Appendix Case Study of Long-term INteraction...........cccceveeeiieveecveesee e 235
1. Problems of 1ong-term iNteraction..........c.cceoeeeeiierenie s 235

2. ANAYHCMENOUoiiiie s 237

3. DetallS Of tNE SUAYceeeeee e 239

4. FINAINGS Of the STUAY......ccveieiiiesie e 244

5. Related aPPrOBCNES.cceeieeeeieceesie ettt e et sreenneennens 247

6. DeIgn iMPlICAHONS.....cueiiiieciie e 249

S 011017 /PSP RT PR PRTPRPRPPRPIR 251

Figurel.l
Figurel.2
Figure1.3
Figure2.1
Figure2.2
Figure3.1
Figure 3.2
Figure3.3
Figure3.4
Figure4.l
Figure4.2
Figure4.3
Figure4.4
Figure4.5
Figure4.6
Figure5.1
Figure5.2
Figure5.3
Figureb5.4
Figure5.5
Figure6.1
Figure6.2
Figure 6.3
Figure6.4
Figure6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

List of figures

List of figures

Collaborative INteraction...........coceeveeieniereee e e 1
TEMPOT Al CONTEXL......c.eeviriiiiiierieeieee et 5
TNEIS STUCLUIN ... e 9
Norman’sinteraction CYCle........coviieieierere s 15
Factorsinfluencing pace of interaction............cccocceveeeveesiecvee s 25
L ogical components of Seeheim moddlccocveririeiiiincnee 33
Arch/SinKy MOc.oooiiii e 34
Model-View-Controller mode.........ccceoeveeienieiiee e 35
Presentation-Abstraction-Control model...........ccocvveiiniininninceneee, 36
Centralised arChiteCtUre........c.oceeveeeeeee e 51
ALV @rChiteCtUIE......eoeeeeeee e e 52
Replicated ar ChItECIUIN.......ccuevueeeeieeeee s 53
Suite hybrid arChiteCtUI........c.ee e 54
(@) Output and (b) Input structure of a shared window system............. 57
RUN-tIME ALV arChiteCtUreccooeeiiiriineeieeie e 60
Web client-server arChitedure........ocveeeeeece e 66
(@) Caching and (b) Replicationcceveeiieeiie e 76
Data Usage Vvs. Data StOrage........coovreerrerirereesieeeesieesiesee e 79
Code Usage Vvs. Code SEOrage......ccovvireeireeiiieeitie e esiee e esiee e ssee e 80
[T 1= o g € 0SS 81
Status-agent iINter aCtioN.........ccceeiieiiieeiie e 89
SOUNCE VIS TNITIALIVE.cveeeeceeecieeee sttt nne e 91
Client-data interaction without notification SErvercccceceveeiennenne 92
Client-data interaction with notification SErver..........ccoceveverenenenennens %!
Notification server communicating with active client and data............. 94
Notification server relaying changeto passiveclient...........ccoccevenee. 95
4x2 matrix for change discovery and propagation...........ccccceeveeecveennen. 96
Notification Server taXONOMYc.ccoeeeeieerieriesie s enes 96
Location of NOtIfiCatioN SENVES.........coiieiiiireee e 98

Xi

Figure7.1
Figure7.2
Figure7.3
Figure7.4
Figure75
Figure 7.6
Figure7.7
Figure7.8
Figure7.9
Figure7.10
Figure7.11
Figure7.12
Figure7.13
Figure7.14
Figure7.15
Figure7.16
Figure7.17
Figure8.1
Figure8.2
Figure8.3
Figure8.4
Figure85
Figure 8.6
Figure8.7
Figure9.1
Figure9.2
Figure9.3
Figure9.4
Figure9.5
Figure 9.6
Figure9.7
Figure9.8
Figure 9.9

List of figures

Update propagation..........cceeceeeieeiieeiieeseeesieeseeesieeseeessessseesseesnneesneas 104
(a) broadcast and (b) peer-to-peer interaction.........cccceeeeveeveeceeseeenne. 106
Using notification server asmediator...........ccccveveeeveeveeccieesee e, 106
Time-gpace diagram without impedance matchingc.cccccvvevevieennnne 110
Time-space diagram with fixed timeintervalccccocoveevieiieennene 110
Time-gpace diagram with timedeayccccoccvveevieecencesecce e 111
Time-space diagram with volume of messages..........ccceeceeveevieesinene, 111
Time-gpace diagram With MeSSAge SIZE.......occvveeveeciesieseece e 112
Example bulletin board system layout...........cccovevieiceeiee e, 113

Example Babble screenshot.........c.oceivecececveccceece e 114

Example Xchat SCreenshot.........cooeveceeie e 114

Example chat sesson with impedance matching..........cccocevvecvenienee. 115

Example avatar-based chat room..........ccccocoiiieii i, 117

Example avatar-based chat room with impedance matching............. 117
Timing diagram with point-to-point ordering of events...................... 119

Example conferencing system transcriptccceeeeeveceeneeiesieesennens 120

Monitoring the occurrence of NON-events........ccccceeveeeceeveeccie e, 122
GEK INFrastifUCLUN €. s 128
INEEr €S LADIE ... e 136
Flow of events between client and server objects.........ccccoecevveriennnnns 139
Effect of paceimpedanceon interest table........c..ccoeeveiieeiie i, 141
Conferencing exemplar on GtK infrastructure.........cccceccevevevveceeceenen. 148
EVEN VS, MESSAJE......uiiiiireeciiiee ettt 148
Event and message exchange in conferencing exemplar 148
Typical client @PPIEL.......c..ooeeecee e 153
(WS g =0 S 1o o SN 153
Create NEW CONTENBNCE........coieiieeeeree et e 154
JOIN CONFEIBNCE......eeiiiieee e 154
Pop-up confer eNCE WINAOW...........cciuiiiiiiiie e 155
Add CONEIIDULION ... e 155
Overlapping confer ence WINAOWScccveecieeiieeiieesiie e 156
L EAVE CONTEI BNCE ...ttt 157
Notification Of dEPArtUIe........ceeviiiiiececee e 157

Xii

List of figures

Figure9.10 Client object registerswith Conference Manager.........cccocccveveevneene 159
Figure9.11 Conference Manager sends conference list to client object.............. 160
Figure9.12 Create new conference and broadcast updated list............cceeeenneee 162
Figure 9.13 JOIN CONTEI BNCE........cciieeeiieieee ettt nes 163
Figure9.14 Send greeting MESSAJEcoveriirernieeie et 164
Figure9.15 Another user jOiNS CONTErENCE.......ccuveieveericie e 165
Figure9.16 User adds contribULIONcoovviiieiiiciie e 166
Figure9.17 Contributionsfrom Multiple USEr'Sccceveecieiesiece e 167
Figure9.18 Leave CONfEIENCE........cocii i 169
Figure9.19 (a) EXampPle SCENAIIO.....cccceeieeieeeeriecie et te et e et 173
Figure 9.20 (b) Adding contribULiONScccccviiiiiiiieie e 174
Figure9.21 (c) Managing contribULiONScccoveiiieereeie e 176
Figure9.22 (d) Queueflushtimereached...........ccccooeiiiiiiiiiciiiccee e 178
Figure9.23 (e) Adding CONIiDULIONSc.eecveeieerieeie et 180
Figure9.24 (f) Changein conferencefoCusccceeeiieeiiecieeiie e 182
Figure10.1 ReviSting the 4X2 MatriX......cccccveeeereeieiieeseecie e 186
Figure 10.2 Main components of conferencing exemplarccccoeveveieeieeinnns 186
Figure10.3 Flow of eventsduring change propagation............cccccvveeereereeeeseeenen 187
Figure 10.4 GtK within the conferencing exemplar.........cccccccoeieiiieiiecceecieiies 187
Figure10.5 GtK asapurenotification SErVEr.........cccvvveveeieeseeseseeseese e 188
Figure10.6 Additional location for GtKcccceeiiiiiiiiiececsee e 189
Figure 10.7 Physical structure of conferencing exemplarcccoceveevveceeceeennn. 191
Figure 10.8 GtK framework with heterogeneous data servers.........ccceeeeeveeinenne 192
Figure10.9 Logical componentsof GtK frameworkccceevevevceveeiesceeseenn, 194
Figure 10.10 PoINt Of PreSENCe.......cccvv ettt 194
Figure10.11 Logical componentsin mobile environmentcccoceveevveceecneenen. 195
Figure10.12 Paceimpedance matching in mobile environmentcccccceeeee 197
Figure10.13 Star configuration in GtK frameworkccccccevevevvvceveenesceeseenn, 198
Figure 10.14 Possibility of race condition with peer-peer networkc.cceeueeee 198
Figure10.15 Event ordering with impedance matching..........cccceeevvveeveeieeceeseeenne. 199
Figure 11.1 Chapter SITUCLUIMEocveeieie ettt 203

Xiii

List of tables

Table3.1 Summary of functionalities offered by architectural models.................. 38
Table3.2 Mapping of components between ar chitectural models............cccceueeee.. 38
Table4.1 Centralised vs. Replicated architeCcturecccoceeeceeieecceecie e, 56
Table4.2 Collaboration transparency vs. Collaboration aware.............ccoceeereenene 59
Table11.1 Summary of issuesraised in analytical Studies..........cccccceeveeviieeinenne 207
Table11.2 Summary of how objectives have been met...........cccceeeveiiniiencnene. 212
Table11.3 Comparing GtK with other notification sysems..........cccccevvvvcieeinenne 215

Xiv

Chapter 1 Introduction

The rgpid growth in worldwide communications has enabled users to collaborate and
access shared resources remotdy. Most systems assume that the network communications
are fagt enough to give the illuson of communicating over loca networks. However, these
assumptions do not dways hold true and this may give rise to unexpected behaviour for the
users. Thisthes's dedls with the issues of time and collaboration and looks at how tempora
factors affect collaborative work, particularly when it involves interaction over a wide area
network.

Congder an example where a number of remote users are collaborating through a chat
sysem. Each user’s contribution to a certain topic has to be broadcast to al other users
who are interested in that particular chat sesson. Thisimplies that the contributions have to
be sent across the network. I the network suffers from delays, the interested users will not
be able to see the contributions within an acceptable time. The flow of conversation can
eadly get out of synchronisation and users will be confused. On the other hand, if the
contributions are sent rapidly over a very fast network, users may find it too distracting to
cope with many contributions smultaneoudy, especidly if they have launched severd cha
sessions on different topics. It istherefore desirable that users see the contributions to each
chat sesson in atimey manner.

Tempord properties have traditiondly been linked to the system response time, in other
words, the delay between a user’s action and the system displaying results back on the
screen. In gngle-user interaction, feedback is the dominant tempora property. Feedback
is the rate at which users see the effects of ther own actions. But with collaborative
interaction (figure 1.1), there is another mgor tempora property in addition to feedback.
Feedthrough is the rate at which users see the effect of other group members' actions.

o0\, -
N »
@ direct @

communication

_——

feedthrough feedback

and control

Collaborative
System

Figurel.l Collaborativeinteraction

Collaborative work introduces delays and lags as users have to wait for both feedback and
feedthrough information. Furthermore, interaction over a communication channel increases
the likelihood of ddlays as a result of high network traffic, low bandwidth or remote site
falures. Even ahigh bandwidth connection will affect the system response time during pesk

Chapter 1 Introduction

network usage. The unrdiability of timey responses increases user frudraion and
gpplication errors, and can eventudly lead to a complete breakdown in the work process.

Collaborative users require both feedback and feedthrough information a afast enough rate
to dlow the flow of collaboration to take place successfully. However, the provison of

feedthrough is more problematic in a distributed environment as the application may execute
on a completdy different server from the locd user interface through which each user is
interacting with. Components placed at different locations face higher communication costs
and delays than those at the same location.

There is this fdlacy when building infrastructures that we can ignore the implementation
detalls so long as the platform has sufficient cgpability. The infragtructure is very often
treated as a ‘black box’. However, the way that things are mplemented does actualy
metter, as the underlying infrastructure tends to show up in non-functiond aspects,
particularly in timing, for instance during network delays.

Both tempora factors and implementation infrastructures are therefore very importart issues
in Computer Supported Collaborative Work (CSCW). This thesis will partly consder the
issues surrounding tempord properties and collaboration but the principa focus is on the
underlying infrastructure that enables the congruction of temporaly coherent collaborative
goplications.

This work does not atempt to overcome the problems of communication delays by
congtructing an effective network protocol. It accepts that delays are likely to occur even
over fast networks within a collaborative context and it uses this fact to drive the
development of an underlying infrastructure that provides remote users with satisfactory
tempord behaviour a the interface.

1.1 Background to the problem

Although the tempord properties of interaction are theoreticadly essentid, they have been
poorly investigated with the exception of a few sudies (Dix, 1987), (Dix, 19924), (Dix,
1994a), (Gray et d., 1994). There is dso a sociologicd tradition of studying tempora
phenomena that has recently been used in some ethnographic studies (Hudson et a., 2002),
(Reddy and Dourish, 2002). Tempord properties in system design have traditionaly been
asociated with the system response time (Miller, 1968), (Card et al., 1991), (Nielsen,
1993). However, the response time is not the only tempora property of interactive
sysems. This research uses two additional properties as its foundation for assessng
tempora problems that users percelve a the interface.

The fird liesin the interface behaviour. The user interface can be expressed though Status-
Event andysis (Dix, 1991), (Abowd and Dix, 1994), (Dix and Abowd, 1996a) in terms of
events and status behaviour. Status-Event anadlys's has been developed for tackling various
user interface issues. Temporal problems at the interface are said to occur whenever any
congraints between the status of the interface is broken. The idea of mediation between
datusis key to the understanding of delays in this research.

Chapter 1 Introduction

The second tempora property lies in the issues surrounding pace of interaction. The pace
of interaction is the rate at which users interact with computer systems, the physica world
and one ancother (Dix, 1992a), (Dix, 1994a), (Dix, 1995a). The pace of interaction is
influenced by three factors: the pace of the communication channels, the pace of the shared
task and the pace a which users operate. A mismatch between either one of these factors
and the resulting pace of interaction generates delays. Unlike bandwidth, which gives a
measure of the amount of information that is tranamitted, pace indicates the frequency of
communication.

Thinking about pace makes one concentrate on the timescale over which interaction occurs.
This may take place over different lengths of time. When users interact with computer
systems they normally expect the delay between their actions and the system feedback to be
rather short. For example, in direct manipulation interfaces, the feedback needsto bein the
order of 100ms. However, people across organisations often have to interact over a much
longer timescale, which may range from hours to days. As aresult, the interaction islikey
to suffer from frequent interruptions, thus intensifying the tempora problems that people may
have to face.

The emergence of the Web as an interactive environment has increased the significance of
the temporal properties of interaction. The Web provides an information infrastructure that
is universaly accepted and thisinfluences our everyday interaction through the Internet. The
focus of thisinteraction is mainly on the communication infrastructure rether than the devices
that access it; hence we tend to make inherent assumptions about the architecture of the
infrastructure.

Over the last few years, various techniques have been developed for the andysis of CSCW
and groupware (Benford and Fahlén, 1993), (Dix, 1994b), (Dix, 19944). Also, there are
many exising architectures for sngle-user interfaces and multi-user collaborative interfaces
(Praff and Hagen, 1985), (Bentley et ., 1994), (Hill et d., 1994). However, most of these
architectures are based on assumptions that will be broken once the software is o longer
running on a sngle machine or even on a loca network. However, these existing
architectures form an essentid starting point for thiswork.

Collaborative users require two important tempord requirements - feedback and
feedthrough. The provision of feedthrough is more chalenging in a collaborative gpplication
that executes over a distributed environment such as the Web. For example, rapid user
interface feedback on the Web can be promoted by running code locally as downloaded
Java applets;, however locd data updates may conflict with the needs of feedthrough.

Feedthrough is an essentid feature of cooperative interfaces but there is often little support
for it, from either existing applications or the Web protocol itsdlf.

Feedthrough dlows participants to see an up-to-date verson of the shared task while
preventing inconsistent updates. These concerns have led to some consderable work on
dgorithms for synchronous editing and for merging versons of asynchronoudy edited
materid. Feedthrough aso promotes the awareness between group members. This has
aways remained an informd interest in CSCW, but some forma anadyss of ‘avareness

Chapter 1 Introduction

modds (Benford et a., 1993), (Rodden, 1996) have emerged largey due to work on
Collaborative Virtuad Environments (CVE).

The andytic focus of this research is driven by the need for optimisng tempora
peformance. The mativation lies in the timdiness of information, as informed by the
tempora requirements of collaborative users and the design considerations of the underlying
system architecture.

1.2 Objectives of the work

The primary objective of the work reported in this thess was to develop the existing
andyss of tempora problems and use this andysis to drive the development of software
architectures for widdly distributed groupware systems. This objective can be broken down
into the following sub-gods:.

To devdop an architecturd framework that enables the condruction of
collaborative applications that satisfy appropriate tempora properties.

To demondirate the feasibility of the conceptud framework by using it as a basis for
developing an exemplar that provides collaborative users with atempora behaviour
that meets their pace of interaction

To evaluate the effectiveness of the gpproach embodied by the moddl.

A maor god of this research was to support the construction of distributed collaboretive
goplications that effectively manage the tempord behaviour at the interface level. The
architecturd requirements of this research are therefore driven by the desired tempord
performance of the user interface. The next section shows how these gods have been
addressed.

1.3 Approach of the work

The issues surrounding the temporal properties of interaction are first explored. Interaction
covers awide time scae from short-term discrete activities to long-term human processesin
organisations. Although the tempora properties addressed in this thesis are driven by user
needs on relatively short periods of interaction by focussing on architecture and interface
issues (figure 1.2), the processes involved in collaborative long-term interaction were aso
investigated. The findings of a case study carried out to investigate the tempord problems
thet arise during long-term interaction are presented in the Appendix.

Chapter 1 Introduction

short-term |ong-term
interaction interaction

human
processes

Appendix

architecture

and interface Thesis

Figurel.2 Temporal context

Software architecture is about dividing systems into components to perform certan
functiondities and then linking the components together in such a way that they can
communicate effectively. Although it may a firsd seem that software architectures are
related to the internds of system design and not a necessary concern for the user interface,
internd details manifest themsdaves at the surface. As a result, the congderation of the
physica architecture becomes unavoidable. Architecturad decisons directly influence the
behaviour of the user inteface and the most Sgnificant behaviourd implication on a
digributed platform is often the tempora impact.

Interface requirements and architecturd models for both single-user gpplications and multi-
user collaborative applications are analysed based on the exigting body of literature. This
architecturd analyss is then extended to the Web, an environment that is predominantly
subjected to delays. However, the Web dso offers immense potentid for the development
of distributed collaborative applications, despite the fact that is protocol were origindly
designed and used largely for accessing anonymous gtatic or dowly changing informetion.

The Web forces the concern between the location of the data and that of the control, thus
generdting various dterndives for the placement of architectural components. Location
decison is decisive in determining the users rates of feedback and feedthrough. In order to
clarify the various architectural options and their effects on the tempora properties offered
by the interface, a framework for analysing cooperative architectures on the Web is
presented.

Feedthrough is an intringc tempora limitation in collaborative gpplications in generd.
Furthermore, the needs for feedthrough on the Web conflict with those of feedback.
However, feedthrough is crucid for maintaining collaboration and promoting awareness.
There are two key requirements for feedthrough - firgly, the ability to access and update
shared data, and secondly knowing when that data has been updated. The former lies
behind the design of shared data repositories, either bespoke systems designed for CSCW
or off-the-shelf databases and shared object stores. The latter requires notification
mechanisms, the key eement in informing people about status and change.

In order to investigate the different ways in which notification servers can be implemented, a
framework for the design space of notification services is presented. The design space aso
generaes a taxonomy for notification servers. The Status-Event andytic framework
(Section 1.1) is used as afoundation to explore the ways in which the notification server can
become aware of changes to the data and how it in turn, makes this available to the client

Chapter 1 Introduction

goplications. The naotification server can thus mediate feedthrough information between
end-user clients.

Users involved in cooperative work often have to interact with a large number of shared
objects. It may not dways be possble to provide a fast rate of feedthrough for each
object, as there is not enough network and computationa resources available. Even if the
network was infinitdy fast and there was an infinite amount of memory, a maximum rate of
feedthrough will generate further network congestion. The extra computationd load implies
ddays for dl the objects including the ones that are of higher interests to the usars.
Furthermore, from a cognitive viewpoint, collaborative users may find it too distracting to
cope with afast rate of updates.

This research therefore proposes that the notification server, through its centrd mediating
role between end-user clients, is idedly placed to provide collaborative users with an
effective levd of feedthrough by matching the supplied pace of updates with the users
required pace of updates. This matching has been caled impedance matching.
Feedthrough demands can be reduced by subsequently reducing the pace of updates (pace
impedance) and the volume of updates (volume impedance).

The principles of natification server design and the issues surrounding impedance matching
have been employed to develop the Getting-to-Know (GtK) purpose-built separable
notification server. GtK is based on a distributed object infrastructure and it is largely an
example to show how a controlled pace of feedthrough can be achieved in practice. GtK
only supports pace impedance matching given the interests on pace issuesin this research.

In order to demondtrate the practicdity of the GtK notification server further, an example
real-time Web conferencing application has been congtructed using the GtK infrastructure,
The gpplication offers functiondities that are common in most Web-based chat systems.
However, its novd fegture lies in its ability to enable collaborative users to interact with
multiple conferences smultaneoudy while adjusting the pace of feedthrough to match their
rates of interests.

The main stance of this research lies on an architecturd framework that manages the paced
delivery of information at the user interface. It is often problematic to evauate a framework
embodied in code. The demongtration via the red-time Web conferencing exemplar acts as
a technicd evauation of the GtK framework. Also, an architectura evaluation has been
carried out to assess the benefits and limitations of the GtK framework.

Chapter 1 Introduction

1.4 Novel characteristics of the work

The work reported in this thesis represents a nove integration of user interface and
architectural issues to provide digtributed collaborative users with effective tempora
behaviour. Software architecture is very often driven by implementation reasons rather than
the desired user-level behaviour. In contragt, this work lays particular emphasis on a user-
oriented approach in establishing the requirements of a collaborative architecture.

The method of providing collaborative users with a controlled pace of feedthrough through
impedance matching isinnovative in CSCW. It emerges from the extensive anaytic focus of
this research, which aso demongrates that a careful placement of architectura components
can facilitate explicit notification mechanisms that match the users pace of interaction.

This work aso generated a novel method of analysing work processes through the 4Rs
framework, which emerged from the sudy into long-term interaction. The 4Rs (Request,
Receipt, Response, Release) recurrent pattern of activities is a fundamenta unit of long-term
work, as the same sequence repests itsdf with smilar triggers and similar failure modes.
The 4Rs framework and the triggers for activities can be gpplied to assess the rdigbility of
individua parts of awork process during system design.

1.5 Contributions to the research area

There have been anumber of publications that this work has generated both in the HCI and
CSCW research community. The interests of this research were presented to a pand of
experienced researchers and practitioners at a doctora collogquium session in a past CSCW
conference (Ramduny, 1996).

The case study into long-term interaction led to a technica report (Dix et a., 1995), a short
conference paper (Dix et d., 1996) and a journd paper (Dix et d., 1998). The trigger
andysis technique that emerged from this study has aso been proposed as a technique for
task decomposdtion (Dix et d., 2003) that can be applied in conjunction with other task
andysis or workflow methods.

The architectura framework for developing Web-based collaborative applications was
published as a full conference paper (Ramduny and Dix, 1997a) and a poster (Ramduny
and Dix, 1997b). The andytic technique was employed in a later research project! to
investigate software architecture options for mobile user-interfaces and the findings were
published as ajournd paper (Dix et d., 2000).

1 Interfaces and Infrastructure for Mobile Multimedia Applications research project - as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

Chapter 1 Introduction

The dructured andyss of the desgn space of notification servers dso led to a full
conference paper (Ramduny et d., 1998). Thisis an important contribution to the CSCW
discipline as the last few years have seen the beginnings of a literature of notification servers
in their own rights.

Findly, the issues surrounding impedance matching for providing effective user-leve
feedthrough were discussed at a day conference (Ramduny, 1999) and the findings were
recently published as afull conference paper (Ramduny and Dix, 2002).

1.6 Structure of the thesis

Figure 1.3 shows the overdl dructure of the thess. A series of andytica studies are
presented in Chapters 2 - 7 which provide an understanding of the nature of tempora
problems, infrastructure issues and design consderations. These andytica studies lead to
the GtK framework that provides pace impedance matching. Chapters 8 - 10 describe the
development of the GtK infrastructure, its use through the GtK notification server and
evauation via a red-time Web conferencing exemplar.

Chapter 2 garts by investigating the issues surrounding the temporal properties of
interaction. It examines the impact of delays and interruptions on the interactive process
and explores the tempora problems that users face on the Web. The foundations of
interface behaviour and the issues of pace of interaction are applied to analyse the tempora
problems that users perceive a the interface. The results of a case study that was carried
out to check the completeness of the existing andyss on the pace of interaction and to
identify the tempora problems faced during long-term interaction are discussed in the

Appendix.

Chapter 3 condders the interface and architectura concerns involved in designing single-
user gpplications. The andydss is based on examining architecturd and tempord
requirements for user interfaces, exploring mature architectura modes, reviewing some of
the tools that assst in the design and development of user interfaces and the various design
paradigms employed in architecturd and interface development. Similar issues for multi-
user collaborative gpplications are discussed in Chapter 4.

Chapter 5 extends the investigative gpproach to the Web platform. It provides a systematic
andyds that examines the behaviourd issues and the architectural components that are
necessary for Web-based collaborative applications. The placement options for the
architecturad components are also considered and the issues surrounding code and data
mohility are explored. The findings of the analysis narrows down the behaviourd focus of
thiswork.

Chapter 1 Introduction

Temporal issues Infrastructure issues Design concerns Implementation details
Chapter 2 Chapter 3
Time and Interactivityr | Single-user Interface
¢ and Architecture | ssues
Appendix
Long-term Interaction: Chapter 4
A Case Study Multi-user Interface and
> Architecture | ssues for
Collaboration
Chapter 5 Chapter 6
N Why, What, Where, When: Exploring the Design
An analysis of Collaborativerp| Space for Notification
architectures on the Web Servers
v
Chapter 8
|mped§2§£t§|r a71chi ng: Getting-to-Know: An
Coping with limited —}experlmel;téral grotlflcatlon
resources v
Chapter 9
Demonstration through
an exemplar
\ 4
Chapter 10
Architectural Evaluation
€—-—--===m=-m-e-——— @nalytic studies ---------mo s e

Figurel.3 Thesisstructure

Chapter 6 explores and clarifies the design space for notification servers by adopting an
andytica approach smilar to that applied in Chapter 4. A taxonomy of the design space
for notification serversis aso presented. Status—Event andyss (discussed in Chapter 2) is
used as the foundation for examining issues of change propagetion. The andyss aso
confirms the important role of the notification server as a mediator of updates between
collaborative users in adistributed setting.

Chapter 7 proposes impedance matching as a method for providing collaborative users with
an effective user-leve behaviour. Due to its mediator role, the notification server isidedly
placed for supporting impedance matching by controlling the frequency of natification to
match the users pace of interaction. The issues surrounding impedance matching and the
related implementation details are thoroughly examined.

Chapter 8 describes the Getting-to-Know (GtK) separable notification server that has been
built on a digtributed layered architecture to support pace impedance matching. The
protocol employed for passing messages between different communication objects within
the basic layered infrastructure are examined and the main functions of the GtK notification
server are discussed.

Chapter 1 Introduction

Chepter 9 shows how an example red-time Web conferencing application has been
congtructed on the GtK framework in order to explore the practicdity of the GtK
notification server as an impedance matcher.

Chapter 10 complements the technicd critique in Chapter 9 through an architecturd
evauation of the GtK framework. The GtK framework is measured against some important
architecturd parameters such as the ease of flexibility, possbility for migration, support for
dynamic mobility, event management and interaction with exiging data.

Findly, Chapter 11 reflects on thiswork and highlights the broader research themes that this
work has aready contributed to.

10

Chapter 2 Time and Interactivity

Time plays an important role in computer sysems in generd and even more S0 in
edablishing the quaity of human-computer interaction. Early approaches developed to
andyse interaction such as GOMS (Card et a., 1983), TAKD (Diagper, 1989) and
production rules (Newdl and Simon, 1972) mainly concentrated on identifying operator
tasks and examining traces of interaction. These cognitive models largely ignored the
tempord properties of interaction because the man focus then was on single-user
interaction with stand- alone systems.

Over the lagt few years, the development of groupware applications like conferencing
systems and shared text editors has shifted the focus to multi-user collaborative systems. In
addition, there has been a sgnificant growth of distributed information sources using Internet
facilities. In particular, the rapid growth of the World Wide Web has promoted a new
category of applications to be developed on a didributed platform — Web-based
collaborative gpplications.

Unlike angle-user gpplications, the requirements for cooperative gpplications are far more
complex, both in computeational terms and in mesting the needs of the user. This has
undoubtedly increased the importance of the tempord properties of interaction. Group
usars not only need to see the response of their own actions (feedback) within areasonable
time limit, but they must aso be adle to see the effect of others actions (feedthrough)
promptly to allow successful collaboration through the artefact.

The unrdighility of timely responses can lead to user frustration and application errors. In
the worse case it can cause a complete breakdown in the work process. Furthermore,
interaction over a network increases the likelihood of delays between the transmisson and
reception d users actions, thus affecting the system’s response. Remote gSite falures, high
network traffic and dow bandwidth intensify user frustration and error.

Although it is desirable that users perceive system responses dmost instantaneoudly, this is
not dways possble due to processng time, network delays or ddays in the pace of
interaction between group users. Clearly, the absence of timely feedback and feedthrough
will have a negative impact on group interaction. A thorough understanding of tempord
issues will inform system design and development. This chapter investigates the issues
surrounding the tempord properties of interaction.

Section 2.1 sarts with a brief review of the human memory and looks at the effects of
delays and interruptions as informed by cognitive psychology. Section 2.2 andysestherole
that time plays on the interactive process. It first consders the issues of response time and
then examines the impact of delays during interaction. The need for feedback is adso
established. A smilar andysds is then gpplied in Section 2.3 to explore the tempord
problems that users face on the Web. Findly, Section 2.4 uses the foundations of interface

11

Chapter 2 Time and Interactivity

behaviour and pace of interaction to andyse the tempord problems that users perceive at
the interface.

2.1 Background

The cognitive psychology literature provides a good foundation for understanding the
tempora properties of interaction from a user-centred perspective. These studies examine
how the human memory functions and consider the impact of deays and interruptions on
our short-term and long-term memory. With the widespread use of computers, usability
issues have become amgor concern and usability guidelines have for long been informed by

cognitive psychology.

Indeed, there is a very close link between human-computer interaction (HCI) and cognitive
psychology (Norman, 1988). Cognitive modedling is used in HCl to get a better
understanding of how people interact with computer systems and identify aspects of the
system that are easy or difficult to use and/or learn. The areas where people are most likely
to make persistent errors can aso be anticipated.

This section will first congder the aspects related to the human mind and the effects of
interruptions, before looking a some common cognitive models that have been developed
to represent the way the user of acomputer system thinks.

211 The Human memory

The human mind is an information processing system (Card et a., 1983) that can be divided
into three interacting sub- systems congsting of memories and processors.

(8) perceptud system - this carries sensations of the physical world detected by the body’s
sensory system into internd representations of the mind by using integrated sensory
systems. Our visud systemisagood example of this (Card et a., 1983). Although the
eye receives the visud scene over awide angle, detail is only obtained over a narrow
region, the fovea. The rest of the retina provides periphera vison for orientation and
whenever the target is more that 30 degrees away from the fovea, head movements
occur to reduce the angular distance. The centrd vison, the peripherd vison, eye
movements and head movements function atogether as an automatic integrated system
to provide a persstent representation of the visua scene.

(b) motor system - this trandates our thoughts into action by activating patterns of voluntary
muscles. The arm-hand-finger system and the head-eye system are the two most
important sets of effectorsin computers users (Card et d., 1983).

(c) cognitive sysem - this connects inputs from the perceptua system to the correct
outputs of the motor system. The cognitive system has two important memories, a
working memory and along-term memory.

2.1.1.1 Working memory

12

Chapter 2 Time and Interactivity

Working memory or short-term memory as it is dso known, only holds information thet is
under current consideration and the representations produced by the perceptud system. It
congsts of a subset of activated dements from long-term memory, cdled chunks. Chunks
can be related to other chunks and thus be organised in large units.

Short-term memory can be accessed very rapidly but it so decays a a fast rate. The
chunks of information can only be held temporarily for a short amount of time, usudly in the
order of 200 milliseconds (Dix et a., 1993). Furthermore, short-term memory has alimited
capacity for retaining information. The classc paper (Miller, 1956) stated that in generd,
people have the capacity to memorise gpproximately seven chunks of information at atime
and tha information can be held in short-term memory for about 15 to 30 seconds.

2.1.1.2 Long-term memory

Long-term memory stores knowledge for future use and unlike short-term memory, it has
unlimited cgpacity for storing information. However, retrieving information from long-term
memory usudly takes longer, in the range of a tenth of a second and its success usualy
depends on whether associations between chunks can be found (Card et al., 1983).

People tend to cope with complex problems by chunking them down to smple components.
The sze of a chunk depends on an individud’s knowledge, experience and familiarity with
the materid (Shneiderman, 1992). Furthermore, there islittle decay with long-term memory
as recdling information after minutes takes just as long asretrieving it after hours or days.

2.1.1.3 Effect of interruptions

Both long-term memory and short-term memory are highly volatile but the latter is dmost
indantly affected during interruptions. It is very difficult to recal recently stored information
when people are interrupted. If there are long delays, the memory may need to be
refreshed. However, people may dill resume their work after an interruption if they
proceed immediatdy and record their solution in short-term memory. |If instead they record
their solution in long-term memory, such as on a piece of paper or on acomplex device, the
probability for errors increase and the pace of work may dow down condderably
(Shneiderman, 1992).

2.1.2 Cognitive models

Cognitive models atempt to represent users interaction with an interface by taking into
account some aspect of the users understanding, knowledge, intentions or processing (Dix
et a., 1993). The cognitive aspect of HCI focuses on the cognitive capacities of usersin
generd and aso how these affect the users ability to carry out specific tasks with computer
gysems. Very often, this is explaned in terms of mental processes expressed in
computationd terms, as shown by two well-known cognitive models discussed below.

2.1.21 GOMS Model

13

Chapter 2 Time and Interactivity

The GOMS model was one of the first cognitive models that described how users perform
and coordinate tasks. A GOMS andysis involves describing the task structure and
decisons made by users in terms of Goas, Operators, Methods and Sdlection rules
(GOMS) (Card et al., 1983). A god is something the user wants to achieve. Operators
are low-level actions (perceptud, motor or cognitive acts) the user can perform. Methods
are the procedures (sequence of operators) required to achievethe goa. Selectionsarethe
choices that the user can make between dternative methods of achieving agod.

A typicd GOMS andysis of a particular task involves decomposng an overdl god into
sub-gods, each of which can in turn be decomposed into further sub-gods until ultimately
these are reduced to basic operators. The actions required to complete the task are
aranged into a hierarchicd network of gods, sub-goals and operators. GOMS is well
suited for andysing routine tasks where the users know dl the relevant information about the
system they are working with (in other words, expert users) and the tasks can be described
into procedures.

The GOMS andysis has been gpplied to measure performance. The stacking depth of a
god dtructure can be used to estimate short-term memory requirements. By caculating the
time it takes to perform each basic operator and then aggregating the operator times for dl
operators involved in the task, the totd time for completing the tasks can be predicted.
Although the GOMS mode makes totd time predictions, it is not gppropriate in Stuations
where errors and interruptions occur (Card et al., 1983).

2.1.2.2 Keystroke-Level Model

Like GOMS, the Keystroke-Level modd (Card et al., 1983) only predicts error-free
expert behaviour. But unlike GOMS, the Keystroke-Level mode needs the method as
input (it has no goas or method sdection rules) and it only predicts the time to execute a
task. User performance is based on key tasks during an interaction, such as the execution
of smple commands. The Keystroke-Level modd assumes that users firgt divide complex
tasks into subtasks before they are mapped into physical actions.

The Keystroke-Level model decomposes unit tasks into four different physcad-motor
operators, one mental operator and a system response operator. The total time taken to
execute a particular unit task is caculated by adding the time for each keystroke of the
various operators. If the user has to wait for a response from the system then an
gopropriate time is added, which is measured by observing the system; otherwise the
system response is assumed to be zero.

Experiments have shown that the Keystroke-Level modd can predict performance fairly
accurately but the range of gpplications it covers is limited. Although it is very useful for
predicting micro-interactions, it does not do so well in large-scade didog. Furthermore, the
results depend heavily on the goproximations made initidly. The Keystroke-Level Modd is
considered to be a very low-level GOMS model, which has been smplified to produce a
usableverson (Card et d., 1983).

14

Chapter 2 Time and Interactivity

Both GOMS and Keystroke-Level modds anayse interaction based on identifying operator
tasks and examining traces of interaction. The tempord properties are largely ignored in
these cognitive models perhaps because a the time they were developed, the interface
requirements mainly involved sngle-users interacting with software that execute on a single
machine. The tempord nature in such a mode of interaction is primarily related to the
response time following users actions. But even a the sngle-user level, ddays in receiving
feedback have a negative effect on interaction and disrupt our menta processing ability.
The next section anadyses the impact of time and delays on the interactive process.

2.2 Time and the interactive process

The impact of delays is typified by Norman's interaction cycle (Norman, 1984), (Norman,
1986), (Norman, 1988) (figure 2.1). It describes user activity as congsting of four different
sages - intention, selection, execution and evaluation. When users interact with a
computer syslem during problem solving, they usudly have a god, they formulate certain
actions to further that god (plan), execute the actions and then evauate the results of those
actions againgt the expected outcome and the godl.

This modd only works if one assumes that the results of the users actions are immediately
avalable. If the delay between executing the actions and observing the results is greater
than short-term memory times, the evaudion stage becomes far more difficult. This
problem is referred to as the ‘ broken loop of interaction’ and users may be forced to either
re-formulate their plans or continue to wait for a response.

goal

executlon< >evaluatlon

system

Figure2.1 Norman’sinteraction cycle

When delays are predictable or expected, the interaction cycle will not necessarily be
affected as users can incorporate known delays into their plans. But when delays are
unpredictable, users may forget part of the plan and they may be forced to review the plan
continudly, thus causng a breskdown in the interactive process. Furthermore, when
unexpected delays impede a task progress, many people become frustrated, annoyed and
eventudly angry (Shneiderman, 1992).

221 Responsetime
The primary way in which time is of relevance to interactive systems is through response

time. This is defined in terms of the length of time (number of seconds) between a user
initiating an action and the computer system displaying the results back on the screen.

15

Chapter 2 Time and Interactivity

Traditiond human factors research into response times suggests three time leves tha
provide different effects on interaction and for dmost thirty years, the same norm has been
observed (Miller, 1968), (Card et al., 1991), (Nielsen, 1993):

0.1 second - thisis the required limit that alows users to fed tha the system is reacting
indantaneoudly.

1.0 second - this limit is necessary to avoid interruptions in the users flow of thoughts,
athough they will notice the delay. No specid feedback is usudly required for ddaysin the
range of 0.1 - 1.0 second, but users may lose the feding of operating directly on the data

10 seconds - thislimit is essentia for kegping users atention focussed on the didogue. If
the dday is longer, users will perform other tasks while walting for the results of their
actions. Therefore, they should be given some form of feedback to indicate when the
computer expects to complete the task.

The above limits do not specify how the interaction process is affected if the dday in
receiving aresponse lies between 1.0 - 10 seconds, arange where many responses actualy
fdl. Also, they do not ded with the factors that can dter the way in which interaction is
affected by response times. For instance, some studies have shown that novices prefer and
are more productive with a dower response time (Shneiderman, 1992) while others have
shown that novices, like expert users, tend to make more errors with longer response times
(Long, 1976), (Kuhmann et d., 1987).

Furthermore, user expectations may vary depending on their previous experience and the
task a hand. Users can aso change their interaction mode with the artefact as they become
more familiar with it or as ther perception and skills change (Thomas, 1998) but more
importantly, users may change their work strategies to adapt to different response times. It
is therefore very difficult to assess whether the timing of an interactive activity is too fast or
too dow as there are too many user, task and environment varigbles a play to determine
any generdly acceptable rate of interface response (Shnelderman, 1992).

Although shorter response times are more beneficid to users, it is possible for the computer
to react so fast that the user cannot keep up with. For example, ascrolling list may move so
fast that the user cannot top it in time for the required ement to stay within the avallable
window. The fact that computer can be too fast suggests that user-interface changes should
be timed according to the red-time clock and not as an indirect effect of the computer’s
execution speed (Nielsen, 1993). A fad interaction sequence can inhibit users from
formulating a solution plan correctly (Shnelderman, 1992). Conversdly, users can pick up
the pace of a rapid interaction sequence and consequently they may learn less, read with
lower comprehensgon and commit more errors (Shneiderman, 1992).

It is generdly agreed that response times should be as fast as possible, preferably within 0.1

second, to limit the effect of delays and maintain users confidence and satisfaction with the
sysem. But in practice, this is not aways possble. It is however essentid to ensure that

16

Chapter 2 Time and Interactivity

the interface stays usable and this can only happen if the response time is fast enough to
match the task at hand.

2.2.2 Impact of delays

A number of gudies (Dix, 1987), (Johnson and Gray, 1995), (Nielsen, 1993), (Smith and
Mosier, 1986), (Shneiderman, 1992) have consdered the effects of ddlays on user
performance and on the behaviour of single-user applications. A delay of more than a
fraction of a second in mouse-based interfaces has been found to reduce the success of the
interaction. With the emergence of timesharing systems in the early 1960's, other Sudies
(Miller, 1968), (Smith, 1983) invedigated the effects of sysem dday on multi-user
performance. Delays of the order of 100 milliseconds have been found to be disruptive
within some collaborative virtua environment gpplications (Macedonia et a., 1994).

The increasing popularity of the Web, both as an interaction and a development platform,
has widened the number and types of users and tasks. The changeable nature of the users
and the tasks makes it even more difficult to have a sngle mode that relates response time
with user performance. Most research assumes that user productivity increases with faster
sysem response times. For example, a study showed that user performance is
systematically affected by system delays and users tend to choose task dtrategies that best
it a given sysem dday (Ted and Rudnicky, 1992). However, the task that the users
were given in the sudy was relatively sraightforward dataentry. It may therefore be more
difficult to characterise the reationship between response time and user strategy when users
are engaged in more complex tasks.

It is generdly agreed in the research literature that delays in the system response increase
users frudration, as they are left wondering whether the system is till working or not. If

the users do eventudly receive a response after a long delay, their atention may have

wandered and they may forget which action the machineis responding to. The absence of a
system response can therefore be very disconcerting to the user and in the worst case, she
may suspect a complete system failure, with consequent disruption and/or termination of the
interaction segquence.

Although rapid response times should be regarded as an explicit desgn god, it is important
to ensure that the user interface matches the rate at which the computer operates. For some
frequent user actions, such as function keys or menu sdections, a few seconds delay may
prove to be intolerable. However, users may accept a rdatively dow processing time for
ingance, during a reptitive form filling didogue (Smith and Mosier, 1986).

Some experts argue that the condstency of the system response time may be more
important in preserving user orientation than the absolute value of the dday. They even
suggest that designers should delay fast responses deliberately in order to make them more
congstent with occasona dow responses, hence adlowing users to adapt to dow response
times. A few sudies (Shneiderman, 1992), (Conn, 1995) have showed that delays might
be acceptable if users are accustomed to them.

17

Chapter 2 Time and Interactivity

However, most studies agree that in order to improve the usability of a user interface, it is
more effective to make dl responses uniformly fast. In cases where this is not possible,
some form of feedback should be used (Smith and Moger, 1986), (Myers, 1989). Asa
result, a dow response would become predictable to the user even if it were inconsstent
with other responses.

2.2.3 Need for feedback

Our innate ability to act and communicate with each other depends heavily on the feedback
we get from the environment and from one another (Dix, 1995a). Studies investigating the
effect of ddays on user performance (Johnson and Gray, 1995), (Niesen, 1993), (Dix,
1994a), (Ted and Rudnicky, 1992) emphasise the need for feedback during delays.
Feedback information is very important for maintaining users orientation when they interact
with the system. It alows users to know where they are, what they have done and whether
the task was successful or not. Feedback is vitd in Stuations where the response times are
likely to be highly variable, such as over a network.

When auser isfaced with some delay, it is usualy hard to ascertain the source of that delay.
In traditiond interface design, the underlying system architecture and computation tend to be
hidden from the users. Although in some cases, information abstraction and hiding enable
the desgn of the user interface to be focussed on user-centred requirements, in other
gtuations, it may have a negeative effect. For instance, when a user clicks on a hyperlink or
a button on a Web browser either to move to a different page or to download a file, the
response time for such an action to complete may vary, depending on the size or location of
the file. If the user is not informed of the location or file Sze prior to requesting the
information, it is difficult to estimate the likely response time.

Another problem during interface design is that users cannot distinguish between actions that
may lead to different system behaviours and hence different response times. For example,
when a user clicks on a button on a menu bar, there is no indication of the complexity of the
underlying computation or the expected response time. At the same time, the user may be
faced with inconsstent response times when cdlicking on severa buttons that look similar.
The difference in the functionaity and computation may be obvious to an expert user but
less so to anovice user. Feedback is therefore required at two levels - theinterface leve,
to register the user’ s action (e.g. a button press) and the application leve, to show the effect
of the action (e.g. awindow pops up).

The provison of feedback information not only depends on the length of the dday in
receiving a response but it dso relies on the nature of the task. So, if atransaction usudly
processes immediately, delays of the order of a few seconds can be disturbing.
Consequently, users should be given some intermediate feedback. Smilarly, in transactions
where the output must be deferred awaiting the results of a computer search and/or
caculation, the expected ddlay should be indicated to the user. If the interaction is over a
network, short lag times may not require an immediate interface feedback, however
anything above afew hundred milliseconds are considered to be unacceptable.

18

Chapter 2 Time and Interactivity

2.24 Types of feedback

Different types of feedback have been recommended in the research literature to help users
cope with inconsistent response times and lengthy delays.

2.2.4.1 Alert box

The dert box is one of the mogt frequent forms of feedback that provides users with the
necessary assurance that everything is working well. It is usudly an interim message that
pops up on the screen to let the user know that processing has been initiated or asignd that
gppears while the system is processing the inpuit.

2.2.4.2 Progress Indicator

A progress indicator or percent-done indicator is a form of continuous feedback that is
recommended when the computer cannot provide a farly immediate response or for
operations that take longer than 10 seconds (Myers, 1985). Besides reassuring users that
the system has not crashed and that there is an ongoing activity, progress indicators also
inform users gpproximately how long they may have to wait. This dlows users to plan their
time more effectively and perhaps perform other tasks during long waits.

When the processing load cannot be estimated in advance, a running progress feedback can
be used to reassure the user by displaying the absolute amount of work done. For example,
when a system is performing a search on an unknown number of remote databases, a
running progress feedback would be in the form of alist of hame of each database as it is
processed (Nielsen, 1993). However, a progress indicator is unsuitable for operations that
execute reasonably fast, between 2 to 10 seconds (Nielsen, 1993) as users will be unadle
to keep pace with ragpidly flashing changes on the screen. A less congpicuous progress
feedback can therefore be used, for example by combining a "busy” cursor with a rapidly
changing number in asmdl fidd in the bottom of the screen to indicate how much work has
been done (Nielsen, 1993).

If a running progress indicator is not suitable, aless specific progress indicator can be used,
such as aspinning ball, a busy bee flying over the screen, dots printed on a tatus line or any
other mechaniam that shows that the system is working but not necessarily what it is doing
(Myers, 1985). Non-obtrusive auditory sgnds like a chime can aso be used to notify users
when the diplay output is complete.

Feedback information is vitd but it has to be carefully presented to the users to ensure that
they are not deding with seemingly inconggtent interface behaviour. However, some
systems il fail to provide the necessary feedback and in such cases, users attempt to ded
with delays themsdves by adopting coping Strategies (Dix, 1992a).

2.25 Coping strategies

19

Chapter 2 Time and Interactivity

Multi-tasking is a common coping drategy that users have applied for a long time during
consigtent real-time delays in the system response. Users perform mulltiple tasks in pardld
to speed up ther rate of completion. Web users dso tend to run multiple browser sessons
in parale to cope with the boredom of delays.

A few dudies (Cypher, 1986), (Miyata and Norman, 1986), (Conn, 1995) have even
suggested that in the event of delays, an gopropriate dternative task must be proffered by
the interface, together with some support for users to resume the suspended task at an
“appropriate’ time. However, enforcing such a Srategy a the interface level can add an
extra burden on the task at hand and cause interference between the different tasks.

Although people are adaptable, there are Stuations where such task management techniques
would fall, especidly during synchronous collaboration as users interact closely and ther
contributions undoubtedly overlap.

Mog gngle-user systems are designed to perform certain defined tasks in a specified
manner. Often, the data processing loads can be anticipated and integrated in user interface
design to provide adequatdly fast response for dl transactions.

However, when task performance requires data exchange and/or interaction with other
users over a communication channe, then every participant must be provided with status
information about each other (Smith and Mosier, 1986). The support for fast response
times therefore becomes more problematic. For ingtance, in the Quake2 arena-like game,
ingtead of waiting to know if there were enemies round the corner, users were found to turn
corners and shoot even before receiving the feedback from their own actions (Knight and
Munro, 1998).

The next section will now andyse the tempord problems that users may face when they
interact over the Web, an environment that is predominantly subjected to delays. Some
potential solutions will also be discussed.

2.3 Interaction over the Web

A number of factors contribute to delays over the Web - network problems due to high
network traffic, dow bandwidth or remote Ste failures, low processing power of host and
client machines and poorly designed Web ste interfaces. Although there are many high-
speed computers gppearing on the market and the network capacity is increasing daily, the
problems of delays till remain. Thistendsto affect users interaction in Web gpplicationsin
generd, but even more so in collaborative Web-based applications.

The length of delays experienced on the Web varies and unpredictable delays have aworse
effect on interaction than consstent response times (Section 2.2.2). According to a pilot
sudy (Byrne and Picking, 1997), Web users are criticd of delays and regard time-related
factors to be of importance to Web usability. The Web is therefore an ided environment to

2 http://www.quake.com/quake2/index.html

20

Chapter 2 Time and Interactivity

sudy the effect of response time and the role that time plays on the interactive process.
Note that, issues directly related to Web site design will not be consdered here as the
discussion centres on the Web infrastructure.

2.3.1 Problem areas

Traditiond interface dedgn tends to hide the underlying system architecture and
computations from the users (Section 2.2.3). Web interface desgn seems to adopt the
same palicy, thus reducing its usability. For example, when a user vidts a Web dte, it is
impossible to tel how long the browser will take to load the whole page. This obvioudy
depends on the size of the page, any associated graphics or computations that must be
carried out on the loca machine and the network speed. However, users are not usualy
provided with such aleve of detalled information, which will dlow them to make informed
decisons.

2.3.1.1 Response time

Like traditional human factors research into response times (Section 2.2.1), research on

Web systems has dso shown that users need response times of less than 1.0 second when
moving from one page to another if they are to navigate fredy through an information space
(Nielsen, 1995). Web users are not currently getting sub-second response times; hence
they get frustrated (Nielsen, 1997). A response time of no more than 10 seconds has been
recommended as the limit for kegping users attention focussed while waiting for Web pages
to download.

Often, the Web browser affords users an understanding of the progress in the computer
activity whilst they are waiting, through a progress indicator. Although this enable users to
tolerate delays, browsers should provide useful progress bars that communicate what
percentage of the entire download for a page has been completed (Nielsen, 1997).

2.3.1.2 Network latency

On the Web, the latency of the network is the most obvious cause for ddays. A fagter
network connection only tend to increase the Web performance by a small factor. For
instance, upgrading from a didup modem to an ISDN line only doubles the performance
(Nidlsen, 1997). Even if a high bandwidth connection to the Internet is used at both user-
end and server-end, the response time will increase during network bottlenecks, especidly
for cross-continent connections and for use a pesk hours. In extreme cases, the
communication may be broken for longer periods if not completely, for ingance during
mobile work (Dix, 19954).

2.3.1.3 Collaborative interaction
The nature of collaborative work itself introduces further delays. Group users do not only

have to wait for feedback of their own actions but they must aso wait for the effects of
others actions - feedthrough. User feedback and feedthrough may improve by using a

21

Chapter 2 Time and Interactivity

faster network connection, but if the cooperative task requires many short network
interchanges, additional delays will occur due to buffering and processng a remote and
local dtes.

Irrepective of the source, delays disrupt user interaction in genera, and in particular they
affect the nature of the work process during collaborative activities over the Web.

2.3.2 Coping Strategies

Users aso adopt coping strategies on the Web to ded with delays when they are seeking
for information, but the strategies tend to vary depending on the users knowledge.

A study (McManus, 1997) showed that when users were aware of the location of the Web
page they were trying to reach and they had some knowledge of the hardware and/or
browser being used, they tried to reach the desired information as efficiently as possble by
performing some of the following actions

multi-threading
download pages to the loca machines for browsing at alater stage
expand the cache to alow quicker accessto pages viewed earlier in the session

desctivate automeatic image loading

However, when users had little knowledge of the information they were looking for, they
minimised the time spent locating that information by carrying out some d the following
actions

use agte or author they trust and follow their links

avoid stes that contain alarge number of graphics or frames
use search engines

use persond information feedback or agent

use FTP

Another interesting observetion from the gudy (McManus, 1997) was the fact that users
actions varied depending on the granularity of the interaction. For instance, when users
interaction were over a long time scale they would adopt measures such as, download
pages to the local machine, expand the cache or use persona agents. But in short time
scae interaction, users would rather deactivate automatic image loading or avoid Stes that
contained lots of graphics and frames.

The underlying Web infrastructure does not assst users when they adopt coping Strategies.
Users could be provided with some help to overcome the problems of delays in some
cases. However, it is not aways desirable to support al the strategies that users undertake,
as this adds an extra burden on the task a hand and may interfere with the different tasks
that the users are performing (Section 2.2.5).

22

Chapter 2 Time and Interactivity

2.3.3 Potential solutions

A number of suggestions have been made in the research literature to improve usability on
the Web despite its intrindc ddlays. Because it is not dways possible to control the
occurrence of delays, the impact of delays can be reduced by providing users with a greater
control over tempora issues, such as Web page loading times. For example, the browser
may open some form of diaogue that queries the course of action the user wishes to take,
thus creeting a sense of rhythm during the interaction (Kutar, 2001).

Other research have suggested that users should be able to decide beforehand whether the
vaue of the information they are trying to download outweighs the cost in retrieving it. For
example, smal chunks of ‘meta-data about alink can be downloaded and the size and type
of information a the link location can be provided to the users via a pop-up right button
menu (Bentley, 1997). Similarly, the browser could render images as thumbnails to alow
users to evauate the cost and benefit of viewing those images.

A dow but conggent interface with a regular response time may be preferable to an
inconsstent interface with occasiond fast responses (Section 2.2.2). However, the notion
of dowing down our ever fast computing power is seen as an outrage in a world where
speed isincreasingly more important (Gleick, 2000).

2.4 Temporal properties of interactive systems

The speed of the response time is not the sole tempord factor of interactive systems. This
section applies the foundations of interface behaviour and pace of interaction to anayse the
tempora problems that users perceive a the interface.

241 Interface behaviour

An underganding of the user interface is very important. Tempora problems at the
interface are said to occur whenever any condraints between the status of the interface are
broken (Abowd and Dix, 1994), (Dix and Abowd, 1996b). Thisis mos likely to occur
when fast computation and communicetion is not available, thus cregting a lag between the
source of a change and its display, which may eventudly lead to parts of the interface to
become inconsstent. The user interface can be specified in terms of events and Satus
behaviour (Dix, 1991), (Dix, 1992b), (Dix et d., 1993).

2.4.1.1 Events, status and agents

Events are things in the interface, such as a keystroke or a mouse movement, that occur & a
paticular time. Events carry atime-scae that is inherited from the task that prompted them.
Status, on the other hand, dways has a vaue associated with some interface object, for
example, the screen contents or the mouse posgition (Dix and Abowd, 1996b). Agentsare
respongible for communicating events to other agents and they do so by changing the value
of the status.

23

Chapter 2 Time and Interactivity

Potentid tempord problems can be exposed by investigating the datus and event
occurrences in the interface dements and andysing the way in which agents mediate events
through the status.

2.4.1.2 Mediating status

Condder an emall delivery system. The file system (dtatus) acts as the mediator between
the agent that actualy receives the email (eg. sendmail) and the user’s emall agent or client
(e.g. Microsoft Outlook). Similarly, the email agent highlights an icon (datus) to notify the
user (another agent) of the arriva of anew email. So in an email system, there are a few
occurrences where an agent informs another agent of an event by changing a mediating
gatus (Dix et d., 1993), (Dix, 1992b).

Deays frequently occur when agents are affected by events. If an event involves some form
of communication between agents such as sending a message, then it is likely to be atime
consuming activity, which may probably be unrdiable (Dix, 1991). Furthermore, a lag
between the status changing its vaue (the status change event) and the change being noticed
(the perceived event) aso causes delays. In order to achieve an acceptable tempora
behaviour, it has been recommended that the lag between the actud events and the
perceived event should be short relative to the pace of the task at hand (Dix, 19924).

The idea of mediation between gatus is key to the understanding of delays at the interface.
Its primary contribution to this research lies in the analyds of natification mechanians in
Chapter 6.

2.4.2 Pace of Interaction

The pace of interaction is defined as the rate & which users tranamit information when they
perform an action and receive a feedback through a communication channd (Dix, 1992a).
Paceis auseful measure of the rate of interaction and it is different from responsetime. The
issue of pace is based on the notion that during interaction, the channds of communication
between the user and the computer are more often used intermittently and not at a constant
rate. Paceis therefore a better measure of communication than bandwidth, which assumes
continuous trangmission.

The notion of pace can be both measured and quantified. It can be used to provide an
undergtanding of how individuas interact with some data and dso how collaborative users
interact with computer systems, the physical world and other group members (Dix, 1994a).
The pace of interaction (Dix, 1992a) isinfluenced by three main factors (figure 2.2):

(@) theintrindc pace of the communication channel(9)

(b) the pace of the tasks (collaborative) and

(c) the pace at which user(s) operate(s)

Each of these factors will now be considered in turn.

24

Chapter 2 Time and Interactivity

channels tasks

users

Figure2.2 Factorsinfluencing pace of interaction
2.4.2.1 Pace of communication channel

When users interact with each other or with the computer, information is very often
trangmitted through the communication channel(s) in chunks, with some periods of inactivity
in between. Consequently, the intrindc pace of the communication channd is more
appropriate to measure the rate a which chunks of information are transmitted instead of
the bandwidth.

Bandwidth measures the amount of information that is transmitted whereas pace measures
the frequency of communication through the channd. For example, when andysing the rate
a which two individuas exchange emails, the bandwidth will only give a measure of the
average number of messages transmitted over a given period, but the pace would indicate
the rate at which individual messages are produced. In addition to pace, issues such asthe
time taken to compose a message, the lag between transmission and reception and the time
taken to perceive a message should also be taken into account. However, these properties
arein some ways inherent in the pace of the channdl.

2.4.2.2 Pace of task

Each task has an associated pace which should match the pace of interaction. For example,
during collaborative interaction, a large proportion of cooperative work takes place through
the artefact (Dix, 19924) and different users have control of different (or shared) aspects of
the artefact. Collaborative users therefore expect to receive both feedback from their own
actions and feedthrough of others actions through the changes in the shared artefact (Dix,
1994b). The pace of the collaborative interaction is thus closely linked to the task at hand.

2.4.2.3 Pace of users

There is no clearly defined limit on the pace of activities that individuds can perform. Our
mental and physical capabilities are more suited to a certain pace of activity than others.
Also, our ‘naturd’ pace varies for different kinds of tasks. For ingance, hand-eye
coordination tasks have a pace of around 100 ms and this puts a limit on our reaction time.
So, computer feedback for hand-eye coordination tasks must be within this timescae,

25

Chapter 2 Time and Interactivity

Furthermore, short-term memory fades over asmilar timescde unless refreshed by constant
rehearsal.

2.4.2.4 Delays

Deays occur whenever there is amismatch between any of the above factors affecting pace
and the resulting pace of interaction (Dix, 1994a). The most obvious cause of delay iswhen
the communication channel is too dow due to network latency. For example, if a large
amount of data is tranamitted, the bandwidth determines the pace of interaction, but if the
task requires a high number of small network exchanges then, even alow latency network
can appear to be dow. Similar problems arise when the intrinsic pace of the channd is too
fast for the task at hand.

The context of the interaction and the nature of the task in particular can determine whether
achannel istoo fast or too dow (Dix et d., 1998). It is sometimes possible to change the
nature of the task by speeding it up or dowing it down to fit the channel. However, the
pace of the task is typicdly less flexible, especidly in collaborative tasks, due to physicd
and computationa condraints that limit the maximum or minimum pace. The pace a which
communication takes place through the shared artefact will therefore affect the task being
caried out and delays will arise whenever there is a mismatch between the pace of the
communication channd and the pace of the cooperative task.

Collaborative users are more likdly to be faced with a mismatch in feedback. This occurs
when the pace of each individua interaction with the artefact is greater than the feedthrough
of other usars actions. So, if the users do not notice others feedthrough or even when their
own feedback is required, ther interaction with one another will dow down considerably.
The nature of the interface can however determine the effective pace for collaborative
interaction.

2.4.2.5 Coping with delays

A way round the problem of mismatch is to adopt some technica or socid solutions (Dix,
19944). For example, if the pace of the tak is greater than that alowed by the
communication channel, a potentia technica fix is to keep loca copies of the shared
information in order to minimise network transactions and alow users to perform tasks by
using the locdly available data. However, if the pace of interaction is greeter than that of the
task, then the task has to be restructured via some social protocol.

Some studies (Dix, 1992a), (Miyata and Norman, 1986) have aso shown that cooperative
users, like single users, may adopt coping strategies when the pace of the channd istoo fast
or too dow. For instance, cooperative users may change the nature of the task by
increasing the amount of information sent through each chunk of communicetion if the pace
of the channel istoo dow. Also, they may delegate certain aspects of the tasks to other
users and establish roles. Coping dtrategies therefore enable users' actions to become more
predictable to one another, thus reducing the need for continuous feedback.

26

Chapter 2 Time and Interactivity

Users can dso be made explicitly aware of delays in order to encourage the adoption of
natura coping drategies. A recent work (Vaghi, 2002) in Collaborative Virtud
Environment (CVE) invedtigated some techniques for deding with a poor rae of
feedthrough in an example multi-user VR pong game, where delays in the bal’s movement
made the game unplayable. A proposed solution showed ghostly versons of where the
system predicted the bal would be, assuming no users hit the bal. Thiswas found to be an
effective mechanism in supporting playersin ther future moves.

2.4.2.6 Time granularity

In order to understand the impact of tempora issues on the pace of interaction, it is
important to consider the time scale over which interaction takes place.

Fne-grained levels of time granularity occur in direct manipulation interfaces where the pace
of interaction is of the order of 100ms. Coarse-graned leves of time granularity involve a
pace of interaction of the order of minutes or hours, such as in batch processing. Another
example is the rate of messages turnaround by an email system over a period of hours, days
or weeks.

Both fine-grained and coarse-grained leves of granularity make demands on our memory.
A sudy of the use of eectronic paper diaries (Payne, 1993) showed that a varied time
granularity isrelevant both in terms of the user’ s interaction with the system and the system’s
functiondity. The way in which dectronic diaries uses time granularity has a strong impact
on usability.

At fine-grained levels of time granularity, issues such as datus-datus mapping are
encountered a the interface (Section 24.1). Coarser levels of time granularity are a
potentiad source of difficulty as variations in users actions are more likely to be seen
(Thomas, 1998). Users tend to change their course of actions in the long term. Thisis
usualy motivated by either amandatory action, which require users to perform a completely
new action, or by the user percelving some benefit, such as time saving.

Different time granularities have different effects on the interactive process. Most work in
human:computer interaction (HCI) focuses on tasks that take a few seconds or minutes to
accomplish and where individud actions receive dmost instantaneous feedback. However,
a sgnificant proportion of collaborative activities occur over weeks or months and users
normaly have to wait for hours or days before getting some form of response to ther
actions. The dow pace of interaction implies that the tight cycle of action and feedback is
broken.

Although thiswork is driven by users needs during relaively short periods of interaction, an
andyds of tempord problems during long-term human processes was aso carried out by
gpplying the issues surrounding pace of interaction. The results of this empirical case study
are decribed in the Appendix. The study was undertaken to expose the problems of
delays and interruptions during long-term collaborative interaction, thus uncovering potentia
design irregularities.

27

Chapter 2 Time and Interactivity

2.5 Summary

This chapter has investigated the importance of time during interaction. The brief review on
cognitive psychology provided an indght into the human memory and looked a the effects
of ddays and interruptions on our short-term and long-term memory. Delays and
interruptions condtitute ingppropriate timing and may cause afalure in the users immediate
expectation, thus giving rise to usability problems.

Traditional human factors research identifies three response time limits that affect interaction.
These limits however, do not consider the factors that can dter the way in which interaction
is affected by response time. Consequently, issues such as the users level of experience
and familiarity with the system or even the gpeed of the interaction sequence are not taken
into account. Whilst it is generaly agreed thet the response time should be as fast as
possble, it is even more important to mantan a consgent interface by matching the
response time with the task at hand.

The impact of delays on the interactive process and the resulting influence of usability were
a0 discussed. Untimely responses can render the task at hand more complex and may
eventualy cause a breakdown in the work process. So, when responses cannot be made
uniformly fadt, it is vitd to provide users with some form of feedback to assist them in ther
tasks. Often in Stuations where feedback is inexistent or badly implemented, users tend to
adopt their own drategies to cope with the frustrations of delays.

The Web was then used as an example to andyse the problems that users may face during
interaction. The Web environment is largely subjected to delays due to network latency.
However, with Web-based collaborative applications, there are additiond delays that are
introduced by the nature of collaborative work. Collaborative users require both feedback
of their own actions and feedthrough of the effects of others actions. Delays therefore
intensify user frudtration and errors and can eadily disrupt group interaction.

The foundations of interface behaviour and pace of interaction were applied to andyse the
tempord problems that users perceive a the interface. The interface behaviour deals with
issues such as gatus, events and agents. Tempord problems at the interface is said to occur
whenever any congraints between the status of the interface are broken. Paceis ameasure
of the rate of interaction and it includes factors like the pace of the communication channdl,
the pace of the task and the pace at which users operate. A mismatch between any of these
factors and the resulting pace of interaction will inevitably cause delays. Both the interface
behaviour and the pace of interaction play an important role in the undersanding of
temporal problemsin this research.

The most obvious cause of delay during collaborative work arises when thereis amismaich
between the pace of the communication channel and the pace of the cooperative task.

Furthermore, collaborative users will more likely face a mismatch in feedback. This
happens when the pace of each individua interaction with the artefact is greater than the
feedthrough of others actions. Users' interaction will dow down significantly if they do not

28

Chapter 2 Time and Interactivity

notice each other’s feedthrough or even when their own feedback is required. The nature
of the interface can however determine the effective pace for cooperative interaction.

The pace of interaction spans over different time granularities, from hundreds of milliseconds
in direct manipulation interfaces, to minutes or hours in office-based environments. Long-
term interaction poses different problems to high paced interaction. Although this thess
focuses on technologica and architecturd issues deding with short-term interaction, a
broader andlysis of tempord systems would be incomplete without addressing the concerns
of long-term interaction. An empirical sudy was thus carried out to andyse how users
interaction may be affected over long periods of time. The findings of this sudy are
presented in the Appendix.

29

Chapter 3 Single-user Interface and
Architecture Issues

This research aimsto develop an architecturd framework that satisfies gppropriate temporal
properties for digtributed systems, particularly Web-based collaborative systems. The
tempord issues that arise during interaction were investigated in Chapter 2. We will now
consder the interface and architecturd concerns that are involved in designing a software
goplication, garting with sngle-user interfaces in this chapter and followed by multi-user
interfaces in Chapter 3.

An important issue in the design of a software application is its overdl architecture, which
includes the nature of the components of the application and the way the components
communicate with each other. The user interface is one of the mgor architecturd
components as it is responsble for managing the interaction between the user and the
gpplication, by handling input from the user and sending output to the display.

The user interface dedls with the hardware and the software that enable users to interact
with the computer. It embodies elements that are related to both the user and the system
and the methods of communicating information between them. The task of implementing a
user interface is complex and code intensive. The user interface has to control a number of
devices and their input streams, in addition to performing interaction tasks such as displaying
data, parsing input and reporting errors (Myers, 1989).

A fundamentd problem in designing a user interface lies with understanding the users and
the tasks that need to be supported. Some studies have shown that users are extremely
diverse and the wide range of functiondities that have to be satisfied tend to make the
gpplication inherently complex (Curtis et d., 1988), (Gillian and Breedin, 1990). Severa
tools have been developed over the years to speed up the process of building user
interfaces and smplify the task of creating and maintaining interfaces.

This chepter gives an overview of interface and architecturd issues for sngle-user
goplications based on the existing body of literature. Section 3.1 starts by looking at the
important architecturd and tempord requirements that a sngle-user interface should satisfy.
Section 3.2 explores some mature architectura modes for sngle-user interfaces, such as
Seeheim, Arch/Sinky, Modd-View-Controller and Presentation Abstraction-Control.
These architectura modds are andysed further in Section 3.3, in terms of their conceptua
and physicd sructure. Section 34 reviews some of the tools that assst in the design and
development of user interfaces, including toolkits and interface development environments.
Finaly, Section 3.5 explores the various design paradigms employed in architecturd and
interface development.

3.1 Requirements

30

Chapter 3 Single-user Interface and Architecture Issues

Although there are a number of requirements for a sngle-user interface, usability and
performance are consdered to be most dedrable. Usability deds with how well the
interface satisfies its functiondity and is related to the consstency of the interface.
Performance is instead primarily governed by the tempord properties embodied by the
interface. The focus of this research is on the performance aspect of the user interface and
this has a direct impact on the way that usersinteract with the gpplication.

This section consders some of the main architectura and tempora requirements that an
interface should satisfy, including issues such as separation, direct manipulation, rapid
semantic feedback and consistency.

3.1.1 Separation

Separation is an important architectura requirement that involves separating the abstractions
of the gpplication from those of the interface (Edmonds, 1992). The abstract objects can
communicate with each other but each object should not depend on the gspecific
implementation details of the other. There are severd advantages that can be gained by
separating the gpplication semantics from the user interface (presentation) components.

Firgly, separation promotes customisation - certain parts of the agpplication may be
changed without redesgning the whole interface. Secondly, it facilitates re-use - the
interface can be dtered without changing the underlying application code, thus alowing
parts of the interface to be used for other gpplications with just some minor modifications.
Finaly, separaion enhances portability - an gpplication can eadly run on multiple platforms
with different interfaces.

Many current design paradigms such as object-oriented, distributed and model-based
systems promote separable user-interfaces. However, separation is hard to achieve
especidly in direct manipulation interfaces where the interface is often tightly bound to the
gpplication. Moreover, separation conflicts with the needs of rapid semantic feedback, an
essential tempord property. Once the gpplication semantics and the presentation
components are separated, they have to be linked in such away that they can communicate
effectivdy with each other (Edmonds, 1992).

3.1.2 Direct manipulation

Direct manipulation interfaces have increased in popularity over the years due to the
naturalness of the physicad metaphors employed. Direct manipulation interfaces dlow users
to interact directly with the objects displayed on the screen and manipulate them by using
devices such as the mouse or the keyboard, thus enabling rapid, reversble incrementa
actions (Schneiderman, 1983). However, direct manipulation interfaces are more difficult to
implement as they frequently involve daborate graphics, many dternaives for a single
command, severd input devices and a mode-free interface which alow users to enter any
command & virtudly any time (Myers, 1989).

3.1.3 Feedback

31

Chapter 3 Single-user Interface and Architecture Issues

From the user’s point of view, the performance of the interface is very influentid during
interaction. An interface is said to exhibit acceptable tempora properties if it ensures that
there is no percelved lag between the user’s actions and the system’s response. |n other
words, the response time between the user interface and the application should be dmost
instantaneous. Feedback is basicaly the response a user receives from the display after
performing an action; for ingtance, a button is highlighted when the user dlicks on the mouse.
Feedback may depend on the semantics of the underlying application.

Direct manipulation interfaces promote rgpid semantic feedback by providing dmost
instantaneous response to users actions. But these interfaces also require information to be
exchanged extensvely between the user interface and the gpplication to provide semantic
feedback. Such a level of communication does not favour didog independence and
consequently hinders the run-time separation between the agpplication and the interface
components.

3.1.4 Consistency

Consgtency is another important architectura property that increases the predictability of an
interface (Gram and Cockton, 1996). A consgtent interface alows users to transfer
knowledge from one context and apply it in new Stuaions. Users can therefore anticipate
what the system will do, thus encouraging the development of behaviour patterns.
Congstency aso increases the ease of use of a system and speeds up the user’s learning
process.

It is easer to produce a condstent interface by splitting a system into various components
and letting each component handle a particular functiondity. The components can then
interact with each other by sharing their behaviour. If auser interface is instead bound to its
architecture, some degree of interaction may sill be possible between the components, but
congstency is not necessarily guaranteed.

The discussion in this section has highlighted the pros and cons of each requirement and

shown how the needs for some requirements conflict with others. Although al the above
requirements are desirable, they are influenced by the architectura solution that is adopted.

3.2 Architectural models

Mogt of the architectural moddls for single-user gpplications support the partitioning of the
goplication semantics and the user interface functionality. This section looks at the main
architectura modes that have been used over the years for building single-user applications.
3.21 Seeheim model

The earliest sgnificant work which supported the separation between the gpplication and

the presentation was Newman's Reaction Handler (Newman, 1968). However, the first
explicit architecture that was devel oped was the Seeheim modd (Pfaff and Hagen, 1985).

32

Chapter 3 Single-user Interface and Architecture Issues

Lexical Syntactic Semantic
Presentation Dialogue Application
Model
P 4
4‘\
fast-switch -—---""

Figure3.1 Logical componentsof Seeheim model

Figure 3.1 shows the logicd components of the Seeheim modd (Pfaff and Hagen, 1985).
The functiondities of each component are:

Presentation - this component is respongible for the external appearance of the user
interface and accepts users input and generates output on the display screen.

Application Interface Modd - holds the data and defines the semantics of the
goplication. It adso provides a view of the gpplication semarntics a the interface by
mapping a subset of the application entities onto the user interface code.

Didogue Control - this component is mainly responsible for mediating the interaction
between the user and the gpplication to provide semantic feedback. It manages the
input sequence from the presentation component and the output sequence from the
goplication interface model.

The Seeheim modd has often been criticised for the linear nature of communication between
the components. Thisis seen as a bottleneck for direct manipulation user interfaces where
rapid semantic feedback is required. But some argue that this gatement is only true if the
architecture is implemented naively or if very fine-grained communications are required
(Sawyer and Mariani, 1995).

However, the fagt-switch represented by the lower box in figure 3.1 dlows the gpplication
to bypass the dialogue component when its date is not affected by output events. The
goplication can therefore communicate directly with the presentation component to provide
rapid feedback. But unlike the other functiona components, the fast-switch is less well
defined and correspondingly more difficult to implement as an architecturd fegture,

3.2.2 Arch/Slinky model
The Arct/Slinky model (Gram and Cockton, 1996) recognises the fluidity of boundaries
between the user interface and the gpplication functiondity, which conditute its two

endpoints. In between these endpoints there are three additionad component layers as
illustrated in figure 3.2.

33

Chapter 3 Single-user Interface and Architecture Issues

Functional
Core Adapter

Logical
Interaction

Functiona
Core

Physical
Interaction

Figure3.2 Arch/Slinky model

The interaction between the components and their functiondities are explained below.

Functional Core - this component controls, manipulates and retrieves the application
data. It uses the gpplication data and operations to provide functiondities that are not
directly associated with the user interface.

Functional Core Adapter - acts as a mediator between the functiond core and the
didlog component. It augments the functiondity of the functional core component to
provide a service that is associated with the user interface and is thus related to the
presentation of the informetion.

Didog - this component controls task sequencing between the user and the portion of
the application domain that depends on the user to ensure consistency.

Logicd Interaction - mediates the interaction between the didog and the physicd
interaction component. It controls users interactions without depending on the toolkit
objects and includes descriptions of the data to be presented to the user and events to
be generated by the user.

Physcd Interaction - implements the interaction with the end-user via hardware and
software. It deals with input and output devices and is typicaly redised as a ser-
interface toolkit or an interface library.

In order to clarify the functionalities of the above component, let us consgder an employee
database as an example. The functiona core component will be responsible for retrieving a
set of employee names and sdlaries by gender from the database. The functiond core
adapter will ingtead alow a list of employee details to be viewed to display parts of the
records. Thelogicd interaction component may present the list of employees and sdariesin
atabular form. Findly, the physicd interaction component can present users with two radio
buttons to dlow them to sdlect an employee with a particular sdary.

3.2.3 Model-View-Controller

In addition to architectures that divide the entire system into a smdl number of large
components, there are many agent-based or object-oriented user interface architectures.
However, these either identify individud agents as belonging to one of the traditiond layers
or include a layering within each agent. One of the earliest object-oriented user interface
architectures was the Modd-View-Controller (MVC) (Lewis, 1995), which was initidly
implemented in the Smalltalk (Krasner and Pope, 1988) programming environment.

34

Chapter 3 Single-user Interface and Architecture Issues

The MVC architecture separates the application object - the model, from the way it is
represented to the user - the view, and the way the user controls it - the controller. The
decoupling of these objects gives MV C a greeter flexibility and promotes re-use, modularity
and encgpsulation. MVC aso provides a powerful way to organise systems that support
multiple presentation of the same information by using different viewvs. Modds, Views and
Controllers form triads of cooperating objectsthat are fully aware of each other’ s existence.
Each view-controller pair is associated with only one modd but a particular model can have
many view-controller pairs.

e — 2
— BN
Cor) ©
Seo—m

Figure3.3 Modd-View-Controller model

The link between the objects is built up in units by means of the MV C triad (figure 3.3).
The functiondlities of each object are described below.

Mode - implements the state and the behaviour of the application domain. It holds the
data that is relevant to the application and acts upon it in ways defined only by the
goplication thus enabling different user interfaces to use the same mode functiondity.
The modd is not aware of how the data is to be displayed or even what actions are
used to manipulateit.

View - requests data held in the model objects and presents the information to the user
in agraphica and/or atextud mode. The different view objects have no bearing on the
intringc behaviour of the modd.

Controller - provides an interface between the modd, its associated view objects and
the interactive user interface devices. It handles users input by tracking input devices
movements and sends messages to the modd.

A smple example of a model could be a clock object, whose intrinsic behaviour isto keep
track of the time by updating an interna record of the time after each second. One view
object can therefore display the time as an analogue clock while another can show it as a
digita clock. When the clock is reset directly by typing the current ime into the digitd
clock digplay, the controller object associated with the view will know that a new time has
been entered and it will call the relevant method of the model object.

35

Chapter 3 Single-user Interface and Architecture Issues

In order to produce an output, the view has to ask the model for the gppropriate data and it
can only do =0 if it has prior knowledge of the object whose data it has to display. This
information is gathered through the view-controller link. If a controller is linked to severd

view objects and the user updates some data on a particular view, the controller must know
exactly which view will be affected to perform the necessary changes on the modd.
However, in some cases, the controller may interact directly with the view without going

through the modd. For example, the vew may condst of a lig of information and the
controller can make arequest for the data to be displayed in aphabetical order. For such a
ample re-formatting operation, the data need not be updated on the modd .

It is sometimes impossble to partition the functiondities between models, views and
controllers. Consequently, ‘view-like' functiondity might lesk into modds, for instance,
where the mode has to know about the screen layout. Similarly 'modd-like functiondity
could leak into controllers, for example, where it is more convenient to dedl with mouse
clicks.

3.2.4 Presentation-Abstraction-Control

The Presentation- Abstraction-Control (PAC) modd (Coutaz, 1987) is an agent-based user
interface architecture that is partidly built on the Seeheim model. The user interfacein PAC
is structured on agents or interactive objects at the top level and each interactive object is
decomposed into semantic, syntactic and pragmatic chunks (figure 3.4).

Abstraction <—> @

Figure3.4 Presentation-Abstraction-Control model

The functiondities of each component in PAC are described below.

Presentation - defines the syntax of the gpplication, in other words the input and the
output behaviour of the application as perceived by the user.

Abgtraction - represents the gpplication semantics and implements the applications
functiondlities.
Control - maintains the didogue and the consstency between the abstraction and the

presentation components. It manages the overdl interaction between the user and the
goplication.

The PAC interface is congtructed as a hierarchy of interactive objects or agents. Thelink to

the gpplication is made via recursive cdls from a PAC object to another a each level of
abdraction of the user interface, where each presentation component of an interactive

36

Chapter 3 Single-user Interface and Architecture Issues

object maps onto another interactive object. The whole interactive application can be
treated as being a PAC entity.

The notion of interactive objects makes PAC conducive to an object-oriented approach
and thus offers severd advantages. For ingtance, an interactive object can be customised
without changing its presentation or its related abstract interface(s). Similarly, the interfaces
can be dtered independently without causing any dde effects. The interactive objects may
be regarded as active entities that communicate with each other through some form of
inheritance mechanism which enables concurrent multiple input and outp.

3.3 Analysing architectural models

An architecturd modd can be viewed in two ways - ether as a conceptua (or logical)
architecture or as a physcd architecture. This section will discuss the amilarities and
differences between the Seeheim, Arch/Sinky, MVC and PAC modds from both
conceptual and physica perspectives.

3.3.1 Conceptual architecture

A conceptud or logica modd prompts us to think about user interface development issues
in generd. Table 31 summarises the main functiondities offered by the different
architectural models for building sngle-user applications.

The Seeheim modd is often criticised for reying on the user interface functiondity to be
decoupled from the gpplication functiondity. Like Seeheim, Arch/Sinky condders the
sysgem as a whole and partitions it into digtinct gpplication data and user interface
components. However, the Arct/Slinky modd recognises the fluidity of boundaries by
maintaining the centra role of layering and separability (in fact adding additiond layers), but
it also accepts that the precise placement of these layers into coded modules may vary
between systems and even between parts of the same system.

Functionalities Seeheim Arch/Slinky MVC PAC
Separate user interface and application v v v v
functionality

layer presentation/semantics v v v v
share application and interface data v

view system aswhole v v

view system as multiple interactive v v
components

share same view on structure within v v
framework

enabl e independent representations v

build large interactive systems from smaller v v
components

37

Chapter 3 Single-user Interface and Architecture Issues

Table3.1 Summary of functionalities offered by architectural models

The Arch/Slinky model can therefore demondrate that a separable user interfaceis not at all
ignorant of the functions of the system. It addresses the problem of semantic feedback by
sharing application data with the inteface while ill providing the advantages of
modularisation (Szekely, 1987). However, much more research is needed to judtify the
efficency of this method (Myers, 1989). Although the suitability of the Seeheim modd asa
run-time architecture has been questioned, it still serves as a ussful conceptual mode that
provides a decompasition of roles.

The layered presentation/semantics distinctions can adso be found in MVC and PAC. The
PAC and MVC modes are however atomic based, in that they view the system as
condgting of multiple interactive components, each having its own intringc behaviour. The
focus is on individud parts of an interface, for example the interaction with a particular item
of data rather than the globd separation of the gpplication into components for each leve.
They identify individud objects as belonging to one of the traditiona layers or include a
layering within each object.

The MV C modd recognises the independence between the representation components and
hence bears no smilarities with the Seeheim model. Ingtead, PAC like Seeheim, shares the
same view on the dructure within the framework. The user interface structure in PAC
dlows many PAC objects to exist within a sngle framework, while this is not the case with
MVC. However, unlike Seeheim, PAC implements the didogue in a digtributed fashion and
is thus a multi-agent moddl. Likewise, MVC addresses the issue of building large and
complex interactive sysems from smaller components, but neither Seeheim, nor Arch/Slinky
support this feature.

3.3.2 Physical architecture

A physicd modd pushes usto view the architecture as components of a system with named
roles and communicating dong specified paths. This is particularly obvious when al the
components are placed on the same machine. Table 3.2 summarises the functions of the
different physical components of the architectural models.

Functions Seeheim Arch/Sinky MVC PAC
define ,_a\ppllcanon Application Functional Core Model Abstraction
semantics Interface Model Adapter

Dialogue .
manage control Control Dialog Controller Control

Logical Interaction +

Physical Interaction Controller | Presentation

accept input Presentation

Logical Interaction +

Physical Interaction View Pr tation

generate output Presentation

control, manipulate, and

retrieve application data Functional Core

Table3.2 Mapping of componentsbetween ar chitectural models

38

Chapter 3 Single-user Interface and Architecture Issues

There are some obvious Smilarities between the components in the Arch/Sinky and the
Seeheim modd. The application interface model in Seeheim takes the role of the
functional core adapter in ArctVSinky, while the dialog control component maps directly
onto the dialog component. In addition, the presentation component in Seeheim
encompases the functiondities of both the logical interaction and the physical
interaction of Arch/Sinky. However, there is no functiond equivalent for Arch/Sinky's
functional core component in the Seehem modd. The abstraction component in PAC
roughly corresponds to the application interface model in Seeheim.

Although both PAC and MV C models are based on an object-oriented paradigm, there are
some dgnificant diginctions between them. In MVC for indance, the input and output
events are handled separately by the controller and view components respectively,
whereas in PAC, the presentation component manages both the input and output. A
change in user input does not necessarily imply a change in the output, but this often is the
case a finer grained leve of interaction. Consequently, PAC will more likely provide
immediate feedback after each input event. However, in some MV C based systens, such
as the Andrew Toolkit (Palay, 1988), the view and the controller are combined into a
sngle object to reflect the tight coupling between input and output events in direct-
manipulation interfaces, thus reducing the communication overhead between the
components.

Another mgjor difference lies with the control. The PAC modd has a dedicated control
component to manage the control, whereas the controller component in MV C dso handles
other tasks, such as users input events. A separate control component makes PAC more
amenable to other kinds of events, hence dlowing it to be easly gpplicable within a multi-
user context. However, it is worth noting that the MVC mode has been gpplied
successfully on avariety of platforms and effectively ingantiated as a design standard.

3.4 Interface development tools

In addition to architecturd modds for building single-user gpplications, there are a number
of tools that are available to assist developers with the design and implementation of user
interfaces. The conventiona development tools range from windowing system &t the lowest
leve to toolkits, User Interface Management Systems (UIMS) and User Interface
Deveopment Environments (UIDE). This section will provide an overview of each of these
development toals.

3.4.1 Windowing systems

The windowing system was one of the earliest tools developed that used the concept of a
window or a frame on screen for managing user interactions. The gpplication processes
user input as events and display output in a window, usudly in graphics form. Some
common windowing systems are X Window system for Unix (Scheifler and Gettys, 1986),
the Apple Macintosh Toolbox (Computer, 1985) and Microsoft Windows (Microsoft,
1993).

39

Chapter 3 Single-user Interface and Architecture Issues

X Window is a network-based system that uses a client-server architecture. An X
gpplication client can run on any machine in the network and the server resdes on the user’s
workgtation. The server is responsible for mediating user input and displaying output. It
trandates user input into X events and sends it to the rdevant client. The client then
interprets these events and informs the server on how to update the display layout.

Windowing sysems in generd provide a very low-levd of abdraction for building
goplications (Myers, 1989). As a reault, toolkits and UIDE are built on top of them to
assst developers.

3.4.2 Toolkit

A s interface toolkit is a library of widgets or interaction objects, such as menus, scrall
bars and buttons that can be called by an gpplication program (Myers, 1989). Interaction
objects have a predefined behaviour and their attributes can be tailored to meet the needs of
the programmer. When a user activates a widget, callback procedures are executed. A
toolkit usualy condgts of an gpplication programming interface (API) and arun-time library.

Tooalkits dlow high qudity gpplications to be built on top of them with less complexity and
they enforce consstency across the interface by providing smilar behaviour to a whole
collection of widgets (Dix et d., 1993). Example toolkits include the Andrew Toolkit
(Palay, 1988), Matif (Foundation, 1989) and TCL/TK (Qusterhout, 1994). Some toolkits
aso offer a direct manipulation grgphica interface like Garnet (Myers et a., 1990), SUIT
(Pausch et a., 1992) and Javatoolkit (Microsystems, 1996).

Although toolkits are popular for building interfaces they do have certain limitations. The
support for separation only gppliesto the leve of each individual component and not to the
whole architecture (Linton, 1993). Also, toolkits do not provide much support for
designing interfaces or sequencing specifications and didogue control. Furthermore, toolkits
provide alimited range of interaction objects, thus restricting the scope of user interaction to
those widgets supplied by the system. Findly, toolkits are often expensive to create and
difficult to use by non-expert programmers, perhaps with the exception of SUIT, which was
designed for novice GUI developers.

3.4.3 User Interface Management Systems

User Interface Management Systems (UIMS) add another leve of services in interactive
system design beyond the toolkit level. The partitioning of the gpplication semantics and the
user interface functiondity was one of the main motivations behind the design of UIMS.
This concern generated another set of issues related to the mode of connecting these two
components together and the protocols of communication between them. The Seeheim
mode wasthe firg explicit architecture of what congtituted a UIMS.

A UIMS offers mechanisms for the run-time management of user interfaces (Hix, 1990).

An goplication is typicdly separated into components and a runtime component is
responsible for managing the interaction between them (Olsen Jr, 1992). A UIMS can be

40

Chapter 3 Single-user Interface and Architecture Issues

integrated with tools that define user interfaces to provide an environment that dlows rapid
prototyping and execution of the gpplications’ interactive components (Sawyer and Mariani,
1995).

3.4.4 User Interface Development Environments

User Interface Development Environments (UIDE) provide an integrated set of tools that
address the design activities that precede the management of the run-time system (Dix et d.,
1993). There are a number UIDE deveoped for sngle-user systems which support the
process of cregting a user interface and they typicaly include programming environments
such as Visud Basc and Visua C++.

Although UIDE plays an important role in user interfaces in generd, there has not been
much support in this area for multi-user interfaces - the subject under condderation in the
next chapter. However, there are some development tools for the Web environment that
support the congtruction of applets, HTML web pages and CGI scripts such as File maker3
and Visud Cdafé4. The latter dso executes sarviets but there is no facility for linking the
servlets with the CGI scripts. Given the limited coverage in multi-user interfaces, the issues
surrounding UIDE will not be considered any further.

Interface development tools should idedly help developers convert interface specifications
into an interactive system, while supporting al stages of the life cycle of system devel opment
including prototyping, implementation, testing, mantenance and system enhancement
(Baecker et d., 1995). While some tools support some of these god's, none address al of
them. The mgority of the tools am at increasing developers productivity. They clam to
reduce the development time in the life cycle of user interfaces and increase the qudity of
the interface by making it eeser and more economica to create and mantan (Myers,
1995).

3.5 Design paradigms

From a software engineering viewpoint, it is advantageous to describe an gpplication’s
functiondity as being separate from its presentation. But in practice, this degree of
separation is difficult to achieve. This section will now explore some of the ways in which
architecturd modds and interface development tools have been implemented a the
conceptud leve.

3.5.1 Event-based

An event-based model considers input tokens as events. Input events are processed by
event handlers, which modify the internd state of the system and cdll the relevant application

3 http://www.filemaker.com/
4 http://www.visual cafe.com/

41

Chapter 3 Single-user Interface and Architecture Issues

routines before generating output events. Such systems are very efficent & managing
multiple processes and they do support some semantic feedback.

However, the application only communicates with the presentation when there is a need for
input. The didogue contral is therefore internd to the gpplication and this forces the
goplication to be aware of the presentation issues, thus rendering the application less
generic. Moreover, the tight degree of control between the input and output events makes
the task of moddling the overal flow of the dialogue more difficult, as smal changesin one
part of the program may affect many other parts (Dix et al., 1993).

3.5.2 Object-oriented

In an object-oriented modd, the elements of a user interface are represented as objects.
There are usudly two kinds of objects. interactive objects, which implement the user
interface and abstract dyjects, which implement the data underlying the interface. This
keeps the user interface separate from the application code.

Objects provide a good abstraction mechanism that encapsulates both state information and
operations. Moreover, an application can be eadly extended by specidisng high-leve
classes through the inheritance mechanism. The X Window System Manager uses an
object-oriented progranming dyle (Scheifler and Gettys, 1986). Toolkits that are
amenable to an object-oriented approach provide ingtantiation and inheritance feetures, thus
amplifying cusomisation.

Object-oriented systems can handle highly interactive direct manipulation interfaces as the
goplication can ater the computationa link between the input and the output to provide
rapid semantic feedback. However, these systems are usudly programming environments
and may as a result be unusable to non-expert programmers (Barth, 1986), (Krasner and
Pope, 1988).

3.5.3 Constraint-based

In a congraint-based model, the link between the presentation and the application is made
more explicit via the use of condraints. Garnet (Myers et a., 1990) is an example Sngle-
user gpplication that uses smple congraints for communicating between the user interface
and the gpplication. The control component in the PAC mode aso has an implicit notion of
congtraints between the vaues of the gpplication and those of the presentation. In generd,
mogt toolkits tend to hardwire the input handling directly into each widget. But some
toolkits such as Grow (Barth, 1986) and Garnet (Myers et a., 1990) add constraints on
top of their object-oriented functiondity to enable designers to specify the relaionships
among the objects, which are then maintained automatically by the system.

Condraints are enforced at run-time by reflecting the changes in one object onto others.
For ingance, in Garnet, the look (interface) and fed (gpplication) is separated by
encgpsulating the behaviour of input devices in interactors (Myers, 1990). Consequently,
different widget types can be implemented on top of the same interactor mechanism. This

42

Chapter 3 Single-user Interface and Architecture Issues

goproach is very amilar to Smdltak’s MVC paradigm (Krasner and Pope, 1988), where
the model is the prototype-instance object specification, the view is the graphica object
system and the controller is the interactor. All three objects are interconnected by a
condraint system.

Unlike event-based systems, condraint links produce an independent description of the
didogue contrallers. The interface procedures only cal the application when the user inputs
a command and as a result, the control is externd, usudly in a separate didogue
component. However, in order to preserve the intended link between the gpplication and
the presentation, a great ded of information about each other must be represented in the
externd component and this may be an inefficient and cumbersome task.

3.5.4 Callback

In systems using callback procedures, the separation between the gpplication and the
presentation is maintained by adopting a notificationbased programming and smilar to
congraint-based systems, the didogue control resdes externdly from the gpplication. So
when auser performs some input action, the notifier or the interface invokes the appropriate
gpplication procedure to handle the event.

Toolkits are usualy based on a procedurd interface and dl actions or eventsin the interface
are handled by callback procedures. For instance, the standard X toolkit (OSF, 1995)
uses cdlback procedures to implement the application interface. The cdlbacks are
directiona as the application objects have to register calback procedures with the notifier
or the user interface objects (widgets). When a specified event occurs, the relevant
calback procedure in the application is caled. Callbacks tend to increase the dependency
between the application and the interface (Myers, 1991).

The MV C architecture uses cdlbacks in the opposite direction. The modd object dlows
the view and controller objects to register cdlbacks with it, hence the didogue is not
managed separately. When some aspect of the mode is changed, the respective calback
methods are notified. It is then up to the view and the controller objects to determine whet
changes have taken place, s0 they must have some knowledge of the modd internd
dructure. Modularity is hard to achieve in MVC as any change in a component
undoubtedly affects the others.

The use of cdlbacks to communicate between modules does generate some problems. A
module should know in advance when it wants to be called by another module, and such a
master-dave reationship is often difficult to identify and mantan. Furthermore, the
communication is limited by the granularity of the calbacks and the conditions under which
they are specified. In MV C for ingance, the module thet is cdled back often has to query
the cdling object and compare its current date with its previous state to determine any
changes.

A dight variation o callback is to use shared memory, where the gpplication program ether
polls the data to check for any changes or is automaticaly notified of any changes. But in

43

Chapter 3 Single-user Interface and Architecture Issues

generd, message passing or event-handling techniques are less efficient than calback
procedures.

3.6 Summary

The focus of this chapter was on the architecturd and interface issues for sngle-user
applications. Software architecture plays a very important role in the construction of a user
interface as the underlying architecture directly affects the behaviour or the look and fed of
the user interface. A number of degrable requirements for sngle-user interfaces were
identified; among which separation, direct manipulation and rapid semantic feedback have a
magor influence on the tempord properties of the interface.

Ealy architectura modds such as Seeheim emphasise the didtinction between the
presentation, dialogue and functionality aspects of the interface. Whilst the Seeheim model
has been developed in various ways, most notably in the Arch/Slinky framework, most user
interface architectures preserve some notion of layering between the surface output and
input devices and the deep application semantics. Object-based models such as Modd-
View-Controller and Presentation-Abstraction-Control make smilar distinctions but they
tend to focus on individua parts of the interface, instead of the globa separation of the
gpplication into components.

The separation of the gpplication and user interface functionaity enhances feetures such as
portability, reusability, customisation and adaptability. However, the decoupling of the user
interface functiondity from the gpplication functiondity is sometimes difficult to achieve,
especidly when rapid semantic feedback is required. Consequently, aspects of the user
interface may ‘leak’ into the application and vice versa.

The architectural models were analysed further by looking at both conceptud and physica
agpects. A conceptud (or logicd) analyss helps us to think about user interface
development issues whereas a physicad andyds identifies whether there redly are
components of the system with the named roles and communicating aong the peaths
specified in the architecture. This breskdown is clearly visble in sngle-user interfaces asdll
the components are placed on the same machine.

In addition to architecturd models, a number of interface development tools are avallable
for building sngle-user applications. Windowing systems provide a very low-leved of
abdraction for building applications. Consequently, toolkits and User Interface
Development Environments are built on top of them to assst developers in their tasks.

Toolkits enforce consistency across the interface by defining the interface as a collection of
widgets. However, they do not provide enough support for designing interfaces or
sequencing specifications and didlogue control. User Interface Management Systems
ingtead goes beyond the toolkit level by offering mechanisms for the run-time management
of user interfaces.

Findly, some common design paradigms employed by architecturd models and interface
development tools in general were explored. Although, it is advantageous to separate an

44

Chapter 3 Single-user Interface and Architecture Issues

goplication’s functiondity from its presentation, such a degree of separationis more difficult
to achieve in sysems where the user interface eements are event-based and less so in
object-oriented models. In congraint-based moddls, the link between the presentation and
the application are handled through condraints but the control component is externd.

Consequently, a large amount of information about the gpplication and the presentation has
to be represented in the externa component. Callback-based systems adopt a notification
based method to invoke the appropriate gpplication procedure to handle events, but like
condraint-based systems, the didogue control is externd to the application.

The next chapter will consider smilar architectura and interface concerns to those discussed
here, but these will be applied to a multi-user context. In a multi-user digtributed
environment, the software no longer runs on asingle machine. One can no longer fudge the
boundary and communications between the gpplication and the user interface components
asthey are enshrined in the physica location and network connectivity.

45

Chapter 4 Multi-user Interface and
Architecture Issues for Collaboration

The user interface was mainly viewed from a single-user perspective until the advent of
personal computers and loca area networks. Client-server achitectures became more
popular and they presented a whole set of chalenges in the design and implementation of
user interfaces. Some of the crucid issues that had to be addressed included the need to
support multiple user interfaces while ensuring a onsstent interface for each dlient, and
providing concurrency and access control to prevent users from performing conflicting
actions.

In digtributed interfaces, the gpplication and the interface do not use shared memory.
Instead, the application may be running remotely at the server-end while the user interface is
executing locdly a the dient-end. When users are spread across a number of locations, the
underlying application should support interfaces that run on a number of workstations across
adigtributed environmen.

The emergence of Computer Supported Cooperative Work (CSCW) has pushed
collaborative interfaces into focus. The support for collaborative work has seen the
development of groupware that present a number of interfaces for smultaneousinteraction
by multiple users. Groupware is described as software that supports and augments group
work (Baecker et d., 1995). Groupware systems have been developed for severd aress,
from databases, graphics applications, multimedia systems to conversation boards (Brink
and Gomez, 1992) and computer games (Rohall et al., 1992).

Collaborative interfaces are difficult to implement because they not only have to handle
interaction tasks associated with single-user interfaces but they must dso perform different
collaboration tasks. On a technica level, collaborative applications have to manage
digtributed processes, maintain a robust inter-process communiceation and a persstent
object store. Furthermore, groupware should support some fundamenta human factor
requirements for promoting effective groupwork, such as setting up and breaking
connections dynamicaly with remote users, managing input and output from multiple users,
informing usersinput and coordinating users interactions (Dewan and Choudary, 1992).

This chepter gives an overview of multi-user interface and architectural issues for
collaborative gpplications based on the existing research literature. Section 4.1 exploresthe
architecturd and tempora requirements for multi-user interfaces designed for supporting
collaborative work. Section 4.2 examines some common architecturd modds. Early
digtributed systems used to implement multi-user gpplications in a very trangparent fashion.
However, the need for collaborative gpplications has driven a number of development tools
that enable the sharing of data and coordinate interaction across different interfaces.
Section 4.3 reviews some of these tools. Findly, Section 4.4 consders some design
paradigms gpplied in multi-user architectural models and development tools.

46

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

4.1 Requirements

Many exiding guiddines for user interface desgn have been developed from a single user
perspective. There are very few requirements that exclusively address the needs for multi-
user interfaces (Dewan, 1992) and a large number of them merely extend the primitives of
their dngle-user interface counterparts (Dewan and Choudhary, 1991).

Multi-user interfaces designed for supporting collaborative work must facilitate the sharing
of gpplication information to promote collaboration among group users. Furthermore, these
interfaces should cope with network related problems that may arise with distributed
interaction, such as delays, disconnections and network failures. If network problems are
likdy to occur, the gpplication should dso provide enough support to maintain data
consigency.

This section considers some of the main tempora and architecturd requirements for multi-
user collaborative interfaces. Like sngle-user interfaces, separation and feedback are
important issues in multi-user interfaces. However, the need for supporting collaborative
work introduces additiona requirements of feedthrough, avareness, sharing and control.

41.1 Separation

The separation of the application semantics from the user interface functiondity is a
desrable architectural festure in sngle-user gpplications (Section 3.1) as it offers many
advantages including portability, reusability, customisation and adaptability. However, the
logical separdtion is sometimes ignored in Sngle-user interfaces in order to reduce the
complexity and speed up the development of the gpplication. Also, there is o little in the
gpedification of sSngle-user gpplications that explains how the separation should be made
(Patterson, 1991).

Unlike Sngle-user interfaces, the logicd separation is a necessity in collaborative multi- user
interfaces as it amplifies the process of visudising the interface in different ways (Patterson,
1991). It is ds0 easder to identify which dements should be pat of the application
component and which elements should be part of the interface component. For example,
the need for multiple views of the shared interface implies that the shared information should
be embedded in the underlying application mode in order to make it available to al group
users.

In addition to the logical separation, the physca separation of the architecture is dso
desrable for supporting end-user adaptation in a digributed environment. Physica
Separation provides some degree of fault tolerance, as afalure in a particular user interface
process will not affect other user interface or gpplication processes (Bentley, 1994).

4.1.2 Feedback

Like angle-user interfaces (Section 3.1.3), the requirement for rapid semantic feedback is
an important tempora property in multi-user collaborative interfaces. Aswadl asinteracting

a7

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

with each other, collaborative participants interact individualy with the sysem. Therefore,
they require arapid response following their actions.

Mogt operations in sngle-user gpplications require a feedback within 0.1 seconds (Section
2.2.1) to endble users to fed that the system is reecting indtantaneoudy. This time limit is
relatively easy to achieve when dl the components are running on asingle mechine. Butina
digributed system, the gpplication and the user interface components often resde on
different machines. Consequently, the feedback Ioop involves transmission over a network
and if there are problems such as latency or ddays, it is more difficult to achieve acceptable
response times.

4.1.3 Feedthrough

In addition to feedback, collaborative users also need to see the effect of one another’s
action. A large proportion of group interaction takes place via the shared objects.
Feedthrough is the reflection of a user’s actions on other participants screens (Dix et d.,
1993) and it is a crucid tempord property that helps to promote collaboration. Rapid
feedthrough is necessary for group work as the artefact is shared by a number of users.

However, the requirements of feedthrough are not so stringent as for those for feedback
(Dix et d., 1993). Feedthrough depends on two mgor factors. the granularity of the
updates and the propagation of those updates.

The extent to which a user’s activities are represented on another user’s screen depends on
the degree of coupling between the two interfaces. During close collaboration, group
members have to communicate frequently with each other before performing any updates to
the shared information space. This requires a tightly coupled interface. But when
collaboration is less direct and less frequent, aloosely coupled interface is sufficient.

So, in a tightly coupled cooperative activity such as group drawing, the associated
explanation and gesturing involved in drawing an object is often more important than the end
product itsdf (Tang, 1991). Consequently, a smal granularity of updates needs to be
broadcast to dl the users after each action and rapid feedthrough is vital. In contragt, the
rate of updates in loosaly coupled applications can be reduced significantly - the updates
can be chunked and broadcast dl together at a later stage. Rapid feedback may be
necessary for the user who initiated the action but feedthrough to other users can be dower.

414 Awareness

Traditiond didributed systems have applied different types of trangparency to hide
information from the users, thus giving the illuson that each user isworking inisolation. The
am of a collaborative multi-user interface is to facilitate the red-time presentation and
manipulation of shared information in order to establish and maintain a common context
(Bentley et a., 1994). Collaborative applications must therefore provide users with an
awareness of each other’ s presence and activities to support group work effectively and for
edtablishing successful collaboration (Ramduny, 1994).

48

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

There are various types of awareness that have been identified in the research literature.
The three mgjor forms of awareness that enhance group work are:

(@) the presence of group members and their availability for cooperative work
(b) the effects of group members actions and
(c) how changes happen

Awareness of type (b) basicdly conveys the notion of feedthrough (Dix, 1997) as it dedls
with the changes that have occurred. Also, the pace of feedthrough is directly proportiona
to the rate of providing awareness of type (c); one can infer the reasons why changes occur
by noticing the intermediate steps and the way changes happen. Both awareness of types
(b) and (c) will be affected by network delays and lags.

415 Sharing

Different users need to be aware of one another’s interaction to varying degrees depending
on the activities that they are carrying out. The amount of sharing provided to the users
depends on the granularity (amount of information to be shared) and the levels a which
the objects are shared at the architecturd level.

In generd, the mgority of groupware systems operate between the fine-grained and
coarse-grained extremes (Dix et a., 1993). For example, fine-grained sharing dlows users
to edit the same sentence or even the same word within a particular sentence, whereas
coarse-grained sharing only dlows one user to edit afile a any time.

Objects can be shared a the following levels and each level corresponds to a particular
degree of user interface coupling:

(&) Presentation level - each participant is presented with the same display of the same
subset of the shared information and any update in the presentation is replicated to all
other display screens (Bentley, 1994). Systems supporting presentation level sharing
are tightly coupled and are they are dso referred to as What- Y ou- See-1s-What-1- See
(WYSWIS) sysems. Example gpplications include meeting rooms (Begeman et d.,
1986) and shared window systems (Lauwers and Lantz, 1990).

(b) View level - each user is presented with the same subset of an information space but
the actua presentations may be different. For instance, one user may view the data in
tabular form while another may view the same data as a graph and they can both
interact smultaneoudy. The view is shared but not the presentation of the view, hence
such systems are semi coupled.

(c) Object level - each user is presented with different, possibly overlapping subsets of the
information space (Bentley, 1994). Such gpplications are loosely coupled and they are
adso cdled What-Y ou-See-Is-Not-What-1-See (WY SINWIS) systems. An example
groupware system is Grove (Ellis et d., 1990), (Ellis et d., 1991) that dlows
participants to edit different parts of the same document, so the object is shared but not
the presentation.

49

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

416 Control

The degree of sharing offered by the interface depends on the types of control enforced at
the architecturd level. Traditiond didtributed systems viewed control as deding with the
problems of digtribution and such problems were masked from the applications (Rodden
and Blair, 1991). For ingance, most distributed systems alowed users to know who could
access which objects but they did not dlow users to know who was accessing a particular
object at a particular moment. The control decisions were thus embedded into the system
and hidden from the users.

However, due to the dynamic requirements of CSCW applications, one of which is
awareness, trangparency is the wrong approach (Rodden and Blair, 1991). The common
focus on work implies that collaborative participants have to access the same data. Asa
result, some form of control is required to manage the shared data and the shared objects.

One of the most common concurrency control mechanisms is locking. An explicit form of
locking is floor control policies (Begeman et d., 1986), (Stefik et d., 1987a) where the
floor contral is the responsbility of the centra conference agent and users have to make an
explicit request for the floor. Users thus take turns in interacting with the gpplication. In
contrast, implicit locking is automaticaly applied when users attempt to access an object.
Systems that adopt this mechanism offer no techniques for coordinating group interaction.
A lock may be implicitly requested before a user’s action and if no one ese has the floor,
the floor isimplicitly granted. But if the floor is dready taken, the user’s action is blocked
until the lock is released.

In some systems, additiond protocols are built on top of the locking mechanisms, such as
access rights or roles (Leland et d., 1988). Users perform certain tasks depending on the
roles they are assigned. Unlike access rights that normally impose a redtriction on users
functions, roles are more dynamic in nature. Findly, certain applications do not provide any
locking mechanisms, they rey on participants usng a socid protocol to negotiate
smultaneous access in a free-for-dl dtuation. However, such systems must usudly have
some ways of detecting conflicts to restore consistency autometicaly or at least dert users
when conflicts occur.

This section has shown that, in addition to the requirements of separation and rapid semantic
feedback for single-user interfaces, cooperative multi-user interfaces are governed by the
need to facilitate the sharing of application information to promote collaboration among
group users. So, in order to meet the needs of group users, feedthrough, awareness,
sharing and control are essentid requirements. However, the properties of the supporting
architecture delimit many of the features of the cooperative interface provided by an
goplication.

4.2 Architectural models

Unlike sngle-user systems, which have seen a number of research characterisng software
architectures (Bass, 1993), (Myers, 1995), (Nigay and Coutaz, 1993) the contribution in

50

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

multi-user architectures has not been so prominent. Most of the work that have addressed
groupware sysems mainly consgst of identifying specific architectures such as centralised
and replicated window architectures and hybrid architectures. This section looks at the
benefits and drawbacks of each of these architectures.

4.2.1 Centralised architecture

The centralised architecture congists of a client program that runs on each user workstation
and a server that runs as a dedicated program on a centra computer that holds dl the
goplication’'s data (figure 4.1). This arrangement is dso known as the dient-server
achitecture. The client manages the screen layout and accepts input from users while the

server broadcasts output events by routing them through loca client programs to dl the
USers.

\/'

Figure4.1 Centralised architecture

The dient-server gpproach is very smple to implement, as it essentidly comprises one
program with several front ends. Because the gpplication and its related data are held
centrally, it is eader to manage concurrency control, data consistency and access
management. Client-server architectures have been adopted in a number of systems, for
example, MMConf conferencing system (Crowley et al., 1990) and shared X window
system (Gust, 1988).

Presentation level or WY SIWIS sharing is eadly supported in the centralised architecture,
for it only involves the server replicating the output to al the clients. View level and object
levd dharing can dso be supported, but the interaction and visudisation have to be
embedded in the centrd server, thus inhibiting end-user interface tailoring. Another
disadvantage with having a centra server isthat large amounts of output may potentialy act
as a bottleneck (Lantz, 1986) and in case of a falure due to a network breakdown or a
delayed feedback, this may eventually lead to a deadlock state.

4.2.1.1 Rendezvous Abstraction-Link-View architecture
The Rendezvous system (Patterson et al., 1990) is based on a centralised architecture with
an underlying Abgtraction-Link-View (ALV) architectura modd (figure 4.2). Rendezvous

assumes that the state of a multi-user application is encapsulated in objects and each multi-
user gpplication condsts of an abstraction and severd, possibly different views. The sharing

51

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

and consistency between these objects are achieved by establishing congtraints between the
shared abstraction and views.

Abstraction |« Link > View

Figure4.2 ALYV architecture

The functiondities of the componentsof ALV ae

Abdtraction - this stores and provides access to the abdtract information of the
goplication in other words, the information that is common to al the views.

View - this presents information to the users that enable them to modify the display.
Although this information may be redundant, it is not replicated and besdes, it dlows
views to update their displays quickly even when access to the abstraction is impaired
by network delays or high loads.

Link - thisisatwo-way constraint mechaniam that maintains consistency and facilitates
the communication between the view and the abstraction components. It ensures that
the redundant information is kept consstent by mapping the underlying data with the
presentation.

For example, in a pie chart or bar chart display, the abstraction component will store the
numeric values of the information presented as pie dices or bars. The view will have the
abdraction information in the form of dice angles or bar heights and the link will be
responsble for transforming the bar heights to raw numbers and vice versa.

The abstraction and view objects in the ALV architecture correspond to the single-user
MVC (Section 3.2.3) model and view components respectively. When an interactive
system is decomposed into view (presentation) and abstraction (application) components,
some information may belong on both sdes. But with ALV, the congraint mechanism helps
to keep the redundant information consgent. By implementing the communication
congraints in the link object, the view and the abstraction components become independent
of each other and are consequently easier to design and implement. Furthermore, this
dlows the re-use of the view and the abdraction components, thus smplifying rapid

prototyping.

The centrdised architecture of Rendezvous smplifies the process of synchronisng the
interfaces, however it suffers from performance drawbacks, as the abstraction and the
associated view objects execute at a centra location. Rendezvous does provide object,
view and presentation level sharing but the centrdlised architecture does not dlow the
sharing policy to be vishle; hence end-user tailoring is not supported.

4.2.2 Replicated architecture

52

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

In areplicated architecture, a separate copy or a replica of the application runs an each
client workstation (figure 4.3). Each replica executes the gpplication code and sends
feedback localy. Groupware gpplications that adopt a replicated architecture tend to be
highly interactive and require immediate response, for example GroupDraw (Greenberg et
al., 1992a) and GroupDesign (Beaudouin-Lafon and Karsenty, 1992).

L <
.......

Figure4.3 Replicated architecture

The replicated approach offers the advantages of a centraised architecture with the added
benefits of performance, as the output of aworkstation is produced by the loca workstation
itsdf (Dix et d., 1993). Because the clients can be managed locdly, view level and object
levdl sharing are easly supported. Also, it is rdatively easy to provide end-user interface
talloring, as each replica can smply adapt its visudisation and interaction policies to the
users preferences (Bentley et d., 1994).

The man problem with the replicated architecture lies with synchronisation and maintaining
data consstency. Usudly, the input from each workgtation is sent to each replicato ensure
synchronisation among the different replicas. The copies then communicate with each other
to mantan data and inteface consstency. However, when severd users perform
amultaneous actions some conflicts may arise. For instance, if a user deletes a sdlected
object in aWY SIWIS group drawing program while another user is changing the sdection
to a different object, inconsstent interfaces can occur due to events ariving in a different
order at each workstation. Such conflicting actionswill lead to race conditions.

Complex synchronisation agorithms are required to dedl with race conditions. A standard
solution traditionaly applied in distributed computing is to use a globa clock to timestamp
each event. If any inconsstencies arise, the events are rolled back and re-executed in
temporad order. This approach is however ingppropriate for multi-user interfaces where
display screens are updated immediately after each user’sinput. Some groupware systems,
such as GroupDraw and MMConf (Crowley et a., 1990), assume that race conditions
rarely occur and they ignore the problems of synchronisation. Others like GroupDesign and
Grove (Ellis et d., 1990) attempt to synchronise events a the expense of very complex and
computationdly expensive dgorithms.

53

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Alternative concurrency control mechanisms based on trandforming updates to prevent
rollback have dso been developed. These mechanisms include locking and floor control
and they can only prevent race conditions or tolerate race condition in Stuations where
users can obtain locks and when rapid feedback is not the mgor concern (Dix et ., 1993).
Readl-time synchronous update will till demand specid- purpose dgorithms.

A further problem with replication occurs when latecomers join a shared sesson, for

example, in a conferencing system. It is rdaively sraightforward to handle newcomersin a
centralised gpproach, as new clients only have to contact the server and register their

exigence. The server then broadcasts the current state of the application to bring the new
client up to date. But with a replicated architecture, a new replica has to contact dl the
other replicas to find out about the current state of the gpplication and receive any updates.
Therefore, the new replicas must be aware of the locations of dl other current replicas or a
least should be &ble to find them ouit.

Despite the difficulties with the replicated architecture, this approach has two key
advantages over the centralised gpproach - performance and versdtility.

4.2.3 Hybrid architecture

Very often, neither a pure centrdised nor a pure replicated architecture fully meets the
requirements of asystem. It may therefore be more effective to adopt a hybrid architecture,
where certain parts of the systems are centralised and others are replicated depending on
the application’s requirements. Suite (Dewan and Choudary, 1992), (Dewan, 1993) isan
example of a distributed hybrid architecture that has a centra semantic component, where
the application resdes and locad user-interface components, represented by didogue
managers (figure 4.4).

Application application object

Y N

Dialog Dialog _
Manager Manager user interface
A ‘B’ objects
User A User B

Figure4.4 Suitehybrid architecture

Suite, like the Seeheim architectural mode (Section 3.2.1), separates an interactive program
into gpplication objects and user interface objects. Each user interface object in Suite is
further divided into multiple dialogue managers and each didogue component manages the
interaction between a particular user and the application.

54

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

The Suite architecture is designed to keep network traffic low. Although the semantic tasks
are performed remotely in the centra application component (which may involve some
communication delays) there is no dday in users viewing the displays on their screens, asthe
didogue managers format the computation results localy (Dewan, 1993). It has been
argued that the communication delays at the gpplication-end are usudly less perceptible
because computation sze is typicaly smal compared to its display (Dewan, 1993). The
other assumption is that results are not usudly generated frequently for users tend to execute
long transactions before committing their input values.

The hybrid architecture is dso supported by the MMM mullti-user editor framework (Bier
and Freeman, 1992), which is essentialy based on a centraised architecture, but the datais
replicated to support loca insertion points, feedback and style setting. In contrat, the
XGroupSketch multi-user drawing program (Greenberg et al., 1992b) is mainly replicated,
but dl the updates, communication and user-regisration are handled via a centrd
component. In this case, the replicas only need to know the location of the centra
component to broadcast the updates.

This section has provided an overview of the various architectural models that have been
developed for implementing multi-user collaborative applications. Most systems tend to
adopt either centralised or replicated window architecture. Each architecture meets the
requirement of collaborative sysems by supporting different levels of information sharing
with different degrees of complexity as summarised in table 4.1. However, a hybrid
goproach is very often more effective to meet the needs of collaborative users, as certain
parts of the systems are centralised and others are replicated depending on the gpplication’s
requirements.

55

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Features Cent_ral ised Rep! icated
architecture architecture

implementation easy difficult
late user registration easy difficult
synchonisation/ data consi stency easy difficult
rapid feedback no yes
presentation level sharing yes yes
view/object level sharing no yes
end-user interfacetailoring no yes

Table4.1 Centralised vs. Replicated architecture

4.3 Interface development tools

A consderable amount of research has been carried out in the red-time presentation of
multi-user interfaces within a collaborative environment. Mogt of them have focussed on
developing techniques, tools and facilities to coordinate the interaction across different
interfaces and these are discussed below.

43.1 Shared window systems

Shared window systems dlow exiding single-user applications to execute in a multi-user
environment with minima changes. They ae merdy extensons of sngle-user window
systems that support sharing. The effects of the user’s actions are shared across a number
of displays in a transparent fashion. Applications based on the shared windows gpproach
are dso known as collaboration transparent gpplications.

The NLS teleconferencing system (Engelbart, 1975) was one of the first shared applications
developed that dlowed each user to share their complete display screens. The sharing of
parts of adisplay or individua windows came with the development of windowing systems,
such asVeonf (Lantz, 1986) and Rapport (Ensor et d., 1988).

The logicd dructure of a shared window system is shown in figure 45. A centrd
conference agent is responsble for managing the interaction between the users and the
goplications (Lauwers and Lantz, 1990). The centrd agent multiplexes output streams from
the gpplications onto the users window systems (figure 4.58) and demultiplexes the input
greams from al users to the appropriate application (figure 4.5b).

A shared workspace is thus created and this dlows each user to see the same view of every
window associated with the shared gpplications. Shared window systems are usudly built
on top of an exising network windowing system, which is responsble for handling the
communication between the gpplications and the displays via a network protocol.
Examples of collaborative systems based on this gpproach are SharedX (Gust, 1988) and
MMConf (Crowley et d., 1990).

56

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

|- c====c---1
1
s >
! Ll
floor | .
i control !
System ! System
draw on applicatic()jn\ /
Conference comman
draw on window x” Conference
window X’ o Agent
7' application
draw on window X command
Application Application Application Application

(a) (b)

./

Figure4.5 (a) Output and (b) Input structure of a shared window system

Because shared window systems dedl with a single stream of output and input events, only
one user can interact with the gpplication a any giventime. A suitable concurrency control
mechanism is therefore required to coordinate the interaction between the participants. This
is usudly in the form of some floor control policy that is managed by the centra conference
agent. However, floor control policy is a contentious area of debate, as no single policy will
auit the needs of dl group membersin dl task contexts (Lauwers and Lantz, 1990). Floor
control policies are usudly based on some turn-taking protocols or on policies tha range
from dlowing only one user to control the shared workspace at atime, to dlowing anyone
to generate input at any time to any window (open floor).

Most shared window systems are based on replicating the output via the sharing of the
presentation and thus they do not have an explicit knowledge of the shared task. Such
interfaces provide a common frame of reference to al participants by dlowing usersto refer
to the same visud context (Lauwers and Lantz, 1990), (Dix et d., 1993). Ealier systems
supported strict WYSIWIS, where al participants had the same window sze and
placement. This arrangement was not only found to be confusing and digtracting for users
but it was aso overly redtrictive for group members especiadly when they have widdy
differing roles and assume different tasks (Greenberg, 1990). Hence, the MM Conf system
(Crowley et d., 1990) adopted a more relaxed WY SIWIS approach and users were
alowed to make decisons about the window layout localy.

Although shared window systems increase the power of interactive sysems significantly by
supporting collaboration tasks, they can only manage low-level interaction entities and
provide support for near-WYSIWIS interaction (Dewan and Choudary, 1992). For
ingtance, a shared X window system forces users to share scroll bars, as the notion of scroll
barsis not defined a such alow leve.

4.3.2 Shared object systems

57

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Shared object systems enable the collaborative sharing of data and they are often referred
to as collaboration aware systems. Collaboration awareness supports the devel opment of
specidised gpplications desgned for smultaneous use by multiple users (Lauwers and
Lantz, 1990). These applications provide facilities for managing information sharing
explicitly between the participants and they present a number of different interfaces to the
users. Example systems include the ColLab meeting room (Stefik et d., 1987b), Grove
group editor (Elliset d., 1990) and rIBI S redl-timeinformation sysem (Rein and C., 1991).

Collaborative aware sysems like collaborative transparent agpplications, provide
presentation level sharing. For example, in the Colab collaborative meeting system (Stefik
et a., 1987b), al dlients execute the same application program and the state of the objects
can be shared among the clients. The objects encapsulate both the semantic state and the
user interface date. If ashared state object is modified, such as the scrollbar, this change is
replicated to the other clients via broadcast methods, thus alowing the users to view the
changes without encountering any network delays.

CoLab implements both a grict floor control policy to manage users interaction with the
display and a rdaxed WYISWIS approach to provide a coordinated interface for dl
paticipants. The latter dlows participants to have the same presentation of the shared
information, which can be arranged into shared and private windows as required (Stefik et
al., 1987a).

Grove (Ellis et d., 1990) separates the users shared and private windows by applying the
notion of views that links the users access rights with their presentation. For example,
private views are only ble to the owner, shared views are ble to agroup and
public views are accessible to dl the participants.

In generd, collaboration aware systems often embed the management of each user’s sharing
within the gpplication itsdf. As areault, the decisons regarding the display and the waysin
which the information can be modified are embodied in the gpplication itsdf. This inhibits
the talloring of the sharing policy and hinders multi-user interface prototyping (Bentley,
1994). Furthermore, the lack of a supporting infrastructure means that most collaboration
aware gpplications have to be built from scratch. Hence, this gpproach has been less
popular than collaboration trangparency. However, due to flexibility reasons, collaboration
aware arrangements are becoming more prominent (Greenberg, 1990).

Table 4.2 summarises the main features of collaboration trangparent gpplications and
collaboration aware systems.

Features Collaboration | Collaboration
transparent aware

easy to implement v

support specialised synchronous multi-user application v

information sharing v

presentation level sharing v v

58

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

view/object level sharing

private windows v

shared windows

ASEENEENEEN

flexibility

Table4.2 Collaboration transparency vs. Collaboration aware
4.3.3 Groupware toolkits

Conventiond multi-user toolkits do not support many of the requirements of groupware,
such as managing synchronisation, concurrency and communication on atechnicd levd. In
addition, they do not incorporate the fundamental human factor issues that are necessary for
promoting effective group work.

Groupware toolkits instead provide the key components for common groupware needs,
thereby reducing the development time and increasing the quaity of multi-user applications
(Roseman and Greenberg, 1992). They aso dlow the rapid prototyping of agpplications
and enable various aspects of cooperation to be customised. Example toolkits for red-time
digtributed meetings include GroupKit (Roseman and Greenberg, 1992), Rendezvous
(Patterson, 1991), (Hill et d., 1994), Suite (Dewan and Choudary, 1992) and MM Conf
(Crowley et dl., 1990).

GroupKit (Roseman and Greenberg, 1992) dlows the devdopment of red-time
conferencing applications for geographicaly didributed or face-to-face meetings. It is
based on a replicated architecture that offers support for sharing, access control and floor
control. The predefined classes of GroupKit can extend a single-user application
developed with a single-user toolkit to a multi-user application and aso implement multiple
concurrency and access control policies.

MMConf (Crowley et a., 1990) also supports a replicated architecture, but each replica
behaves as a digtinct logica entity that manages its own state. Each replica can therefore
determine whether an input event generated by its user should be broadcast to other
replicas or not. Asaresult, operations with side effects can only execute on asinglereplica,
thus reducing the occurrence of race conditions.

Groupware toolkits generdly have a modd of the user interface data Structures such as
windows and widgets. They enable the sharing of the user interface sate by dlowing
multiple copies of interactive elements to be created but they do not manage the gpplication
date. So, even the conceptualy smple idea of having multiple cursors on a display and
annotating artefacts used for promoting gesture, awareness and note taking over a visud
aurface is difficult to achieve with toolkits (Hayne et a., 1993).

4.3.4 Multi-user User Interface Management Systems

A fundamenta issue with sngle-user User Interface Management Systems (UIMS) isthe
separation of the gpplication semantics from their screen representations (Section 3.4.3).

59

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Separation is often difficult to achieve because current direct manipulation interfaces require
extensve communication between the user interface and the application to provide rapid
semantic feedback. However, in a multi-user UIMS context, separation is crucia in order
to provide the necessary high-level abdtractions to support the sharing of both gpplications
and user interfaces.

The Rendezvous sysem (Patterson et a., 1990), (Patterson, 1991), (Hill et d., 1994)
dlows multiple users to build interactive syssems on multiple workstations smultaneoudy,
while promating the run-time separation of the user interfaces from the gpplications. Figure
46 shows how the ALV architecture, discussed previoudy in Section 4.2.1.1, is
implemented at run-time. It conssts of a tree of objects with a central shared abstraction
for handling user interaction and display management, and an associated view process that
interprets input events and display directives for each user (Hill, 1992).

Shared
Abstraction

v N

Personal Personal
View View

Figure4.6 Run-timeALYV architecture

So, for each multi-user program, Rendezvous creates a single abstract process that stores
the abstract objects defined by that program. Similarly, a view processis created for each
user, which gtores dl the view objects associated with that particular user. An abstract
object can therefore be shared among a group of users by creating a view object for each
user and using congtraints to keep the abstract objects consistent with the view objects. In
this manner, visudisation and interaction are separated from the information being shared,
thus facilitating the dternative presentations of information.

60

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

4.3.5 Multi-user interface generator

A multi-usr interface generator is defined as a multi-user UIMS that automatically
generates views of abdtract data from a high-level description of those views (Dewan,
1992). Like a multi-user UIMS, a multi-user interface generator manages the visudisation
and manipulation of information outdde the application. A separation between the
gpplication information (what is being shared) and the interface presentations (methods of
sharing) is achieved by hiding the physca didribution of the components from the
goplication developer. Consequently, the visuaisation and interaction policies can be
tallored independently of the gpplication.

Examples of multi-user interface generators include Suite (Dewan and Choudary, 1992),
(Dewan, 1993) and MEAD (Bentley, 1994). Although the default collaboration scheme
offered by Suite is collaboration transparency, collaboration aware programs can be
supported by usng some powerful set of condructs or primitives that control different
aspects of collaboration, for instance, the talloring of users input and output, and user
interface coupling (Dewan and Choudary, 1992). Users are also alowed to define different
collaboration attributes with different users, such as sharing, communication and access
atributes. MEAD ingead, provides high-leve tools for interface development and its
supporting architecture manages prototype interfaces in execution, thus making it more
suitable for rapid multi-user interface prototyping.

This section has given an overview of the various types of development tools for
implementing multi-user collaborative interfaces. However, the success of any development
tool depends on a number of factors. Firdly, the tool should be flexible and it should
support the congtruction of a wide range of interfaces. Secondly, the effort required to
implement or change the user interface should be minimd, so idedly the tool must be
automated. Findly, the tool has to be efficient and this will depend on how well the user
interface performs.

4.4 Design paradigms

Various mechanisms have been adopted to facilitate the communication between the user
interface and the gpplication components in collaborative multi-user architectures. This
section will explore some of the ways in which architecturd models and interface
development tools have been implemented. These include the use of congtraints, callbacks,
and active vaues.

441 Constraints
A condraint system alows a set of source variables to be linked to a target variable, s0
whenever there is a change in any source variable, the value of the terget varigbleis set to a

gpecified function of the source variables (Hill, 1992). Unlike Sngle-user condraint systems
that only support a sngle congraint to be inbound on a vaue (one-way congtraint), multi-

61

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

user systems require multiple condraints. Congtraints embody dependencies between
different vaues that must dways be maintained.

As discussed previoudy in Section 4.2.1.1, the ALV architecture in Rendezvous uses
congraints to maintain onsstency across multi-user gpplications. The use of congraints
enables the link component in ALV to be described separately from the abstraction and the
view components; hence the view can ignore the abstraction and vice versa. Condraints
can automaticaly retarget themsalves as views and view objects can be easly created,
restructured or deleted. The congtraint method for communication does not seem to pose
performance problems as graphic updates have shown to consume far more processor
resources (Hill, 1992).

Rendezvous is designed to provide rapid feedback independent of the number of users,
through the use of some form of redundancy like caching the user interface. Condraints are
aso employed in Rendezvous to maintain consstency between caches and “red” vaues.

442 Callbacks

Callbacks are basicdly procedures invoked in gpplications in reponse to user actions, for
instance, when a user connects to an application or when changes to data structures have to
be checked for semantic condstency. The dngle-user Suite sysem (Dewan, 1990) uses
calbacks and so does the MV C architecturd model (Section 3.5.4). In theory, MVC
could support multi-user interfaces with multiple view-controller pairs but in practice,
problems with concurrency and bandwidth requirements of the callback protocols are said
to arise (Hill, 1992). A potentia solution is to fully replicate dl three components for each
user indead of usng multiple view-controller pairs for each model (Smith et a., 1989).
However, this replicated gpproach can only be used when dl the users have identica
interfaces.

Condraints act as an effective communication mechanism and they have often been used in
adhoc ways to Ink vaues and not objects. Calbacks can be used in its place to link
objects but they are apoor communication mechanism. Callbacks are rather satic and they
force communication to be coded procedurdly into dl the rdevant components.
Consequently, codes have to be written for each interface to ensure that calbacks are
registered and de-registered as required and this limits the scope of reusing the components.

443 Active values

Active vadues are variables that dlow other objects to register functions with them (Hill,
1992). Whenever an active vaue changes, it cdls the rlevant registered functions. Active
vaue sysems behave like cdlback systems, as they are implemented through the calback
mechanism. However, active vaue sysems are a a higher level of abgraction - an active
vaue can in fact be congdered to be an ingtance of a callback. Both active values and
calbacks react to events. With active vaues, this reaction can cause an update in the
relevant variables, but calbacks may not have the same effect.

62

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Multi-user Suite (Dewan, 1992), (Dewan, 1993) uses active vaues to extend sngle-user
Suite (Dewan, 1990) which actudly uses cdlbacks to multiple and possibly distributed,
users. Usars can change active vaues via an interaction varidble - auser’slocd verson of
the active vaue of an object. An interaction variable is automaticaly crested by the system
when the user connects to a particular object. The users can subsequently modify the
interaction variable by changing the interaction attributes associated with it. These attributes
determine the properties of the variable, for ingtance, the format used to display the variable.
The system then invokes the relevant calbacks to make the necessary changes at a lower
leve.

45 Summary

This chapter has highlighted the magor architectural and interface concerns for collaboreative
goplications. Like single-user systems, the notion of separation and feedback are important
requirements. However, groupware systems need to facilitate effective collaboration among
users. Collaborative users should therefore be able to manipulate the shared information in
a timdy fashion and they should dso be aware of each other’s activities with minima delay.
The requirements of feedthrough, avareness and sharing are critica in meeting the needs of
collaborative users. Furthermore, it is essentid to maintain data consistency between the
disolays of the shared information and the information itsdf. Some effective control
mechanism is required for handling change propagation.

The supporting architecture usudly governs the features of the interface. Some common
architecturad models for collaborative systems were reviewed. Such systems adopt either
centralised or replicated window architectures and when these are not suitable, hybrid
architectures are used, where certain parts of the systems are centralised and other parts are
replicated. Unlike the replicated architecture, the centralised architecture is easy for
implementation purposes, for adding and removing clients and for maintaining consstency.
However, the replicated architecture does have the advantage of providing different levels
of sharing, rapid feedback and end-user tailoring. Very often, a hybrid gpproach is more
effective for meeting the needs of collaborative users.

The underlying architectures for collaborative systems such as Rendezvous and Suite were
adso invedigated. Both architectures alow the coupling of semantic values without coupling
their presentations. However, in Rendezvous, the view objects (presentation) for a user
executes at a central dite, in the same address space as the corresponding abstraction
objects (application); wheresas in Suite, the dialogue manager (presentation) executes in its
own address space. Consequently, Rendezvous is not so flexible with the placement of its
components.

A number of CSCW applications are based on the shared window and the shared object
approach, and they are referred to as collaboration transparent and collaboration aware
systems respectively. The tools used in interface development were dso explored and they
included groupware toolkits, multi-user user interface management systems and multi-user
interface generators. These tools provide a much higher-level of abstraction than the shared
window or the shared object approach.

63

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

Collaboration aware features are useful for enhancing awareness among users and for

providing public and private views whereas collaboration transparent features are essentia

when any paticipant’s interaction becomes disruptive to others or when a private
workspace is necessary. Collaboration transparent applications are completely unaware of
the presence of multiple users and their interactions but collaboration aware arrangements
offer more flexibility. Often, a hybrid gpproach may be more suitable for developing
cooperative multi-user interfaces as it encompasses both aspects of collaboration.

Findly, some common design paradigms goplied in implementing multi-user architecturd
models and development tools were considered. Congtraints were found to be an effective
linking mechanism between the separate components of an architecture, as typified by the
Rendezvous ALV architecture. Cadlbacks are not very efficient as a communication
mechanism between separate components, but they have been used successfully to link
objects together. Active vaues show smilar behaviour as callbacks as they both react to
events, but in the case of active vaues, this reaction in turn invokes another callback, which
makes the relevant changes a alower leve.

The issues discussed in this chapter emphasise the need for separating collaborative
architectures into various components to provide effective user-leve behaviour. Even in
dand-adone systems, a poor separation between the components can reduce the
performance of the system and create unacceptable interface delays, as described in
Chapter 3. The development of the Web has forced the concern between where the data
is stored and where the control lies, thus generating various adternatives for the location of
architectura components. The location decision of each component is decisvein achieving
the tempora requirements of rapid feedback and feedthrough and this is the subject under
consderation in the next chapter.

64

Chapter 5 Why, What, Where, When:
An analysis of Collaborative Architectures on
the Web

The Web is aubiquitous platform-independent infrastructure that has a lightweight extensible
centralised architecture, cross-platform browser implementations and an existing user base
numbered in millions. With such an extensve st of functiondities, the Web offers immense
potentia for the development of CSCW applications that provide much richer support for
collaboration. The Web can facilitate the development and implementation of remote
collaborative applications, despite the limitations in the range of gpplications that can be
directly supported.

Issues such as network bandwidth, rdliability and performance have become critica with the
increasing use of the Internet. They have a direct influence on the tempora behaviour
offered by the interface. Although collaborative applications can be developed in an ad hoc
fashion, it is widdy recognised that for both sngle-user and multi-user interfaces, an
gopropriate software architecture is required as an ad for design, portability and
maintenance (Bentley et d., 1994), (Hill et d., 1994), (Pfaff and Hagen, 1985). Interface
and architecturd issues surrounding sngle-user and multi-user applications were discussed
in Chapters 3 and 4 respectively.

This chapter andyses some important architectura decisions that need to be considered
when congtructing collaborative applications for the Web. Like digtributed systems, which
alow data and code to be moved to achieve the desired behaviour, on the Web, Java
applets can be downloaded to give rapid loca semantic feedback. Architecturd decisions
on the Web however, do not solely lie in the dwice of the physcd location for each
functional component. They aso depend on when that component should reside in different
places. The andyss presented here examines the reasons that determine the optimum
placement for each component. Issues in this chapter have been discussed in (Ramduny
and Dix, 1997a), (Ramduny and Dix, 1997b).

Section 5.1 gtarts with a brief overview of the Web architecture. 1t examines the limitations
of the Web as a development platform for collaborative gpplications and considers some of
the ways of removing the congtraints of the basic Web architecture. Section 5.2 introduces
the anaytic focus of this chapter. Section 5.3 assesses why certain behavioura issues are
critica for collaborative work and Section 5.4 investigates what components are necessary
in collaborative interfaces. The decisions regarding where the components in a distributed
architecture should be placed and their consequences are discussed in Section 5.5. Section
5.6 then examines when components in a networked environment should be moved to
improve performance.

The issue of mohility surrounding data and code emerges from the andyss and this is
explored further in Section 5.7 by focusing on the options available for the Web. Findly,

65

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

Section 5.8 sets out the main behaviourd objective of this research and examines its
influence on the architecturd framework that will be developed to support collaborative
gpplications on the Web.

5.1 Overview of the Web

The Web was origindly intended to ke a powerful tool for supporting ‘active’ forms of
collaboration between collaborators in remote stes through the sharing of ideas surrounding
a common project (Berners-Lee et al., 1994). However, over the years the development
of Web browsers, servers and protocols have largely concentrated on more ‘passive forms
of information browsing and the initial concept of an ‘active’ form of collaboration was set
aside (Bentley et d., 1997h).

This section fird condders the Web architecture, followed by its limitations as a
development platform for collaborative applications and finaly looks a some of the waysin
which the Web functiondities can be improved to facilitate the congtruction of collaborative
aoplications.

5.1.1 Architecture

The Web is based on a smple client-server architecture. Web browsers run at the client-
end and interact with a centrd server component (figure 5.1). A browser identifies the
information required by usng the standard Uniform Resource Location (URL) naming
scheme and requests information from the server through the standard HyperText Transfer
Protocol HTTP) (Fieding et d., 1997). The host server then sends an HTTP response
back to the client.

HTTP
requests
standard g standard
Web client Web server]
HTTP
responses

Figure5.1 Waeb client-server architecture

The response conssts of a header, which identifies the data type (MIME) and dlows the
browser to handle the format correctly, and a body, which contains the requested
information. The client browser uses the header information to display the information in the
right format, for ingance in text or grgphics form, by launching an externad ‘helper
gpplication such as Microsoft Word to display a Word document or a browser plug-in such
as QuickTimeto view video files.

HTTP is a generic, Sateless object-oriented protocol, based on a smple request-response

model. The client browser uses the GET ‘request’ method to ask the host server for a
specific sarvice, like an HTML page or a video clip, and the POST ‘response’ method to

66

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

tranamit HTML data to the server. A sateless protocol implies that no state is associated
with a network connection. This has severa advantages. Firdly, it increases the robustness
and the efficiency of the connection, as a dropped connection will only affect a angle
request and a connection state does not have to be established each time a connection is
created. Secondly, a dstateless protocol diminates the need for a resynchronisation
operation to recover a connection date following an interruption. Finaly, servers can
process requests from client browsers independently without affecting any previous
requests, thus enabling the development of lightweight server components.

State information is typicaly preserved by the client and is then passed on to the server as
part of the HTTP request. The HTTP protocol is independent of the format of the data
transmitted. The clients and servers are responsible for handling new data formats usualy
through some extension. Client browsers can handle different types of data by using helper
gpplications wheress the functionality of Web servers can be extended through Application
Programming Interfaces APl). Helper applications usudly function like many database
dient-server gpplications and they can be in the form of additiond protocols running
independently or in parale with the current Web protocol.

The Common Gateway Interface (CGI) > is the de-facto sandard for interfacing externa
goplications with information servers such as HTTP or Web servers. Unlikean HTML
document, which is gtatic in nature, a CGI program is executed in red-time and produces
dynamic informaion. The CGI approach is independent of any particular server
architecture and dlows rapid development. In CGI scripts, the interface and the gpplication
gt on the server side to produce dynamic pages and the Web browser is used as the
presentation manager a the client-end. Dynamic pages dlow changing information to be
displayed, but this can often cause server-end overload.

5.1.2 Limitations

The Web aready offers global access to Web pages, which in some ways can be regarded
as akind of shared artefact. Although the Web dlows users to search, browse, retrieve
and publish information fairly eedly, it does not currently offer festures for sharing
information in a more cooperative fashion, such as fadlitating authors to produce a joint
document (Bentley et d., 1997b). The main difficulties with supporting shared activities
gem from the Web architecture itsdlf, the existing protocols and browser limitations.

5 http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

67

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.1.2.1 Asymmetric nature

The Web is asymmetric in nature due to its intringc distributed festures. As a reault, it
cannot support symmetric access to the shared artefacts. Updates only occur where the
pages are stored and readers are smply dlowed to view the pages. Equa access to the
shared artefact is an essential requirement for enhancing collaboration (Section 4.1.5).

5.1.2.2 Lack of awareness

Awareness is another important requirement for asssting and promoting collaborative work
(Section 4.1.4). However, awvareness mechanisms are practically absent within the Web
context. Changes to norma Web pages are only noticed when the page is visted. Despite
their advantages, Sateless servers answer for the lack of implicit notification services on the
Web and thus render the HTTP protocol unsuitable for sending notification messages
(Trevor et d., 1997), (Dix, 1997). Some Web-based gpplications do however provide
explicit forms of natification, for ingance they send emails to users when updates take place.
Even then, the abosence of any dient-server natification increases the likelihood of the
interface becoming inconsstent with the information held on the centrd server, unless users
reload the page frequently.

5.1.2.3 Restrictive architectural arrangement

The Web does not fully support collaborative arrangements such as direct server-client,
dient-client or replication across servers (Section 4.2). This is essentid for gpplications
where the server need to play a more active role, such as notifying users for changes or
maintaining consstency across severd servers. Some gpplications do poll Web servers
periodicaly to check for updates, but if the pages rardy change polling will generate
unnecessary network traffic.

5.1.2.4 Feedback delays

The CGI approach for generating dynamic information on the Web is based on a request-
response modd. This increases feedback delays, as the server has to be contacted after
each user input. Such ddays may be acceptable when for example a document is
requested, but less so during smple requedts that only involve a change in the gate of the
interface. In addition, Smple computations, such as checking whether a user hasfilled in dl
the fields in a form, should be performed at the client-end to reduce unnecessary network
traffic, high server load and dow user feedback.

5.1.2.5 Unreliable transmission

The HTTP protocol does not guarantee the transmission rates between servers and clients.
Data trandfer varies during a sngle transmisson depending on the network and the server
load. Continuous media like audio and video require a more reliable trandfer mode, thus
they use the dternative Redl- Time Protocol (RTP).

68

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.1.2.6 Poor user interface

HTML is not a user interface desgn toolkit and it does not provide any support for
common desktop features like drag and drop, multiple selection and semantic feedback.

5.1.3 Improving functionality

The above limitations redtrict the scope of the Web as a development platform that is mainly
auitable for asynchronous centraised applications and offer no support for synchronous
notification, disconnected working and rich user interfaces. However, the Web has a
ggnificant advantage in that it is an accepted technology which is eadly integrated with
exiding usx environments and extensble through the server API. Also, users do not
require additiond client software to run on their machines. The following approaches have
helped to remove some of the congtraints of the basic architecture and make the Web more
amenable as a development platform for collaborative sysems.

5.1.3.1 Using CGI scripts

A dmple and quick method for extending server functiondity without modifying the
protocols, browsers or servers is through CGI scripts. BSCW (Bentley et d., 1997b),
(Bentley et d., 19979) is an example system that provides a Web forms interface to a
collaboration support system by integrating collaboration services with an extenson of a
gandard Web server using the CGI programming interface. BSCW aso provides HTTP
upload and download support.

5.1.3.2 Implementing dedicated servers and clients

A specid-purpose Web server can be implemented to improve performance, security and
introduce new server functiondity such as server-initiated notification. Unlike CGI scripting,
this method is more flexible and secure for accessng exising Web agpplications. The
BASIS WEBservert is an example of a specidised server gpproach that enables Web
access to the BA Sl Splus document management system. In addition, adedicated client can
dlow gpplications other than Web browsers to communicate with Web servers using
HTTP. An example of a specidised dient is the ‘coordinator’ clients in the WebFlow
distributed workflow system (Grasso et d., 1997).

Servers and clients can aso be customised to provide additiond services. For example, in
the Virtud Places system’, the Ubique client interacts with the Virtua Places server to
provide synchronous communication and dlow users to be aware of the presence of other
users.

5.1.3.3 Augmenting Web interface

6 http://library.lInl.gov/basi sowdocs/bwintro.htm
7 http://www.vplaces.net/

69

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

The basc Web functiondity can be augmented by replacing the client and server
components to provide richer mechanisms for the user interface, synchronous notification,
update propagation and information replication. Worlds (Fitzpatrick et al., 1995) isan
example of such a sysem. However, the end product is likely to have specific hardware
and software requirements and a lack of integration with existing user environments, thus
limiting its accessibility and scope of use.

Some dternative solutions exist at the server and browser leve that gives developers more
flexibility. For ingance, the Apache server dlows certain aspects of the server functiondity,
which cannot normaly be accessed through CGI stripts, to be modified (Thau, 1996).
Netscape's ‘Plug-in' development kit and Microsoft’s ‘ActiveX’ environment smplifiesthe
process of embedding other applications in standard Web browsers. They aso dlow Web
browsers to handle different media types directly. These extended client server
programming interfaces increase the possbility for developing much richer CSCW
goplications that can be fully integrated with desktop environments.

The use of ‘mobile code is another promising area on the Web (Bentley et d., 1997b).
Mobile code dlows a client browser to download application programs or Java applets and
execute them locdly. Applets produce much richer user interfaces than HTML and they
can support specid protocols like different media types, and various collaboration services,
such as event naotification, smple text chat and more. In addition, applets can provide users
with faster response rates by moving computation closer to the clients, subsequently
reducing network traffic, server load and feedback lags. There are however security
concerns that arise when code is downloaded over the Internet and executed on a user’s
desktop, but some progress have been made in this area.

5.1.3.4 Enhancing network protocol

The measures discussed so far mainly rely on using the standard HT TP network protocol.
This protocol cannot by itsalf effectively meet the demands of highly interactive collaborative
tasks like collaborative authoring (Whitehead and Y., 1999); therefore an enhanced
network protocol is required. WEBDAV (Whitehead, 1997), (Goland et a., 1999) isan
example digtributed authoring protocol that supports interoperable remote collaborative
authoring. It extends the HTTP network protocol to provide facilities for concurrency
control - to prevent overwrite conflicts through locking, namespace operations - to copy
and move Web resources and hierarchies, and property management - to create, remove
and query information about Web pages. Users can collaboratively author their contents
directly to an HTTP server through the WEBDAV protocol. This enhanced network
protocol augments the Web functiondity from a read-only mode for downloading
information to awriteable collaborative medium.

This section has described the Web architecture and discussed its limitations as a platform
for congructing collaborative gpplications. The Web does not meet some important
requirements for collaborative work; for example, it does not provide equa access to the
shared artefacts and it does not have any inbuilt awareness mechanisms. Also, there are not
many posshilities for having different architectural arrangements on the Web to optimise

70

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

feedback ddlays. However, with the rgpidly evolving Web technologies, some of which
have been outlined above, the traditiond role of the Web as a passive information
repository can in fact be transformed to an active tool for cooperation and for developing
CSCW applications.

5.2 Analytic focus

The rest of this chapter will now present an analysis of the various architectura options for
developing collaborative applications on the Web. The choice of a particular architectura
arrangement directly influences the tempord behaviour of an application. But the tempord
interface behaviour is only of importance to the user when it becomes gpparent to the user.
So, a study of behavioura issues can enable us to determine - why an architectura solution
is better than another.

For many years, tempord issues in interface design have been largdy ignored, with the
exception a few sudies (Dix, 1987), (Dix, 1992a), (Dix, 1994a), (Gray et a., 1994).
However, the importance of time and delays has become more widely recognised with the
ever-growing use of the Internet (Johnson and Gray, 1995). The impact of delays on user
interaction was illustrated in Chapter 2 (Section 2.3) by using the Web as an example

Chapter 3 examined various architecturd models for sngle-user systems (Section 3.2).
Software architecture is about dividing systems into components to perform certain
functiondities - what the system can do. In order to work as a complete system, the
components must be linked together in such a way that they can communicate effectively
with each other. While dl the components are running as part of the same program on the
same machine, these communications are easy and acceptable response tmes can be
achieved.

But the overview on multi-user systems in Chapter 4, showed that when such a system is
digtributed over a network, as is the case with many cooperative systems, components
placed & different locations face higher communication costs and delays than those at the
same location. Hence the choice of location - where the components are placed - has a
ggnificant effect on performance. The mgor impact of location decisons is on the pace of
interaction, which subsequently affects the tempora properties of the interface such as the
rate of feedback and feedthrough (Section 2.4.2).

In many digtributed systems, data can be moved to improve interactive performance.
Furthermore, on the Web, Java applets dlow code to move and execute on user's own
machines. Thus the placement decisions for the Web are not just about what is placed
where, but aso about when the data and code is a a particular location.

The following sections will now consder each of the why, what, where, when aspects in
turn and examine dl the surrounding issues. why - examines the behaviourd issues (Section
5.3), what - considers the architectural components (Section 5.4), where - investigates the
placement options (Section 5.5), and findly when - explores the issues surrounding code
and data mobility (Section 5.6).

71

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.3 Why — behavioural issues

The reasons for determining why a particular arrangement should be chosen influence the
behaviour of an gpplication. The behaviourd aspect affects the way users view the display
on the screen (presentation) and depends on the architecture. The most sgnificant
behaviourd implication enforced by architecturd decisons is often the tempord impact.

For ingtance, if one ignores the tempord issues then from the behaviourd viewpoint, the
location of the data is not important. However, for performance reasons, it is crucid that
there is no perceived lag between any updates to the data and the subsequent changes being
reflected on the users display. Consequently, this may influence the selection of, for
example, a centralised or areplicated architecture (Section 4.2).

The rest of this section describes the mgor behaviourd issues that arise within Web-based
collaborative work. The requirements for multi-user collaborative interfaces described in
Chapter 4 (Section 4.1) will be revisited here and augmented to highlight new issues that
emerge with the Web.

5.3.1 Feedback

Feedback is a common feature of direct manipulation interfaces, where objects change their
behaviour when users manipulate them. Within the Web, the feedback loop involves
trangmisson over a nework. Sgnificant network ddays will therefore generate
unacceptabl e feedback response times.

5.3.2 Feedthrough

By their very nature, cooperative work introduces delays as users having to wait for their
own feedback and others feedthrough. With the Web, there are further delays and lags that
are implicit in the network. The provison of rapid feedthrough therefore becomes more
problematic. Current Web-based collaborative applications often provide little support for
feedthrough dthough it is essentid for maintaining fluid collaboration.

5.3.3 Awareness

One of the main difficulties in maintaining awareness on the Web is that it is not dways easy
to find out how changes happen epecidly when the communication is taking place
asynchronoudy. Some traditiona groupware sysems with shared workspaces usudly
record who has made the updates and when they were made. But such tempord
information is hard to recongtruct at a didributed level. Even synchronous interaction will
pose asmilar problem in the event of delays over the network. Furthermore, unpredictable
timing delays on the Web, as aresult of remote Ste failures or network bottlenecks, may in
the worse case lead to a complete breakdown in the work process.

In order to enhance group work, users may require an additiond form of awareness to

those identified in Chepter 4 (Section 414) - an awaeness of the date of the
communication channd.

72

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.3.4 Shared objects

The coordination of cooperative work can be mediated via shared objects. Although this
form of coordination is less explicit than direct communication, it does play an important
role. Indeed, in many cooperative processes there may be little direct communication.
Ingteed, coordination is mainly achieved by communicating implicitly through the artefact
(Dix, 1994b).

The studies of interaction referred in the Appendix showed the importance of triggers. Like
environmental cues, which were found to be cruda in reminding users of ther ongoing
activities, triggers could aso be associated with shared objects in an eectronic cooperative
environment to remind users that some actions have been carried out by others and/or some
further actions need to be taken.

5.3.5 Control

Due to the common focus on work, collaborative participants have to access the same data.
There are potentia conflicts that arise when group users are dlowed concurrent access and
smultaneous updates. Therefore some form of control is required to manage the shared
data and the shared objects.

Thiswill determine the nature of the cooperation dedling with issues such as who can update
what, where and when; who can see the changes and whether the changes can be noticed in
a reasonable amount of time. One of the most common control mechanisms is locking.
Other forms of control include access rights, roles or socia protocols (for more detalls, see
Section 4.1.6).

5.4 What — architectural components

One of the main functions of cooperative architectures is the presentation and manipulation
of shared information by a community of users. Chapter 3 and Chapter 4 emphasised the
need for separaing the gpplication semantics from the user interface for sngle-user and
multi-user gpplications respectively. With collaborative interfaces, it is necessary to identify
which eements are shared between participants and which elements are different for each
partticipant. This logical separation is dso essential when deciding where dements are
placed n a networked environment (this will be discussed further in Section 5.6). This
section will now explore what architectura issues should be taken into account when
developing collaborative gpplications for the Web.

541 Presentation

As discussed in Chapter 4 (Sections 5.15 and 5.3.2), the presentation component in
collaborative systems must support aternative representations of the users display. Shared
information can be presented as asingle view to al the participants (WY SIWIS) or different
users can recave different views. For example, a user may view some shared data in
tabular form whilst another may view the same data as a graph. Similarly, group members

73

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

can aso have their own private views or they can share views of the display. Some systems
allow users to shift between atightly coupled mode that supports a shared view to aloosdy
coupled mode, where users can view and scroll independently. In cases where the
presentation or view is shared, there must be some component of the system that manages
the shared information.

5.4.2 Shared data

The key dement in any collaborative system is the shared application data. In the Seehem
architectura mode (Section 3.2.1), the gpplication interface model component manages the
mapping between the gpplication data and the rest of the user interface. This suggests that
the visudisation of information requires both the raw data and the semantics of the deta,
which is usualy embedded in the code in a computationa setting. On the Web, this aspect
is often embedded in CGI scripts, which communicate with the user interface component
(Web browser) usng Web pages and forms (didogue levd information). However, Java
applets have opened up the possibility of including far more of the gpplication semantics at
the user interface itsdlf.

5.4.3 Control

Section 5.3.5 highlighted the need for control mechanisms to avoid conflicts and maintain
congstency. However, behavioura leve control itself has to be driven by some lower leve
control that has to be maintained by the architecture, the most common mechaniam for this
being locking. Like the didogue component in sngle-user applicaions, the control
component determines the possible order of actions by different participants.

Because data is shared in collaborative gpplications, thereis a clear digtinction between the
mechanisms for enabling digtribution and sharing (e.g. ability to move an object) and the
policies for managing those mechanisms (e.g. decisions about when and where the object
should be moved to). Effective groupware systems therefore need separate low-leved
architecturd control mechanisms to support those higher-level behaviourd control policies.
Architecturd level control can either be centralised or peer-to-peer in nature and may be
supported by a separate server or be part of the shared data infrastructure.

5.4.4 Notification

Group users usudly operate smultaneoudy on the shared data; some users may view part
of the data while others may perform changes. If the users views and the underlying data
become incong stent, feedthrough will be lost and users will cease to have a common focus
on the collaborative activity.

Smilar issues arise in sngle-user interfaces, in cases where there are multiple views of the
same underlying object. Because there is ultimately a sngle locus of control (the user),
condstency is easlly handled within the diadogue control component. For example, the PAC
achitecturd modd has a hierarchy of PAC agents within the didogue controller that
manage consstency between the views (Section 3.2.4). However, it is more complex to

74

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

maintain this leve of conastency in adistributed collaborative setting due to the multiple loci
of control. This problem can be addressed by using a suitable naotification mechanism.

A low-leve natification mechanism can therefore inform the presentation component of the
various changes to the data so the updates can be replicated on the users display, thus
promoting feedthrough and awareness.

5.5 Where — placement decisions

In order to provide rgpid semantic feedback in single-user applications, aspects of the
presentation can easily lesk into the gpplication semantics as al the components are held on
the same machine. But when the software is no longer running on a sngle machine in a
distributed environment, one can no longer fudge the boundary and communications
between the application and the user interface components as they are enshrined in the
physical location and network connectivity. As aresult, the issue of where the components
resdeisdecisgvein order to achieve rapid feedback.

In the Seeheim architecturd model, the fast-switch is used as an optimisation feature to
dlow the gpplication to communicate directly with the presentation and thus bypass the
dialogue component (Section 3.2.1). In principle, al feedback could be routed through the
dialogue component with more or less trandation and interpretation on the way. But, in S0
doing, the didogue component introduces a computational delay between the application
and the presentation, thus reducing the pace of feedback. Arguably, thisis not a problem
for current sngle-user sngle-machine systems as they can easlly perform severd levels of
processing and still achieve acceptable interactive response.

However, in collaborative systems, the shared data is likely to be stored remotely from the
user's workstation. So, instead of a computationd delay there will be a network delay.

Feedback delays are bound to occur and consequently affect the rate of feedthrough.

Unfortunately, one cannot smply add an extra component like the fast-switch, as it too
would have to gt remote from the data or remote from the interface. Computationa
components can be bypassed, but not space!

One can either accept that semantic feedback will be delayed or adopt a paradigm of
mediated interaction, which offers ingtant local feedback to show that the user’s action has
been recognised and subsequent semantic feedback when the effect has occurred remotely
(Dix, 1995q). However, the latter solution will not be acceptable in Stuations where users
demand direct manipulation interfaces.

5.5.1 Replication and Caching
Mog solutions that aim a providing rapid feedback and increasing the availability of data

involve some form of replication or caching. The objectiveisto bring the shared data closer
to the users.

75

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

Caches are merdly temporary repositories, which hold an ephemerd copy of the data at any
indance in time. Each user interacts with loca copies of the shared data on their
workstation (figure 5.28). Because the actua shared data is stored in a centra repository,
condgtency can be easly maintained. Caching is widdly used in the design of computer
gystems such as microprocessors to access recently used data. Similarly, a Web cache
stores recently accessed information by users.

Workstation 1 Workstation N

(b)

Figure5.2 (a) Cachingand (b) Replication

A Web cache is basically a dedicated computer system that monitors, retrieves and stores
Web object requests. So, when users request the same objects or Web sites, the locdl
cache sends out information to them. Cached objects diminate the need for multiple hops
on the Internet route, thus reducing the delay in the service and improving the response time.
The higher the frequency of users requesting the same gSite, the more effective the cacheis.

Replicas, on the other hand, are vaid full copies of the red data that are stored locdly, thus
they are more persstent than caches. However, it is more difficult to maintain data and
interface consistency, as replicas have to communicate between each other on a peer-to-
peer basis. Replicas are synchronised by sending user input from each workgtation to each
replica (figure 5.2b). Multiple points of updates may lead to race condition and potential
data inconsstency. For example, if a user deletes a selected object in a WY SIWIS group
drawing program while another user is changing the sdection to a different object,
inconsigtent interfaces may occur if the events arrive a each workdtetion in a different order.

The traditiona gpproach to replication in distributed systems has been trangparency. Race
conditions are avoided by maintaining consstency across the different copies of the data
through complex synchronisation adgorithms. If inconsgtencies dill perss, a possble
solution is to rollback the replica(s) and re-execute the events in tempora order
(Satyanarayanan et d., 1990). However, this policy is unacceptable in collaborative
interfaces because the display screens would adready have been updated. Consequently,
dternative solutions based on transforming updates to prevent rollback have been
developed (Bentley et d., 1994).

5.5.2 Control

76

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

When rapid feedback is not the mgor concern, concurrency control mechanisms, such as
locking or floor control can be gpplied to prevent race conditions dtogether or a least
tolerate them (Dix et d., 1993). Red-time synchronous updates may however demand

specia-purpose agorithms.

Any control mechanism requires meta-data, for example, to record who has the lock on
which object. The meta-data itsdf has Smilar issues as the red data. It can ether be
maintaned in a replicated fashion by usng complex digributed adgorithms, or more
commonly maintained using a centrd server. When the data is stored centrdly, the same
server may ded with both the data and the meta-data, asisthe case in traditiona databases.
However, a separate locking server can aso be used. For example, the UNIX file system
has no in-built locking mechanism; instead gpplications request locks on remotely stored
filesfrom a specid process, the lock daemon.

In Stuations where off-the-shelf locking is not available or where the locking supplied is

unsuitable, application developers are forced to use their own ad hoc locking mechanisms
Thisis usudly the case with Web-based cooperative applications.

1

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.5.3 Notification

Delayed feedback causes problems, but delayed feedthrough is even more problematic in a
digributed environment. No amount of careful placement of components can change the
fact that the user making a changeis along way from other users who see the effects of that
change. Although a lower pace of feedthrough is more acceptable than the feedback rate
(see Section 4.1.3), what is not acceptable is the fact that changes made by a user are never
reflected on other users interfaces or only do so after a long delay. Notification
mechanisms are therefore necessary to provide timely feedthrough, as discussed in Section
5.4.4.

The question of meta-data will aise here too independent of the notification srategy
adopted. Information such as what objects are being managed and who wants to know
about which object will be associated with this meta-data. Again, this can be stored in
either a centraised or areplicated fashion.

5.5.4 Different kinds of remoteness

When remote data is accessed in a single-usr sysem by using traditiond dient-server
techniques, the digtinction between locd and remote is clear. However, in a cooperative
goplication, the difference gets blurred because users have their own interpretation about
what is loca and what is remote. A user's own machine can be consdered to be loca
while data stored or updated on another user’s machine may be regarded as being remote.
So, if semantic feedback relies on the data held at another user’'s machine, the feedback
delayswill be aslong asif the datawas held centrdly, perhaps longer as central servers may
provide a better response.

The dtuation gets even more complicated when usng the Web as an infrastructure. Each
user may be accessing several Web servers as well as other centrd servers such as
datdbases. To a cetan extent, the Web makes the physica location of the data
unimportant, except insofar as the location affects the response time. However, the physica
locetion is very important, epecialy when using Java applets. The security mechanisms of
Java only alow the applet to access Internet services lodged on the same machine as the
Web server that supplied the applet.

There are in fact four kinds of ‘remote gpplication for the Web:
(& another user’sclient
(b) the Web server for the current page

(c) adifferent server on the same machine as the current Web server

(d) aserver on adifferent machine

78

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

The placement decisons for the Web therefore do not stop at local versus remote, or even
client versus server. The decison about where server software is placed is intimately
related to the techniques used to implement client software.

5.6 When —moving information and code

Early work on UIMS regards the functional component as being the semantics of the data
However, what gives data any meaning is usudly embedded in the code. Data becomes
information when it gets interpreted. Hence, the existence and location of the code is
equaly important. It is common practice to move or copy data dynamicaly in a networked
environment to improve performance. Also, some distributed infrastructures support the
migration of objects or code between machines. This section will explore the various
mobility agpects of data and code individudly, in preparation for their combined interaction
in Section 5.8.

5.6.1 Moving data

When caching is used, the ‘golden’ copy of the datais stored remotely, but a copy is made
locally to speed feedback. Because the data can be copied over networks in distributed
collaborative gpplications, this implies that the place where shared data is permanently
dtored is not necessarily the same place as it (or a copy of it) isused. Using this smple
local/remote digtinction, the permanent storage place and the place of use can be classified
to give the matrix in figure 5.3.

Data Usage

local remote

local | replicas

client-
server

Data Storage

remote | caching

Figure5.3 DataUsagevs. Data Storage

The matrix clearly shows the digtinction between caching and replication. In caching, the
‘red’ datais centrd and stored remotely, while the loca copy of the datais ephemerd and
used locdly. In replication, the loca data is more perastent and is both stored and used
locdly. In the case of traditiond dient-server interfaces, the datais held and used remotely
and only the information required to generate the interface presentation of the data is
transmitted to the user’ slocal machine.

Notice the empty location in the above matrix. In agroupware context, it is highly unlikely

to have a scenario where the dataiis held locally and yet is used or processed remotely. But
such a dituation does exist for non-groupware solutions, for example in super computers.

79

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.6.2 Moving code

In a collaborative distributed interface, it is dso important to decide where the code for the
different architectura components resides and where it gets executed. The location of code
execution influences the feedback rate and thus determines the sysem’s efficiency. The
location of code storage instead affects the rate at which changes to the code occur and the
ease of digributing those changes, which isaform of feedthrough.

Code execution and code storage are therefore key architectura options. By usng asimilar
matrix asthat for data (figure 5.3), the code options can be classified to produce the matrix
for Web-based sysemsin figure 5.4.

Code Execution

local remote
i
o) l
=y 1
o local | helpers |
o |
) 1
n — A
8 Java | CGI
B remote '
© applets | scripts
1

Figure5.4 Code Usagevs. Code Stor age

For ingtance, in CGI scripts, the code is stored remotely wheress in helpers, it is Stored
locdly. But with both CGI scripts and helpers, the code executes in the same place, asit is
sored. Java applets instead alow remotely stored code on the server to be downloaded
and executed localy on the client browser a runtime. The browser handles dl
computation localy, thus avoiding a server-end overload unlike CGI scripts (Section 5.1.1).
Thisform of migration can dso be found in many object-based distributed systems.

As with the data matrix, figure 5.4 has an empty location. The Web does not actudly cater
for locdly stored code to execute at the server end and it seems an unlikely option for
groupware systemsin generd. However, in some client-server database gpplications, some
farly complex SQL queries can be sent to the server, which may be regarded as aform of
localy stored code with SQL queries being executed remotely.

5.7 Narrowing down options for the Web

Figure 5.3 showed that shared data could be stored and used either locdly or remotely.
Similarly, figure 5.4 showed that code could be stored and executed localy or remotely.
So, for each component of a collaborative gpplication, we need to decide where, in the
respective matrices, the code and data for that component reside.

At fird, it looks as though there are 16 different architectura options to consider for every

component, as there are 4 possbilities for both code and data. But in fact, for generd
digributed collaborative applications and in particular for the Web, the potentid

80

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

architectura options can be narrowed down further. The matrices in figures 5.3 and 5.4
had an empty location, which seems an unlikely option for any collaborative gpplication.
Consequently, there are only 3 red possibilities for code and data and a most 3 3=9
combinations.

However, if the combination of code and data is taken into account, then the possibilities
reduce further. Although data and code can be stored in different places, the code must
execute where the data is used. The data and code matrix must therefore ‘agree in the
location of execution and use (figure 5.5). Consequently, there is only one possibility for
remote execution/use and 4 possihilities (2x2) for loca execution/use. Each option will now
be congdered in turn.

Code Execution

local remote
i
o |
® local | helpers |
o |
= 1
n —T---—--- i
S J i CGlI
B remote ava i
© applets ! scripts
|
U

1
/

local replicas /
Data Storage /!

________ L
1
1

- ! -
remote / caching / client-

! server
/

local / remote

Data Usage

Figure5.5 Linked matrices
5.7.1 Remote execution and use

The only posshility for remote execution and use in a collaborative gpplication is where
both data and code are stored, used and executed remotely (although each could
conceivably be stored at different remote sites and only come together for execution/use).

A component of this kind can be implemented in two ways. It may be a traditiona
transaction based dient-server gpplication that uses CGI scripts to process transactions
centraly. In fact, many Web-based repositories are of this form, like BSCW (Bentley et
a., 1996) for ingance. Alternatively, it may be achieved by usng a specidised centrd
server, as is the case with most chat-based Web applications (Wdie and Eliéns, 1996). It
should be noted that these two implementation options differ principaly in the pace of
cooperétive interaction they enable.

5.7.2 Local execution and use

81

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

There are 4 such options for code and data from figure 5.5:
(8@ codelocal — dataloca

(b) codelocal — dataremote

(c) coderemote — datalocal

(d) coderemote — dataremote

Both gotions (&) and (b) are of the form of a helper or stand-aone application that uses
caching or replication to handle the shared data. Given the limited ability of most Web
sarversin dlowing documents to be uploaded, it islikdy that option (b) will use anon Web-
based database or bespoke server. However in both cases, the Web may act as away of
locating shared resources and initiating a gpeciaised collaborative application, without being
intringc to the running application.

Options (¢) and (d) principdly involve code in the form of Java gpplets (dthough other
forms of downloaded scripts are available). But the security limitations of Java does not
alow applets to access files stored on usars locad machine. Also, Java applets can only
connect to a server that is on the same machine as the Web server they were downloaded
from. Consequently, Java gpplets cannot operate in mode (c) with permanent locally stored
data and they cannot enter into peer-to-peer communication (except by usng a centra
switchboard server). This eiminates the option of having Java applets operating with locally
held replicas.

All feedthrough must therefore be through a centrd server a the same dte as the Web
saver. This effectively leaves only option (d) - Java applets with caching, asatruly Web-
based option and even then, only when using a data repository thet is Stuated a the same
location as where the applet is stored.

5.8 Impact on research

The anaytic framework discussed in this chapter has raised a number of behaviourd,
architecturd, placement and mohility issues that arise with cooperdaive systems and the
Web. The am of this research is to develop an architecturad framework that exhibits
appropriate tempora properties, particularly for collaborative gpplications that execute on
the Web. This section will highlight the main behavioural consderations of this research and
examine their influence on the resulting architectural framework.

82

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

5.8.1 Behavioural considerations

A number of behavioura issues were explored in Section 5.3, but this research will focus on
the provison of feedthrough. Although both feedback and feedthrough are mgor tempora
properties, the demands for feedthrough are more important in cooperative systems for
mantaining effective collaboration between group users and promoting awvareness. The
provison of feedthrough is more chalenging in a digtributed collaborative environment, as
both the issues of pace of interaction between participants and network-related delays have
to be taken into account. Besides, there is very little support for feedthrough on the Web.

Collaborative users often work with alarge number of shared objects and it may not dways
be possble to maintain an gppropriate rate of feedthrough for each object, even over fast
networks. However, the requirements of feedthrough tend to be more flexible than
feedback (Section 4.1.3). Because some objects are more sgnificant for obtaining a sense
of engagement, the concepts of quality-of-service (Rada, 1995) can be gpplied to give
different leves of feedthrough on shared objects within a groupware architecture. For
example, the sharedness of some objects like shared cursors, can be relaxed by reducing
ther feedthrough, but group pointers, which is aform of virtud finger used during eectronic
conferencing, need to have amost ingtantaneous feedthrough to be effective.

5.8.2 Influence on architecture

The rate of feedback and feedthrough provided to the usersis driven by decisons taken a
the architecturd level. The need for rapid feedback points towards the use of some form of
caching or replication (Section 5.5.1).

On the Web, rapid user interface feedback can be promoted by running code locdly as
downloaded Java applets (Section 5.6.2), but the code must execute where the data is used
(Section 5.7). This opens up the possbility for the data to migrate localy and locd data
updates will conflict with the needs of feedthrough. Consequently, there is an important
trade-off between feedback and feedthrough that needs to be addressed at the architectural
leve.

The standard Web protocol offers poor notification besides server push for promoting
awareness. The server push technology was one of the earlier techniques designed to
perform continuous update of users screen. The server continuoudy runs the gpplication
program, which generates dynamic pages and sends new copies of those pages to the
browser. Although this mechanism alows congtant information update, it causes excessve
server overhead and introduces delays. Furthermore, if severa browsers attempt to access
the pushed pages smultaneoudy, a separate copy of the dynamic page gpplication program
has to be executed for each request, consequently delaying updates further.

A more robust notification mechanism is therefore required to support feedthrough - by

informing the users of any changesto the datain atimey fashion, and to enhance awareness
- by keeping track of users activities. Natification services generate Smilar issues as

83

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

locking (Section 5.5.2). If no natification service is provided then an ad hoc mechaniam is
necessary; for ingtance, individua clients may poll one ancther for changes. Alternatively, a
notification service may be incorporated within the data-management infrastructure; for
example, Lotus NSTP (Patterson et a., 1996) offers a generic data storage and natification
saver. Fndly, a gand-done notification server can be used. The vaious desgn
dternatives for notification services are explored in details in the next chapter.

59 Summary

This chapter first examined the functiondities of the Web as a deveopment platform for
collaborative applications. The Web offers a ubiquitous infrastructure and a platform
independent interface that can be easly integrated with exigting user environments. A brief
overview of the Web architecture was presented, followed by a critique on its limitations in
supporting cooperative tasks, based on its architecture, existing protocols and browser
resrictions. Although the Web is unsuitable for developing systems that require highly
interactive user interfaces with a high degree of synchronous interaction, the congtraints of its
basi ¢ architecture can be removed to meet the requirements of cooperative systems.

The focus of this chapter was on the andytic framework for constructing collaborative
gpplications on the Web. This was based upon a systematic investigation of why certain
behaviourd issues are essentid for collaborative work, what architectural components are
necessary, where should the components be placed in a distributed architecture and findly,
when should the components be moved to improve performance.

The andyss of behaviourd issues identified the key architectural components of cooperative
sysdems. The placement decisons reveded the conflicting needs of feedback and
consggtency on the Web. Thisis commonly dedlt with by using either caching or replication
to bring the sered data ‘closer’ to the user. Web applications use dynamicdly
downloaded code of which applets are the most common. This alows both code and data
to be stored in a permanent location while having an ephemera location where they are
executed or used. The mohility issues associated with data and code generated a
gorage/use matrix for data and a storage/execution matrix for code, which facilitated the
andysis of placement options.

Although there gppears to be many possible combinations of data and code placement, a
close examination of ther interaction within distributed environments in genera and the Web
in particular, limits this to only 2 ‘red’ Web options. However, due to the security
limitations of Java, applets cannot enter into peer-to-peer communication, thus iminating
the option of having Java applets operating with locdly held replicas. This effectively leaves
only one truly Web-based option of using Java applets with caching. This option favours
rapid feedback, as the redl data is located centraly, but it does conflict with the needs of
feedthrough.

The behaviourd and component analysis in this chapter narrows down the focus of this

research on facilitating an important behavioura requirement - feedthrough, whichisaso a
sgnificant tempora property of collaborative work. Feedthrough is crucid for maintaining

84

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

collaboration and promoting awareness, but it is an intringc limitation in digributed systems
in generd and even more 0 in Web-based collaborative gpplications. Because the
requirements for feedthrough challenge the needs for feedback on the Web, a solution to
this problem can be found a the architecturd leved. A suitable natification mechanism is
therefore required to manage the rate of feedthrough and optimise on the temporad
performance. The next chapter deds with the issues surrounding the design options for
notification services.

85

Chapter 6 Exploring the Design Space for
Notification Servers

Feedthrough is an essentia feature of cooperative interfaces in generd, however there is
often little support for it in existing Web-based collaborative gpplications. The need of
feedthrough on the Web does conflict with that of feedback, as discussed in Chapter 5.
The development of the Web has forced the issue in showing that data storage (in the form
of Web pages) may be separate from control issues (such as indexing).

Feedthrough is important for three main reasons - firdly, it stisfies a ‘functiond’ purpose
by dlowing usars see an up-to-date verson of the work; secondly, it facilitates
‘coordination’ by preventing inconsstent updates and findly, it supports the generd
‘avareness of other people at work. The first two concerns have led to some considerable
work on agorithms for synchronous editing and for nerging versons of asynchronoudy
edited materia. The last concern has indead aways remained an informa interest in
CSCW, dthough it has been augmented by some formd andyss of 'avareness modes
(Benford et d., 1993), (Rodden, 1996). This modeling gpproach has arisen largely out of
work on virtua collaborative environments, where the main objects of interest are the virtud
locations and actions of the participants themsdaves, ingead of documents or shared
drawings.

Both effective feedthrough of updates to shared data and up-to-date views of other
participants require underlying computational mechanisms to digtribute and inform about
these updates. There are therefore two key requirements. the ability to access and update
shared data, and knowing when that data has been updated. The former lies behind the
design of shared data repositories, either bespoke systems designed for CSCW (Bentley,
1994), (Hill et d., 1994) or off-the-shelf databases and shared object stores. The latter
requires notification mechaniams.

A natification server is bascdly a piece of software whose task is to reay the fact that
changes in data or other events have occurred. There are numerous ways in which
notification services can be managed in a collaborative system (Patterson et d., 1996), (Hdl
et a., 1996), (Fitzpatrick et a., 1999). Theam of this chapter isto explore and darify the
design space for naotification servers. The ultimate purpose of a notification server is to
provide effective user-level behaviour. Issues in this chapter have been discussed in
(Ramduny et d., 1998).

Section 6.1 assesses the need for notification mechanisms as a means of propagating
updates. Section 6.2 gives a description of Status—Event andlys's, an andytic framework
developed to tackle various user interface issues (Dix, 1991), (Abowd and Dix, 1994),
(Dix and Abowd, 1996a). Status—Event andysis is used here as the bass for andysing
issues surrounding notification servers. The concepts of Status—Event anadyssare gpplied in
Section 6.3 to examine the ways in which an agent in a sysem can become aware of a

86

Chapter 6 Exploring the Design Space for Notification Servers

datus change. This is then employed in Section 6.4 to explore the ways in which a
notification server can become aware of changes in the shared data and how it in turn,
makes this available to client gpplications. Section 6.5 presents a taxonomy of the design
gpace for natification servers. Section 6.6 consders the use of layering between the client,
notification server and user to achieve the desired pace of interaction. Findly, Section 6.7
briefly looks a some underlying notification models that have been adopted in example
systems.

6.1 Need for notification mechanism

Notification mechanisms are necessary for informing users when the data has been updated.
Even if the data is stored and accessed rgpidly from a centrd location, it is ineffective unless
the client programs know when the data has changed and users screens are updated
accordingly. Natification mechaniams fulfil precisely thisrole - telling programs and people
not about what has happened, but that it has happened. Without notification mechanisms,
users may eventualy see the changes that have occurred, but at a time-scale and pace that
may not acceptable for the task at hand.

Each application that updates shared data can in fact be responsble for notification and
consequently broadcast to dl the interested parties that the change has happened.
However, as with peer-to-peer methods for data replication (Section 4.2.2) this has ahigh
overhead, both in terms of the agorithm complexity and network load. For example, each
participating client program should know about al other clientsin order to broadcast change
information to them. Furthermore, the changes must be kept up-to-date as users join and
leave the sysem. The overhead involved in having the application itself manage the updates
is one of the core motivations into notification (or awareness) services that provide a set of
gtandard techniques for notifying changes.

For just the same reasons that data stores are often centraised, there is a need for
notification servers to keep track of interested parties and take over the task of propagating
change information. Such notification servers may be ether coupled closdly with the data
dore, as is the case with some databases supporting triggered actions, or they may be
entirely separate, knowing about the data but being decoupled from it. The various design
options for natification serviceswill now be andysed by using Status- Event andlysis.

6.2 Status-Event analysis

Analytic techniquesin Computer Science tend to focus on events as the locus of activity and
control. This is naturd given the discrete nature of computer sysems. Also, for user

interfaces and collaborative systems, it is a good way of describing input such as
keystrokes, mouse clicks and network messages between remote applications. However,
event-based models fit less well when deding with shared data in collaborative systems.

The nature of shared dataisthat it perasts- it does not just happen at a particular moment;
indeed it is dways there. Thisis not the only phenomenon of its kind in user-interfaces; the
position of a mouse and the contents of a screen are Smilar.

87

Chapter 6 Exploring the Design Space for Notification Servers

Status-Event andyds was developed to ded with such phenomena (Abowd and Dix,
1994), (Dix and Abowd, 19964). It is a collection of semi-formd and forma techniques
with a shared conceptua framework that includes aspects of both events and satus. Status
is used to describe dl those occurrences which, like shared data, have a persstent vaue
through time - events happen, status are.

Status—Event andyss has been gpplied in severd contexts - from the anadlyds of issuesin
fine-grained interaction (Dix et al., 1993) and auditory interfaces (Brewster, 1994),
(Brewster et a., 1994), Dix, 1994 #153] to the specification of the complex behaviour of
shared scrollbars in collaborative gpplications (Abowd and Dix, 1994), (Dix and Abowd,
19964). Status—Event anayss has dso been usad in the underdanding of delays in user
interfaces and collaborative systems (Dix and Abowd, 1996h).

Issues surrounding datus, events and agents were considered briefly in Chapter 2 (Section
2.4.1) while examining the tempora properties of interactive sysems. The study of delay
was centred on the idea of mediation (Section 2.4.1.2) and this will also be the key to an
architecturd understanding of notification mechanisms.

6.2.1 Key concepts

The two centrd concepts in Status—Event andysis are obvioudy events, which occur at

particular moments (such as mouse clicks, beep, 6 0’ clock) and status, which dways have a
vaue (shown by mouse pogtion, screen, podtion of hands on the clock). In addition,

agents (human or computationa) respond to events which subsequently modify the Satus.

A key feature of Status—Event andysis for a particular agent is the difference between the
actual event - some objective thing that occurs and the perceived event - when an agent
notices that an event has occurred. For example, the time may be six o'clock, but one may
not notice it until a few minutes later when one looks a the clock. Likewise, with
notification servers, dthough events occur at certain places, there may be a substantia delay
before those changes are perceved. The same behaviour aises in humanhumen
interactions, human-computer interactions and in interactions within computer or mechanica
systems.

6.2.2 Mediation

The most important aspect of Status-Event andlyss for andysing the role of notification
sarversisthat of mediation. Thisiswhen some desired behaviour is achieved by interposing
some additional agent or status entity. For example, in an eectronic mail system, the receipt
of amail (an event) is communicated to the user by a change of the screen icon (a Status)
(Dix et d., 1993). The use of a status to mediate communication between agents is very
common, asis the nature of shared data

A second form of mediation occurs when a saus—gatus relaionship needs to be

maintained (Dix and Abowd, 1996a). For ingance, when dragging a window across the
screen with a mouse, the window must keep track of the mouse position. In the rea world,

88

Chapter 6 Exploring the Design Space for Notification Servers

datus-status relationships may be a result of physica properties, for example when one end
of a dring is pulled the other end moves. However, in computer systems, these
reaionships are typicdly maintained by a mediating agent, which monitors the first status
and thereby dters the second accordingly.

In both the case of agents communicating via status a an agent mediating a Satus—status
relaionship, it isvitd to determine how an agent becomes aware of a status change.

6.3 Status change discovery

Congder the scenario where there is a status S and some agent A and an actua event
occurs which subsequently changes the value of status S, Figure 6.1 shows the dternative
interactions by which agent A can become aware of the status change.

Figure6.1 Status-agent interaction

The process that alows a change to become a perceived event for agent A does not lie in
the flow of data that informs agent A of the new vaue of the status. Ingtead, it lies on the
perceived event for agent A that a change has occurred. This can happenin four different
ways.

6.3.1 Case 1: watch

Agent A can watch the gatus S, In a physica sysem ‘watching’ is usudly a continuous
activity, focussng on a specific status such as watching a pot and waiting for it to boil. But
in adiscrete system, ‘watching' means periodicaly polling the status. Another question now
arises. what event prompts the polling? Thisleads to three subcases.

89

Chapter 6 Exploring the Design Space for Notification Servers

timedriven — palling & fixed intervals
demand driven — checking the status when it is needed
spontaneous — caused by some unrelated event

The polling modd of update is common in many dient-server-based gpplications where a
locdl client needs to access some remote repository to refresh the local client’s states. For
example, in the case of groupware systems such as Lotus Notes®, the system periodicaly
accesses aremote server and updates the loca client. At the moment of refresh, the user is
informed of updates to the remote server.

6.3.2 Case 2: tell

Agent A may be told by a second party agent B. This occurs in certain arrangements used
in collaborative filtering where a user regigters an interest in changes of a particular form.
When the system updates a centra repository, the registered clients are told of the changes
that effect them.

Here too, we may ask how does B know about the status change, again leading to two
subcases:

originator — B is the agent which caused S to change (B is packaged with S)
mediator — B needsto find out itself, by one of the methodsin cases1—4

6.3.3 Case 3: ask

Agent A asks the second party agent B. In this case, we need to both ask what event
prompts A to ask — leading to subcases asin case 1 and how does agent B know — leading
to subcases asin case 2.

Perhaps the most notable example of this category is the logon process for a computer
conferencing system where an agent managing a centraised repository is asked to inform a
new user of any dteraions to the system. Thisis often presented as the number of unread

messages.
6.3.4 Case 4: gatekeeper

The datus S is in some way active a is closdy bound to an agent that 'knows ingtantly
when the satus is changed. Such an agent can then tell A that S has changed.

This arrangement is usualy employed in active databases in order to propagete the effects
of changes. A smilar technique is adopted in terms of the use of adaptors to underlying

8L otus Notesis a registered trademark of Lotus Development Corporation

90

Chapter 6 Exploring the Design Space for Notification Servers

objects (Trevor et d., 1994). This paradigm is dso gpplied in Suite (Dewan, 1990) and
other congtraint based toolkits.

The gatekeeper case can be seen to be a specia instance of either case 1 or 2. If the agent
is regarded as being part of the Status, then it behaves as a subcase of case 1, for instance
like an darm going off. Alternatively, the gatekeeper may be seen as an agent in its own
right, in which casg, it can be regarded as a third subcase of case 2.

6.3.5 Source vs. Initiative

The source of an interaction can be ether an agent or the Saus itsdf. Although the actud
information resides in the status, the source holds the knowledge of any changes to the data.
Initiative plays a key role in determining how changes of status are discovered. When the
daus is modified, it is obvious that an agent is responsible for initiating the communication.
But when the agent is affected, then it is important to know whether the agent itsdlf initiated
the change or whether some other party chose to do so.

Cases 1 — 4 for gtatus change discovery can be mapped onto a source versus initiative
matrix (figure 6.2). Both cases 2 and 3 involve a second party agent as the source of the
interaction, but the difference between them is one of initigtive. In case 2, it is the second
party agent B that takes the initiative to find out about the status change, whilein case 3, the
respongibility lieswith agent A itsdf. Therefore the difference between ‘asking’ and ‘tdling’
is one of initiative. Smilarly, in case 1, the initigtive originates from agent A as it polls or
watches the status, but in case 4, the initiative comes from the status itself.

Initiative

1 4

watch gatekeeper status
Source
3 2 2nd party agent
ask tell (agent B)

observer other
(agent A) (status/

2nd party agent B)
Figure6.2 Sourcev/slnitiative

Given this arrangement, we may then ask oursalves what prompts one to take the initiative.
For example, in case 1, this leads to the subcases, such as.

(@ it may beinterna (mogt likely time driven), or

(b) it may be due to athird party agent (demand driven), or

(¢) it may be spontaneous (either time driven or demand driven).

91

Chapter 6 Exploring the Design Space for Notification Servers

This section has examined the status event arrangement that exists between an agent dtering
some datus vaue and an observing agent interested in changes to this status vaue. A
amilar andyss for the cases of satus change discovery is goplied in the following section to
naotification serversin collaboreative gpplications.

6.4 Notification Servers as Mediators

For the sake of this discussion, let us assume that there is a centraised architecture with a
central database or information server and client applications on each user's workgtation.

Congder the following scenario. A user updates some shared data and the changes are
sent by the user's dlient application to the centrd server. How does another user's client
become aware of the change in order to update its screen accordingly?

Although the client applications are likely to be identical on both workstations, they do take
different rélesin this scenario:

Active Client (AC) — on the workgtation of the user who performs the change

Passive Client (PC) — on the workgtation of the user who is observing
Since the client gpplications perform the updates and display the resulting changes, the focus
is on the dients themsdves and not on the users who will ultimatdly interact through them.
Hence, the emphasis is on how the events about the changes to the information are

propagated rather than how the information is displayed.

The options that enable the passive client to discover changes from the active client will now
be explored in two scenarios.

(8 when the notification server is absent and
(b) when the notification is added.

6.4.1 Change discovery options without a Notification Server

The agents of interest are the active client and passive client, and the gatus is the shared

data (figure 6.3).
Passive
Clien

—» control
watch ---P> data flow

Figure6.3 Client-datainteraction without notification server

92

Chapter 6 Exploring the Design Space for Notification Servers

In section 6.3, four cases of discovering status change were identified. However, case 4
corresponds to the status having some closely allied gatekeeper agent and this acts as atype
of notification server. Also, in cases 2 and 3, there is the possbility of a mediating agent;
again this is the role of a natification server. Therefore change discovery without a
notification server should only involve the cases where the agent is the originator of the
gatus change, namely, the active client.

The passive client can thus discover changes in the shared data in one of the following ways.
passive client watches or pollsthe data (case 1)

This is the dassc emal arangement where the responshility lies with the dient to
interrogate the data and find out when changes have taken place.

active client tells the passive client (case 2)

This arrangement is used in some forms of shared screen systems where screen updates are
broadcast to dl other clients. It is aso adopted in multicast applications such as those used
for virtua worlds (Benford et d., 1994a).

passive client asks the active client (case 3)

This dtuation is less common but normdly occurs in systems where there is a desgnated
master version of an gpplication that is respongble for managing the didribution of updates.
This approach was adopted in early versons of shared screen systems.

6.4.2 Change discovery options with a Notification Server

When a natification server (NS) is introduced, it acts as an intermediary between the active
client and the passve dients. This offers the benefits of managing the process and dlows
support for more scdedble arangements. The notification server facilitates distributed
architectures including hybrid arrangements, where the advantages of a replicated
architecture in terms of locd responses are combined with the ease of propagation offered
from a central awareness service (Section 4.2.3).

In mogt cases, both clients communicate with the notification server in various ways.
Essentidly, the active dient informs the notification server of the update whilst the passve
client seeks to be informed of those updates. The notification server therefore removes the
need for direct communication between the active client and the passive dient. Also, the
notification server does not pass on the data to the clients. Instead, the data repository
fulfilsthisrole. The notification server only mediates the control between the dlients and the
data. Events notifying changes to the underlying state information are basicaly sent between
the clients and the notification server.

Figure 6.4 shows the potentid control flows between the clients and the notification server

that dlow notification events to propagate through the system. It should be noted that not
al of these control flowswould be activein a particular syssem. The combination of control

93

Chapter 6 Exploring the Design Space for Notification Servers

flows that may occur will later produce the taxonomy of the design space for notification
serversin Section 6.5.

Agtive ;P Notification @
Client Server C:en

\
N

R . —» control
-9 data flow

Figure6.4 Client-datainteraction with notification server

Let us firs congder the interaction between the notification server and the active client
(figure 6.5). By applying the options discussed in status change discovery (Section 6.3), the
notification server is able to find out the stages of any change in one of the ways listed
below.

tell Notification
Client /€¢———
: ask Server
. A
\\ A

~ bound to | | watch
R the data

—p control . 4
--% data flow Data

Figure6.5 Notification server communicating with active client and data

Note, dl options starts with labd ‘A’ to differentiate from the interaction between the
notification server and the passve client, which fals under labd ‘B’, as will be seen later.
Also, the same classfication is observed as in cases 1 — 4 (Section 6.3) for example, ‘1’
means waiching or polling, ‘2" impliestdling and so on.

notification server pollsthe data (A1)

The respongbility lies with the notification server to monitor the data and detect any changes
to the underlying data. This is often used in computer conferencing systems to provide
some active propagation.

active dient tdls the notification server (A2)

In this case, the notification server is placed between the client and the datarepository. This
is dmilar to the technique wsed to develop shared X systems, where a splitter was placed
between the display and the underlying gpplication (Lauwers and Lantz, 1990).

94

Chapter 6 Exploring the Design Space for Notification Servers

natification server asksthe active client (A3)

This option is seldom used because it requires the notification server to ask the dlient if it
seeks to make changes. However, this arangement is likely to become sgnificant with
mobile systems, as cdlular architectures become more widdly exploited.

notification server is bound to the data (A4)

The Rendezvous system (Hill et a., 1994) adopts such an arrangement as it separates the
abgtract view from the data and uses some coupling mechanism to manage updates based
on an encoding of congtraints (Section 4.3.4).

Once the changes in the shared data have become a percelved event for the notification
sarver, the latter must then relay that event to the passive client (figure 6.6). Note that, the
figure does not show any explicit connection between the notification server and the data
repostory. Depending on the cases considered for ‘A’ above, the link between the
natification server and the underlying data may be either of adirect or an indirect nature.

Notification tell
Serve <4+———Clien

ask <

e —p control
' - data flow

Figure6.6 Notification server relaying changeto passiveclient

The options for change propagation from the notification server to the passve dient are;
notification server tells the passve client (B2)

This arrangement is used by natification servers that are linked to window systems where
events can be sent directly to the client. The development of the push technology on the
Web dso dlows this form of change propagation.

passve client asks the notification server (B3)

This is the classc arrangement used in Web-based awareness mechanisms such as WAP
(Palfreyman and Rodden, 1996).

It should be noted that since the notification server is acting as the intermediary, the options
of having the passve dient interacting with the data repository directly for changes (options
B1, B4) areruled out.

6.5 Taxonomy of notification servers

95

Chapter 6 Exploring the Design Space for Notification Servers

The previous section showed that the notification server could find out about changes from
the active client and the data Sore in 4 different ways (options A1-A4). Furthermore, the
notification server can communicate the updates to the passive client in 2 ways (options B1,
B2). These possihilities can be represented in a4x2 matrix (figure 6.7).

B2 B3
(NS *ells PC) (PC easks NS)

Al (NS %0"5 Data) E_,.“'m
A2 (AC iells NS) ---------

A3 (NS 2 AC)
A4 (NS c© ., Data)

Figure6.7 4x2 matrix for change discovery and propagation

The matrix in figure 6.7 can be populated by some example sysems built usng the
respective protocol to generate the taxonomy of natification servers (figure 6.8).

(NS-PC)
B2 B3
desktop web pOp

Al |crawler/ agents server

pure notification .
A2 certain MUDs

(AC-NS) server

A3
Ad NSTP WAP awareness

protocol

Figure6.8 Notification server taxonomy

Note that in options A2 and A3 the notification server and the data repository are separate
whilein options A1 and A4, the notification server has some knowledge of the data

6.5.1 Possible arrangements
Each of the arrangements in figure 6.8 will now be discussed in turn.

Case A1-B2: A desktop web crawler looks for changes on some shared files on a Web
sarver (Al). Assoon as some updates occur, it generates alist and informs the clients (B2)
about the changes, perhaps viaan email message.

Case A1-B3: A POP server watches for the data (A1) but it is only activated when it
recaives arequest (B3) from the mail client. Unlike a Web crawler which asks for changes
in a spontaneous fashion, the event which drives polling in a POP server may be either time
driven or demand driven. By default, aPOP server does not perform any automeatic

96

Chapter 6 Exploring the Design Space for Notification Servers

notification. It is only triggered by a certain event from a mail client. Therefore a POP
server only acts as aweek naotification server.

Case A2-B2: This can be seen as a 'pure notification server because the notification server
is entirely separate from the data store. The notification server is told (A2) about the
changes from the active dient and it then notifies (B2) the users client about them. Thisis
amilar to, for example, the locking mechanism in the UNIX file system where gpplications
explicitly request locks on remotely stored files from a specid process, the lock daemon
(filed). However, the lock daemon has no control over thefilesit is referred to and thus it
islogicdly diginct from the file store.

Case A2-B3: Catain Web MUDs would fdl in this category. 1t would involve alow level
client such as a Java applet running on a Web page and arapidly polling notification server
a a Web dte. If someone vidts that site and requests the page, this tells the notification
sarver (A2) that the page is being visited. So when the gpplet next polls the server (B3),
other users see an avatar appear or may hear a door knock.

Case A4-B2: NSTP (Patterson et a., 1996) supports this arangement. The natification
sarver is closely coupled to the shared data repository (A4). In the event of any updates,
the notification server tdlsthe clients (B2) about the changesin the shared sate information.

Case A4-B3: The WAP awareness stateless protocol (Palfreyman and Rodden, 1996) is
based on a client making a request and the server sending back areply. The shared datais
the awareness of the presence and the locations of individuas in virtua space. Therefore
the awareness server is bound to the shared data (A4) and clients have to explicitly query
the awareness server (B3).

Case A3-B2 and Case A3-B3: These arrangements represent the empty row A3 in figure
6.8, as they are both ineffective. Case A3-B3 is paticulaly inefficient because it implies
that the passve client would congtantly have to ask for changes from the natification server
and the latter would then send a request to the active client. However, case A3-B2 where
the notification server can be patidly sateless is more likely to occur. The notification
saver will have an interest in the changes without being fully awvare of them. Such a
gtuation may arise in a mohile environment where the notification server needs to avoid
contention on the demands.

97

Chapter 6 Exploring the Design Space for Notification Servers

6.5.2 Location of notification server

The discusson so far has assumed the presence of a single natification server and data
repository within a centralised architecture. However, this is a conceptud architecture and
the physicd location of notification servers need not be centralised. The notification server
may St remotely from the data or it can be packaged within the data. Indeed there may be
no single physica entity corresponding to the natification server. Ingtead, the natification
sarvice may be spread over severd physica components, as shown in figure 6.9.

notification
(d) service ()

(©

Figure6.9 Location of notification server

Four mgjor location options can be identified:
(@) thenatification server is closely bound to the data repository

The notification server resides in the same physica address space as the data store or the
datais a least part of the server. An example is a database supporting triggered actions.
The notification server does not have to explicitly ask for the changes, the data store can
inform the notification server about them.

(b) the notification server and the data repository are loosely coupled together

In software engineering terms, the notification server is regarded as a separable component,
which may reside in the same physica address space as the data Store or St somewhere
else on the network.

(c) adigributed peer-to-peer natification service

Often a conceptud notification server is redised as a software abstraction within the dients
using peer-to-peer communication. An extreme example is AETHER (Sandor et ., 1997),
which percolates awareness information from node to node in a network, thus effectively
providing an emergent distributed notification service uniformly throughout the network.

(d) ahybrid of the above

98

Chapter 6 Exploring the Design Space for Notification Servers

In practice, systems may include dements of al the above three options. For example, a
sgngle notification server may be running on the network but a notification service
component may be integrated within each dient in order to provide an effective gpplication
interface.

This section has presented a taxonomy of notification server types and considered some
example systems that satisfy the different arrangements of change discovery and change
propagation. No system had implemented a 'pure naotification server arrangement when this
andyss was caried out (Ramduny et a., 1998). Such an arangement dlows the
notification and the data to be separate from each other. This is particularly important on
the Web where the protocols that access data are fixed, thus forcing notification to be
added at a separate level.

6.6 Notifying users

The moativation of this reseerch lies in the timdiness of information by providing an
appropriate pace of feedthrough to cllaborative users, hence the need for an underlying
notification server which will provide such a levd of user awareness. Although the
notification server may use a particular mechanism at the protocol level, the user may
perceiveit in adifferent way at the behaviourd leve.

Low level software may poll reasonably rapidly when the client talks to the server, but & a
higher level of abdtraction, the server could actively send messages to notify users despite
the fact that it recaived those messages via polling. For ingtance, a notification server may
watch for changes in Web pages and then email a list of updated pages to the users.
Similarly, if the true push technology (based for example on a Java gpplet) is compared with
a browser refreshing Web pages based on expiry time, then from the user point of view,
they may appear to be little different. However, at alower leve, the gpplet is informed by
the * pushed server’ while the browser polls after the expiry date.

6.6.1 Layering

These complex interactions can once again be explained through Status- Event andyss.
Status- Event andlys's shows that the mode and the pace of interaction may change radicaly
at different layers between the software, the hardware and the human parts of the system.
Consider the scenario when a person uses a keyboard. When a key is pressed, the wire
changes to a high or low voltage (status) and as soon as the chip notices the change, it
causes an interrupt (event) a the lowest level, which in turn is processed at higher levels.

Smilarly, the interaction between the user and the passve cdlient creates an extra layer of
indirection. For example, Lotus Notes does not actively notify users when the database has
changed by default. Instead, it puts a mark againgt the changed rotesin alist view. Users
only become aware of the changes when they explicitly look at the rdlevant list view. At the
user level, this corresponds to asking (case 3) but at the lower level, the Notes server
informs the Notes client when changes occur (case 2) so it can updateits local structures.

99

Chapter 6 Exploring the Design Space for Notification Servers

Alternaively, many emall clients periodicdly poll the server (case 1) but when they notice
that mail has arrived, they inform the user by popping up a didogue box (case 2). Even
when low level protocols do not directly support the desred user level behaviour, it is
possible to provide different types of notification athough this may be less efficient, for
ingance in terms of network treffic.

Different layers can therefore be used between client- notification server and client- user to
achieve the desired pace of interaction.

6.7 Notification models

A number of systems have been designed to act as notification or awareness servers, some
of which have aready been consdered in the taxonomy of notification servers (Section 6.5).
The underlying notification models employed by these systems are usudly based on either
an event-based approach or a status-oriented approach.

6.7.1 Event-based

NSTP (Patterson et a., 1996) supports an event-based or channe-based approach for
notification. Corona (Hal et d., 1996) adopts a Smilar event-based approach, however it
uses a ‘publishsubscribe service to maintain notification. The published notifications are
multicast to digtributor nodes and they in turn multicast them to other digtributors that send
them to loca subscribers. The Elvin (Fitzpatrick et al., 1999) notification service instead
acts as adigtributor of events and works on a producer-consumer model. Producers detect
events and push them to the natification service and the latter then didtributes them to the
interested consumers.

6.7.2 Status-oriented

Systems that are expressed in terms of events are not as effective as Satus-oriented models.
Status-oriented moddsfdl very coseto the spirit of Status- Event andlyss (Dix, 1998).

AETHER (Sandor @ al., 1997) is based on a status-oriented approach which percolates
awareness information from node to node in a network, thus providing an effective
notification service uniformly throughout the network. Formal awareness modds (Benford
et a., 1993), (Benford and Fahlén, 1993), (Benford et a., 1994b), (Rodden, 1996) are
more status-oriented. For example, instead of “when person A enters the room, person B
isinformed”, these modds are phrased as follows. “when the nimbus (region of influence) of
person A intersects that of person B, they should be aware of one another”.

Status- gatus mappings are dso found in sngle-user interfaces (e.g. for dragging) and multi-
user interfaces (e.g. for keeping users views condgstent). Hence, toolkits and user interface
development systems usudly have some form of event notification mechanism to handle user
interface events, such as mouse clicks. The Smalltak MVC mode (Section 3.2.3) uses a
mechanism whereby objects can register themselves as dependants of another object, so
the latter can then inform its dependants about changes to its state (Lewis, 1995).

100

Chapter 6 Exploring the Design Space for Notification Servers

A dmilar technique is gpplied in X-Matif cdlbacks (OSF, 1995), Java JDK 1.1 source-
ligener event modd (Flannagan, 1997) and active values (Section 4.4.3). However, in
callback-style toolkits, the relationships between status phenomena are often coded in terms
of event calbacks. A more effective mechanism is to use toolkits that are based on
congtraints (Section 3.5.3), as they are founded on status-gatus relationships, which in
some way's makes them closer to Status- Event andlyss.

The andyss applied in this chapter to investigate the design space for notification servers
has been theoreticdly augmented and formdised in another study (Dix, 1998), which
decomposes the process of event propagation and unpacks the relationships between
agent- agent, satus- agent and status- datus. The chain of interactions (causdity chain) that
lead to an agent or a Status to be influenced by a certain event is mapped out to reved
behaviours of event discovery. An interesting observation from that study is the gpparent
reversd of initiative and causdity. Causdlity is relaed to the event flow, which manages the
flow of control, whereas initiative determines how changes to the status are discovered.

6.8 Summary

Theam of this chapter was to explore and clarify the design space for notification serversto
endble a better understanding of the issues involved. A generd mode of gtatus change
discovery taken from Status—Event analysis was applied to notification server architectures.

Status—Event analyss is an andytic framework that includes both aspects of events and
datus. Status is very useful for describing relaionships that have a persistent value through
time, like shared data, where event-based moddsfit lesswell. Agents usualy communicate
via the mediating satus or they mediate a satus- datus reationship. This mediation postion
iscentrd for andysing the role of notification servers.

Four main cases for status change discovery were identified namely, an agent watches the
datus, an agent is told by a second- party agent; an agent asks the second-party agent and
findly, the gatekeeper scenario, where the status is bound to the agent and knows ‘ingtantly’
when the gtatus is changed. Some of these cases can be divided further into subcases. A
gmilar analyss was then employed to explore the ways in which a notification server
(mediator) can become avare of the changes in the shared data (Status) and how it in turn
makesit available to the clients (agents).

The notification server (NS) acts as an intermediary between the dlient that performs the
change — the active client (AC), and the client that observes the change — the passive dlient
(PC). The natification server is only responsble for mediating control between the clients
and not for pasing on daa The andyss highlighted the smilarities between the
communication from AC-NS and from NS-PC. It dso emphasised the important
diginction between the knowledge of what has changed in the shared data and the
knowledge that it has changed. Furthermore, it generated a taxonomy based on issues of
source and initiative within the three-way AC—NS—PC communication.

101

Chapter 6 Exploring the Design Space for Notification Servers

A conceptudly dngle natification server is not necessarily confined to a specific location
within a CSCW sysem. The various location options for the notification server were
conddered. The natification can ether be packaged within the data or it may St remotely
from the data. Indeed, the natification server can be placed in various physicd locations
and may even be digributed over severa components. In the latter case, it is more
appropriate to think of a notification service operating within the systlem as awhole.

Notification servers operate at a low-leve within the computer system, but their purpose is
to provide user-leve behaviour in the form of feedthrough and awareness. The different
categories of notification that may be seen at different levels were examined. This layering
mechanism dlows a client gpplication to use non-optima low-leve natification services and
yet achieve acceptable user-leve behaviour.

Findly, some natification modds used in natification or ‘awareness servers and toolkits
were reviewed. Event-based modds tend to be less effective than status-oriented models,
which fit doser with Status—Event andlyss.

The taxonomy of the design space for natification servers discussed in this chapter has
provided a framework and a vocabulary to compare and discuss different notification
mechanisms with an am to inform and improve design. Also, the use of Status—Event
andyss as afoundation to this study ensures that the framework for notification architecture
does indeed cover the design space.

The provison of feedthrough in a Web-based collaborative application requires a
notification server, preferably one that acts as a 'pure’ notification server a the architectura
level. The 'pur€ notification server arrangement allows a separation of concern between
notification and data, and it will be used as a design driver for the experimenta natification
saver described in Chapter 8. Prior to this, the next chapter will discuss how the
natification server can actudly be used to provide effective user-leve behaviour.

102

Chapter 7 Impedance Matching: Coping with
Limited Resources

In the red world, the feedthrough between participants is usudly mediated by the physicd

properties of artefacts and space. However, in digtributed eectronic environments, some
sort of event or notification needs to propagate through the network so that applications can
inform users about remote events. Chapter 6 explored the various design options for

notification servers. An important issue in providing effective user-leve behaviour liesin the
frequency a which the natification server should send updates or feedthrough information to
the users. This dso depends heavily on the desred pace of interaction. The issues
surrounding pace of interaction were dedlt with in Chapter 2.

Some feedthrough is very god-directed — information directly used by usersin their tasks.
However, the collaboration literature constantly emphasi ses the vaue of awareness (Dourish
and Bdlotti, 1992). Whereas god-directed activity usudly requires detailed and timely
feedthrough, avareness is typicaly longer term and more 'fuzzy’. For implementation, the
difference between goal-directed feedthrough and awareness are largely about qudity of
sarvice (QoS) (Rada, 1995). Both god-directed feedthrough and awareness require some
form of underlying notification mechanism. However, the differences in QoS suggest that
the notification server should be able to modify the rate and qudity of notification to match
the required feedthrough at the user interface.

This chapter investigates how collaborative users can be provided with timely updates by
controlling the frequency of natification through impedance matching. Impedance
matching is usudly employed in engineering terms to describe the procedure in circuit design
for matching unequal source and load impedance to optimise the power that the source
delivers to the load. Impedance denotes how much a device resgts the flow of an AC
sgnal whereas res stance shows how much a device resgs the flow of aDC sgnal.

The term impedance matching is employed in the context of this research more as a
metaphor to describe the notion of matching the required and supplied pace of feedthrough
to maximise usar-level behaviour a the interface. Perhaps the method of adjusting the pace
of feedthrough could be smply cdled ‘matching’. However, previous publications related
to thiswork (Ramduny et d., 1998), (Ramduny, 1999), (Ramduny and Dix, 2002) have
dready referred to the term impedance matching, hence it has been maintained in the thesis.

Section 7.1 examines the need for impedance matching to control the rate of change
propagation between collaborative users. Section 7.2 describes how notification servers as
mediators are ided for supporting impedance maiching by controlling the pace of
feedthrough. Feedthrough demands can be reduced by subsequently reducing the pace and
the volume of updates. The issues surrounding pace and volume impedance matching are
discussed in Section 7.3, together with some related implementation issues. Section 7.4
explores the potentid triggers for pace impedance by anadysng ther effects on event

103

Chapter 7 Impedance Matching: Coping with Limited Resources

propagation through the use of time-space diagrams. Section 7.5 assesses some scenarios
where impedance matching can be introduced to provide a controlled pace of feedthrough
and awareness to collaborative users. Findly, Section 7.6 andyses some outstanding issues
that arise from impedance matching.

7.1 Need for impedance matching

Let us congder the effect of change propagation within a collaborative environment. In
Chapter 6 (Section 6.4), a distinction was made between the client who performs the
changes - Active Client (AC) and those who view the changes - Passive Client (PC).
Note, the role that the AC and PC assumes is not permanent, it depends on which client is
performing the action & any given point in time.

Figure 7.1 shows a scenario where an active client is propageating updates to a passive client
and it in turn, passes the updates to the user. Collaborative work usudly involves
communicating over a network. Thus, the AC- PC interaction is influenced by the available
bandwidth, whereas the user- PC interaction is influenced by the response timein seeing the
changes. Obvioudy, the shorter the response time, the more effective the user-leve

behaviour is.
Active Client Passive Client @

Figure7.1 Update propagation

Collaborative users often interact with a large number of shared objects. This generates a
high volume of updates that need to be broadcast to al the users. The response time with
which users see those updates will increase unless the updates are sent rapidly. Usudly,
there are not enough network and computationa resources available to sustain such ahigh
rate of feedthrough. The updates could ill be broadcast rapidly, but some degree of

throttling is required & the user-end.

Even if the network was infinitely fast and there was an infinite amount of memory, a
maximum rate of feedthrough for al the objects will generate further network congestion.
The extra computational load would undoubtedly mean delays for al the objects, including
the ones that are most sdient and important. Furthermore, from a cognitive point of view,
users should not be overloaded with too much information, as it is annoying and it usudly
results in a poor user interface (Section 2.2.1). Users may thus find it too distracting to
cope with avery fast rate of feedthrough.

The rate of feedthrough should therefore be reduced to such an extent that the updates are
broadcast at a fast enough rate and yet be acceptable to the users. Consequently, the
passive client need not forward the updates to the users at the same rate that it receives
them from the active client. The passve client could till accept changes from the active

104

Chapter 7 Impedance Matching: Coping with Limited Resources

client a afast rate but it can forward the updates to the users less often to make the pace of
feedthrough more acceptable.

Furthermore, the pace of delivering feedthrough is crucid and depends on the type of the
task. A study (Pausch, 1991) found that rapid feedback of low fideity wireframe models
was far better than dower photoredigtic rendering. Delivering feedthrough a the wrong
pace can therefore be problematic. For ingtance in figure 7.1, if the rate of updates
generated by the AC is too high and the rate at which the PC informs the user istoo dow,
users may act without having an up-to-date knowledge of one another’s actions. Similarly,
if the rate of updates generated by the AC is too low and the rate at which the PC informs
the user istoo high, users may be easly distracted by irrdlevant changes.

Clearly, there is a need for some form of matching between the active client and the passive
clients in order to obtain the right pace of feedthrough. This matching of the required and
supplied pace of update events is cdled impedance matching (Ramduny et d., 1998),
(Ramduny and Dix, 2002). A mismatch in the required and supplied pace of feedthrough
will inevitably affect usar-level behaviour. Impedance matching is therefore essentia for
delivering feedthrough that is both effective for the user and efficient for the sysem. The
next section will judtify the choice of placing impedance matching within the natification
server.

7.2 Where to control pace of feedthrough

The following discusson assumes that each user is interacting through a sngle client device
and for any update or user action, the active dlient is the client of the user who initiated the
action and the passive clients are the clients of the rest of the users who receive feedthrough.

7.2.1 Interaction without notification server

In the absence of a notification server, the active client is responsible for propagating the
changes to the shared objects to the passve clients. This can ether happen through a
broadcast mode (figure 7.28) or through a peer-to-peer interaction between the clients
(figure 7.2b).

In the broadcast mode of interaction (figure 7.28), there is a centrd point of contact
between the active client and the passve clients and a single virtud channe is used for
communicating updates. All passive dients will therefore receive the same natification
events. Thisimplies that events have to be ddivered at the rate of the fastest client, and any
per-user impedance matching has to take place at the passive client.

105

Chapter 7 Impedance Matching: Coping with Limited Resources
passive fassive
client client
passive active passive
client client > client
passive passive
client client

@ (b)

Figure7.2 (a) broadcast and (b) peer-to-peer interaction

active
client

Congder the example of a shared drawing package. All the users may not be actively

involved in manipulating the shapes and their Sizes on the screen at the sametime. So, when
changes to the shared cursor are broadcast, the active client must broadcast each pixe

movement to everyone, for the sake of the few users who are currently interacting with the
particular object. Although the passive clients can ignore unnecessary events, this consumes
additiona network bandwidth and computationa effort.

In the peer-to-peer form of interaction (figure 7.2b), the active client maintains a separate
channel with each passve client. Consequently, the active client can itsdf filter the event
stream on a per-client basis. The active client will however need to know about each
individual passve dient when replicating any changes. This form of interaction enables each
passive client to receive different rates of feedthrough (represented by the different line
thickness in figure 7.2b), but at the expense of some fairly complex filtering mechanism at
every active dlient.

7.2.2 Interaction with notification server

The presence of the notification server dlows both broadcast and peer-to-peer mode of
interaction (figure 7.3). The notification server is the central point of contact between the
active clients and the passive dients. The active clients send the changes to the notification
server (broadcast) and it in turn can act as the mediator to adjust the rate that each passive
client receives the updates independently (peer-to-peer).

active
client

notification passive
server client
passive
client

Figure7.3 Using natification server as mediator

The notification server does not necessarily have to forward the changes to each passve
client a the same rate tha it received it from the active client. The pace of feedthrough

106

Chapter 7 Impedance Matching: Coping with Limited Resources

between the active client and the notification server will therefore differ from that between
the notification server and the passive client. So, in order to obtain the right pace and the
right granularity of the changes, the clients will have to negotiate with the natification server.
For example, at a user level, mailing lists distribute messages to subscribed users each time
they connect to the server. In contrast, moderated lists may send digests to users every
month.

A bespoke natification server may have an in-built knowledge of the suitable pace of
feedthrough required. But in generd, the information as to what pace of low-level eventsis
required to achieve appropriate user-leve feedthrough will not resde in the natification
server; the clients must communicate that information to the notification server.

7.3 Impedance Matching Policies

Having edablished that the notification server is idedly placed to support impedance
matching, this section will explore the different ways in which impedance matching can be
achieved and also consider some related implementation issues.

Impedance matching embodies both the volume of updates and the rate at which updates
are notified to the users . The feedthrough demands can therefore be reduced by:
sending updates |ess often (pace impedance)

sending less updates (volume impedance)

Pace impedance deals with the frequency or rate of natification while volume impedance
influences the amount of updates transmitted to the user. A reduction in the rate of
natification and in the volume of changes sent to the users can in fact cause an implicit gain
on network and computationd resources. But this calls for a certain amount of filtering to
be carried out.

7.3.1 Pacelmpedance

The rate at which updates are sent out can be reduced by:
(&) sending informetion less often

The updates are buffered and communicated to the users when it is more convenient to
them. All the information gets sent including details such as the header, destination and 0
on. Only the rate & which theinformation is sent is affected.

(b) sending chunks of information

The information is sent in chunks to improve the overdl performance. The sze of the
chunks or the frequency at which the chunks are transmitted can be reduced. This may
cause a loss of information in some cases, but can be advantageous in lowering network
overheads. For instance, message headers need not be transmitted each time messages are
broadcast.

107

Chapter 7 Impedance Matching: Coping with Limited Resources

7.3.2 Volume Impedance

In addition to pace impedance, the volume of updates can be adjusted to make it more
manageable to the users. The dedire to reduce network bandwidth aready puts some
congtraints on what users can see and how often they see them. Depending on the task, the
amount of information sent across could be dropped to alow level of detail and yet ill be
acceptable to the users. Users could thus recelve a shorter response time and the
gpplication could cope with a busy network. However, this should not jeopardise the
qudity of information broadcast.

An example of volume impedance is the use of flags for marking new or changed materid.
Flags convey awareness information at a reduced level of detail. By ther very nature they
are low volume, but dso extreme timeliness is rardy criticd. So, even if a dday were
introduced before the flags are sent out, this would not disrupt the user-level behaviour.

7.3.3 Impedance matching vs. QoS

Quality of Service (QoS) (Rada, 1995) ensures tha the network channel has sufficient
qudity avalable to provide a better service for daa transmisson. This is crucid for
mantaining a continuous transmisson of audio, high-bandwidth video and multimedia
information. QoS caters for delays and any necessary adjustments caused by the variable
latency of the received data. Qo0S-based models aso support the sdaf-pacing of red-time
data thus enabling data to be transmitted without any distortion.

For ingtance, when QoS is gpplied in the transmisson of video images, the images are sent
in chunks to reduce the frame rate, thus acting as a form of pace impedance. The images
are dso very often compressed and sent a a lower resolution and this is Smilar to volume
impedance. So both pace and volume impedance matching can be seen to be a form of
QoS. However, whereas most systems based on QoS are concerned with achieving
minimum dandards of throughput, the main motivation behind impedance matching is to
determine whether the service can be limited to fit the available data.

7.3.4 Implementation Issues

During group work, usersinteract with severd participants through alarge number of shared
objects over different timescaes. Not everyone would necessarily be interested in the
changes to dl the interface objects a the same time. Usars are more likdly to have a higher
interest in changes to certain objects than others. For example, certain interface objects
may be regarded as focus objects and they require dmost instantaneous feedthrough to be
effective. Other less important objects may instead be considered as peripheral objects
and the rate of change noatification can be reduced accordingly.

With impedance matching, the server has to delay feedthrough to the dients. As a reault,

some form of event queues must be held before the updates are sent across to the clients.
This lays an extra storage load on the server and it adso mplies that when updates are

108

Chapter 7 Impedance Matching: Coping with Limited Resources

eventudly sent they have the accumulated sze of al the delayed messages. Idedlly, the
server should be able to compress the event queues, for instance the event queue:

insert(“hello "), insert(“world”)

could be reduced to:

insert(“hello world”)

However, this requires the server to have substantiad knowledge about the events and the
objects.

In an event-based mode, when a user manipulates an object, the client generates an event,
which then gets sent to the server. The ®ver only knows about the types of events
associated with the object and not the related pace of interaction. In order to provide the
right pace of the feedthrough, the server should know about the pace of interaction
associated with a certain object.

Usars client can therefore register a level of interest for an object with the server. For
example, a client may regider a high-pace interest for the focus objects but only a low-
pace interest for the peripheral objects In this manner, the server can ddiver feedthrough
a arate that matchesthe users pace of interaction.

7.4 Exploring pace policies

This section will explore the different ways of obtaining pace impedance and show thelr
effects on the flow of events through the use of time-space diagrams (Lamport, 1978). A
ample dient-server mode of interaction is assumed, where user agents snd messages to
each other through a centra server. Messages sent across the network are usudly
tranamitted as lower level events.

Figure 7.4 shows the ordering of events on a time-space diagram. The horizontal direction
represents space whereas the verticad direction indicates time in ascending order, with later
events being shown higher than earlier ones. The dots represent events and the horizontal
lines represent the tranamission of messages (m). Note that any latency in the network itself
isnot shown, asthisis not asgnificant festure in the examples considered below.

If the network connection between the client and the server is ingantaneous, figure 7.4

shows the ordering of events when no impedance matching is applied. The server forwards
each message it recaives following an event immediately to the user agent.

109

Chapter 7 Impedance Matching: Coping with Limited Resources

< m6 < mé

< ms <«—n5

< ma €<—m |time

oL m3 : m3

< m2

« m2

i ml <

« « ml
Key
—<€— message (M)

User Agent Server * ovent

Figure7.4 Time-space diagram without impedance matching

As pace impedance is about sending information less often (Section 7.3.1), one could ask
the following question: how often should the messages be tranamitted? Surdy, there must
be some kind of event that acts as a trigger, which causes the messages to be sent. The
potentid triggers for pace impedance are:

the time factor
the volume of the message and
the Sze of the message

7.4.1 Fixed timeinterval

The client receives messages after every fixed time intervd (t). The messages are buffered
a the server-end until time't is reached, in which case the messages are transmitted to the
client in a Sngle sream. In figure 7.5 for example, the firs message stream conssts of
messages m1, m2 and m3 but only m4 is sent out in the second message stream.

) m5 + m6
- A
| $€——m6
m4 V.»(— m5
?"(— m4 time
) ,(ml+m2+m3 V m3
A":— m2
}"(_ ml K
—2 message (m)
User Agent Server © event

t timeinterval

Figure7.5 Time-spacediagram with fixed timeinterval
Because the time intervd is fixed, the client can in fact poll the server. A dassic example

occurs in a mail system, where the dient polls for changes from the mail srver at regular
intervals.

110

Chapter 7 Impedance Matching: Coping with Limited Resources

7.4.2 Time delay

This option varies dightly from the previous one. Instead of sending events after every fixed
time interva, an event is only generated after acertain time ddlay. In figure 7.6 for ingtance,
when the server receives the firs message, it sarts the timer and the messages are buffered
until a cetan time dday (d) has passed, after which dl the messages received are
trangmitted in a single stream to the user agent. The timer Sarts again when the next
message hits the server.

A
&
+
3
>

S
m4 + m5S <
9" m5 time
———————————————— -GDHM
< ml + m2 + m3 *
{ m3
g'tmz Key
———————————————— sl— 1 —€ message(m)
® event
User Agent Server d timedeay

Figure7.6 Time-spacediagram with time delay

Unlike the previous case, this option is more sarver-based in that the server takes the
initiative to generate events. The clients rely on the server to push messages towards them,
as they have no knowledge of when the server actualy starts counting the delay.

7.4.3 Volume of messages

In this case, the volume of the message acts as the trigger. The server buffers the messages
until a maximum number of outstanding messages have been received, which are then sent
out to the client in asingle stream. Figure 7.7 shows the user agent receiving an event after
the server has recelved a maximum of three messages.

m4 + m5 + m6 < mé
n¢3 s l—n5 fime
———————————————— -0(— m4
P ml+ m2+m3 p m3
n 1 m2 Key
---------------- te—m € message (m)
User Agent Server N number of messages

Figure7.7 Time-spacediagram with volume of messages

This mode of pace impedance could be found in a shared text editor where it is not dways
effective to tranamit dl the keystrokes. The server could wait until & maximum number of
keystrokes are received before sending them.

111

Chapter 7 Impedance Matching: Coping with Limited Resources

7.4.4 Message size

With this option, the server forward messages to the clients once a maximum size is reached
as it is not dways effective to send severd gigabytes of messages. Figure 7.7 shows how
the server send messages to the dient in a angle sream, once the maximum limit (max) has
been reached. If the size of the message is below the maximum vaue, the message is kept
in aqueue and subsequent messages are added onto it until (max) is reached.

(m4 + m5 + m6 > max (mé
lb(_ m5
*r<—md time
4 m3 > max m3
< mil + m2 > max
<« m2

Y
*<<—mi K
—2 message (m)

® event
max maximum size

User Agent Server

Figure7.8 Time-spacediagram with message size

7.5 Scenarios for impedance matching

This section will now look a some example collaborative scenarios and assess whether
impedance matching could improve the provison of feedthrough. Three example systems
are conddered namely, a bulletin board system, a multi-user chat system and an avatar-
based chat system. These gpplications have been chosen because they share a common
factor - they al enable users to communicate with each other. However, each system
supports communication over different tempord dimendon and through a distinct interface.

7.5.1 Bulletin board system

A bulletin board system consists of a number of discusson forums which users can join and
post messages to. Figure 7.9 shows the layout of an example university bulletin board
sysem. Users can register to a number of discusson forums and add their contributions.
They can dso start up new topics of conversations and search for specific messages and
respond to them.

Bulletin board systems often operate in an asynchronous mode. The rate at which users are
notified of new contributions depends on the sysem. Some systems do not provide any
form of explicit notification while others act as moderated emall lists and send digests to
users once every month. However, there are a smdl number of systems that notify users of
the satus of the latest posts on adaily bass, usudly by email, which are either sent explicitly
by the forum moderators or generated automaticaly. In the laiter case, dthough the volume
of information sent to the users is not sgnificant, the emall a least informs users that there
have been some changes to the system. This s, in some ways, akind of implicit impedance
meatching.

112

Chapter 7 Impedance Matching: Coping with Limited Resources

[Post Msg | [Modify | Delete | [Search | [Home | [FAQ | ———— Main
Functionalities

BULLETIN BOARD CATEGORIES

> Generd > Faculty | > Student|[> Saf | [> Alumni | [>_Department Discussion

A ments ||Messages | Messages | [Messages | [Messages | Bulletin Board Forums

General Announcements
Welcome Message
Thisisasample board ... Contributions

Faculty M essages |
Meeting reminder

Meeting today Friday at 4 pm at the conferencehall ———— Messages

Date= 17-May-2000 ,,, [Msgid=1095]

Figure7.9 Examplebulletin board system layout

Because interaction in bulletin board systems occurs over afairly long-term (hours or days)
users do not dways expect a rapid response from other members. The rate of notification
is too low, hence the demands on network load and bandwidth will not be significant
enough to influence the rate of feedthrough. Therefore there is no need to implement
impedance matching in this case as it will not necessarily improve users performance to a
great extent.

7.5.2 Multi-user chat system

A multi-user chat system dso dlows severd participants to engage in discussions but unlike
bulletin board systems, mogt of the communication here takes place in red-time. Users
convene at virtud channels with a topic of conversation and hold public or private chat
sessons. Example multi-user chat systems include Babble (Erickson et al., 1999) (figure
7.10) and Xchat (Zelezny and Langley, 1999) (figure 7.11).

Babble alows users to engage in both synchronous and asynchronous communication by
maintaining persstent conversations. It uses some form of socid protocol to display
awareness information. Xchet is a graphical Internet Relay Chat (IRC) client that runs on
Unix like sysems. Both Babble and Xchat offer mainly atextua mode of interaction.

User interaction in multi-user chat systems occurs a a much fagter rate than bulletin board
gysems in gengd, as information is mainly exchanged synchronoudy though various
channedls. The rate of update notification to the participants is higher and the task of
managing the data exchanges and user controls becomes more complex.

113

Chapter 7

User List

& Bahhble 1.04 for Tom at Minneapo is (snowfall@us.ibm.com) on K12-7.w... (=13

Impedance Matching: Coping with Limited Resources

Social Proxy

Bapohle Edit Uszers Topic Options |Help
@ [Amy] ¥ = Active... =
® cals et Commons Area
@ Dan@lotus — - Amusing Wendy
® Jason [Sorry, | — - ANNOUNCEMENTS

i — - Auto-Gone discussic . :
@ John in the lak —_
® Mark in the lal - Babble And Workilor | L0OPic List
@ Tom at Minnez — Babble and XML
@ Wendv in the | — - Babble Chat Feature

4 — - Babble Design Issu

— - Babble Drawings |-

1 1 | -Commons Area- ||&] | _>|—I
conflict with design that is beautiful. It just takes more work =

[of course].

======Thursday 27Aug98 2:26:38 PM EDT From: Wendy in the lab
Anyone know what the thing on the side of the monitor is on the
iMac? [It's a kind of rectangle with another piece of plastic

with a teal-lined hole coming over the rectangle, kind of like a

tab]??

======Thursday 27Auq98 2:39:00 PM EDT From: John in the lab
Itis the cable port.

Kl | 4

Figure7.10 Example Babble screenshot

[windows attached to main window currently active topic

@ (E-chat|[T.a0T usachatjunkies.org Z (Hinug] 23N
: H=Chat | Windows User Modes Seilings Scripis & Flugins ser Menu Help

X|aj<|# sef~wkhé 360/partitions jpg “Look at the size of that thing

has
@ jnehick
@ Eenny
@ Mestls
@ shelter
alex_
harista
BlooLoj
biirke

e
datrimant
dIGIMAN

Op | Deop
Kick |
Dialag |

The one on the emacs

has Joined #1inux

dmecp

thing about

to turn it Ban

er Dividian

usZ.chai]unkles.c_lr_i #linux emetielstranetau i*e

Figure7.11 Example Xchat screenshot

—— Current Topic

list of users

main window
showing users
contributions

When users maintain sverd channels of conversation smultaneoudly, it is more difficult to
keep track of al the conversations together. Usudly, each thread of conversation is

displayed on separate windows.

In Xchat for instance, the main window has severd

windows linked to it, each representing a separate thread of conversation, which is only
brought to the front when activated by the user. However, users may aso be interested to

join in other conversations in the background windows & the same time.

114

Chapter 7 Impedance Matching: Coping with Limited Resources

The next section shows how impedance matching can be gpplied to notify users of the
contributions in the different threads of conversations while their focus is on a particular chat
session.

7.5.2.1 Applying impedance matching

Users in multi-user chat sessons are often involved in severa discussons, however they
tend to focus on one particular discusson a a time, typicdly represented by the
conversation in the top-levd window (figure 7.10). With impedance matching, a user’s
client can regider a high-pace interest with the updates on the top-level window but only a
low- pace interest with the changes in the secondary background windows.

Ganearal cenvarsation

Transcript:

Jason. Wauld wou like to ga 1or lwnch? There 15 et new
place that LSt opened rounc the comer.
Tom yes | he g X "'
Jone sormy
Oan: shamel Transcript:

John: Did you go to the training session yesterday?
weendy: ¥es | did andd enjoyed 1t & 1ae?

«dahn's centri | Ammy: Oh mine was on last week and not many people
turmned up?

Commens Area

Johin: somry gu

~lahn's cantribution

Johin: IEwas not too bad, a bit boring at times but in general

Laaa

Figure7.12 Examplechat session with impedance matching

Figure 7.12 shows John, Wendy and Amy chatting in the ‘commons aresl. John is aso
involved in another chat session ‘generd conversation’ in the background window. So with
impedance matching, John will receive an ingant feedthrough of any text entered in the
‘commons ared, but he will see the updates to the ‘genera conversation’ less often. John
may only be informed that the contribution has changed through some form of background
feedback but this may not necessarily happen straight away.

7.5.3 Avatar-based chat system

Severd chat systems have been developed to support distance collaboration in virtua 3D
environments with the crestion of virtud worlds and virtud communities (Greenhdgh and
Benford, 1995). Web-based red-time chat systems have aso become popular. For
example the Active Worlds Browser? provides a 3D-type interface where users adopt an
avatar, and unlike traditiond chat rooms, a user can point-and-click to walk closer to other
Users.

9 http://www.activeworlds.com/

115

Chapter 7 Impedance Matching: Coping with Limited Resources

Furthermore, systems such as MUDs (Multi-User Dungeons) or MOOs (MUD Object-
Oriented) also require enhanced awareness mechanisms to make users fed their presencein
virtua space. Issues such as the proximity of the users and their closeness to the artefacts
play asgnificant role in maintaining awareness. The provison of a high pace of feedthrough
is even more problematic in this complex environment under limited resources.

Some exiding avatar-based chat systems use the notion of “rooms’ to provide a spatia
context where multiple users can play smultaneoudy. The natification of users interaction
and didogue are usudly viatext. When a player is indde a particular room, she can hear
every didogue in that room aongsde descriptions of other occupants actions. After
leaving the room, the player is no longer aware of the activities in the room e have just
vidted; indead she is given descriptions of her current location. However, some players
may dill be interested in the ongoing activities in the rooms they previoudy visted as they
may wishtojoinin at alater Sage.

The next section examines how impedance matching can be applied in such a system to
provide users with a controlled pace of awareness of the activities in the different rooms,
while their focus moves from one room to another.

7.5.3.1 Applying impedance matching

Typicdly, a user will focus on one particular room a a time; therefore a high rate of
feedthrough must be provided for dl the activities in that room. The rate of feedthrough for
the activities in the secondary rooms need not be the same, but some additiond form of
awareness would be dedrable. Figure 7.13 shows a screenshot of an example avatar-
based chat roomto.

In the example avatar-based chat room, users ‘newuser’, ‘Samantha and ‘harmsworth’
conversing in the ‘lobby’ room (figure 7.13). Users can dso join and leave chat rooms at
any time. Consder the case when ‘newuser’ decides to join two other chat rooms while
dill conversaing in the ‘lobby’.

10 http://www.weirdoz.org/visual chat/

116

Chapter 7 Impedance Matching: Coping with Limited Resources

o I_mnr| e T

; R Cae ' Fe S I 3 ¥
-ﬂ'.E:I'SE.EfI [REECTT] “-I-.’ ,@’@‘%
chat | &)
- hmalyme | l‘é‘- *:Il.‘J
T aavrwhiang ST vail Gana rows A
e nerl mura wehisd sk Iﬂdnnln-...lum.l_lnnln_ﬂ:mhmm ‘i]_, L cﬁ
Ll .
i = 15 part oTwinat = "3)-....3_..'3;
Oty Facamviesg dets Ej

Figure7.13 Exampleavatar -based chat room

With impedance matching, ‘newuser’ may be presented with the following interface (figure
7.14). The window on the left represents the conversation that ‘newuser’ is having in the
‘lobby’, where her main focus lies. The two reduced sized windows on the right instead
represent the other chat rooms that ‘newuser’ isjoined to a the same time, but in which she
only has a secondary interest.

ﬁ"’_ [wrer | Foie | ez |

z %
|mnsmtines 5w e me | ér} ‘-1?
S S A T ST [:
-@mm i'mnn'-sumb&n"nll:mnﬂsnu zomottleg o dz wis dzklegl Eﬁ I $

nE=tine gl / % 2
mmmnurv.uﬂm = lf:},_&‘_f_f
Elabuz: Rentiing i

Figure7.14 Exampleavatar -based chat room with impedance matching

A high-pace interest will be registered to the contributions in the ‘lobby’ but only a low-
pace interest will be associated with the contributions in the other rooms. ‘newuser’ will
therefore be notified of the changes to the ‘lobby’ amost as they occur and they will be
displayed on the main window on the left. At the same time, ‘newuser’ will be made aware
of the contributions to the other rooms on the windows on the right, but the rate of

117

Chapter 7 Impedance Matching: Coping with Limited Resources

notification will be a amuch lower. In this manner, ‘new usar’ can be natified of changesto
the chat rooms depending on her interest rate.

In generd, the rate of natification in the changes to the rooms users have registered a low-
pace interest in, will be triggered by some sort of event for pace impedance, as discussed in
Section 7.4. For ingtance, if the trigger is based on the tempord factor, updates may be
sent out a regular time intervals or after a certain time dday. On the other hand, if the
trigger is based on the volume, then updates may be sent out after a certain number of
contributions have been received or when the sze of the contributions has reached a
maximum vaue.

In addition, some form of passve natification can be used to promote awareness, for
example highlighting window frames, changing colour of text, rasing a flag or even usng
some didinct sounds. The role of passve natification is mainly to convey awareness
information for low-pace interest objects or peripheral objects (Section 7.3.4). The use of
flags to mark new or changed materids is aso an example of volume impedance and they
do give tempord reduction for free (Section 7.3.2).

7.6 Further issues

The examples discussed above showed how impedance matching could improve the
tempora behaviour of an gpplication. However, the implementation of impedance matching
generates some outstanding issues and these are discussed below.

7.6.1 Impact of rich media

The scenarios discussed in Section 7.5, mainly dlowed information to be exchanged in a
textud mode. However, some chat systems like ICQ!! aso enable users to exchange
communication verbdly via voice-over-1P through the use of Internet phone such as
BuddyPhonel2. It is therefore essentid that the rate a which information is exchanged
through the different channds be kept in synchronicity to avoid a breskdown in
communication.

When users tak through the phone while typing, the granularity of feedthrough becomes
vay fine-grained - character level instead of words or sentences. Consequently, the task
of matching the rate of feedthrough between the two channels is not trivid. Furthermore,
the introduction of additiond media such as red-time graphics and video adds more
demands on the resources and thus make the provison of feedthrough even more
problemeétic.

Impedance matching is therefore required to manage the rate of feedthrough between the
different channels. Some systems dready provide a form of impedance matching to cope

11 http://web.icg.com/
12 http://www.buddyphone.com/

118

Chapter 7 Impedance Matching: Coping with Limited Resources

with the demands on bandwidth. For example, in media space systems such as Rave
(Gaver et d., 1992), the video transmission is kept to alow volume and alow pace until a
user actudly clicks on the video, in which case the rate of feedthrough increases.

The solution adopted in Xerox Portholes (Dourish and Bly, 1992) makes use of frame-
grabbing software for each media space and then distributes low-resolution digital images.
Smilarly, in NYNEX Portholes (Lee et a., 1997), athough the WebCam operated a a
dow rate, the images were tranamitted at full speed. An integrative view of a particular
group is represented through a matrix of ill video images, which are sngpped periodicdly,
for ingance after every five minutes.

7.6.2 Ordering of events

A mgor problem that impedance matching gives rise to reates to the ordering of events.
Collaborative systems produce a large number of events of different kinds from severd
users a varying times. The order in which the events are broadcast may be criticd in
mantaining the cooperative activity. If users do not receive the everts in the right order,
they can eadly get confused and in the worst case, they may abandon the task completely.

Let us consder the effect of impedance matching on the flow of events in a conferencing
sysem. Figure 7.15 illustrates the peer-to-peer ordering of events between two users, John
and Mary chatting on two conferences, VRML and FILE MAKER.

. 1
addmessagg | | ATh 4
add message
nessage | ;
1

add message
i_ i

select VRML
—>e

add message

time

>
add message iVl
—> join FILE MAKER

create FILE MAKER ' | || ceeom s s e] - <

add message

add message

add messag
add message
_).

join VRML

create VRMLy Key
—«— message (m)

- L]
event
t time interval

John VRML FILE MAKER VRML FILE MAKER ~ Mary

Figure7.15 Timing diagram with point-to-point ordering of events

Sarting with the lowest event, the timing diagram shows that John first creates the VRML
conference and adds a message. Mary joins the VRML conference shortly after. John and
Mary receive an ingtant feedthrough of each other’s messages at that point, as they are both
focussed on the same conference.

119

Chapter 7 Impedance Matching: Coping with Limited Resources

John goes on next to create the FILE MAKER conference, which Mary joins later. FILE
MAKER now becomes the focus for both participants and conversations exchanged at that
level have a higher pace of feedthrough thanthosein VRML.

At some stage, John decides to go back to the VRML conference while Mary is il active
on the FILE MAKER conference. John now receives an ingant feedthrough of dl the
messages added to the VRML conference but Mary only gets a set of buffered messagesat a
regular time interva (t). Given the different rates of feedthrough for the VRML conference,
the order in which John and Mary receive the messages may differ and therefore run the risk
of becoming inconsigtent. The problem is amplified if there are some semantic dependencies
between the messages, as illustrated by the conversation extract between John and Mary in
figure 7.16.

FILEMAKER R ———

< IWeieke SO Jnh;'_mw f

Mary. Helo agm Joha LB et

i = o X Wary: Hi how are you?
Juhire: Hi - aryriténg exciting goisg on? 2
[wonder if you could helg? Juhm, Fob bad thandes, [wanted

Mary. 3 o fEscnss sommee poinds relaled Lo

John: Go ahmd. lihe paper

Mary Actually 1t trping o st upa |": v :

pesarch foomat file thas can s esrch mm'__ingf?m PRI

muabiple DE's from one form [seems FILEMAKER

as though ooy Toemat fle only sestche -

he last DB indentified Any |_{bdary. s angrone bere, I world Lke

EuggEsHonE IR “ﬁmi' help gilease

John: Ob by the way ignose oy last Mary]T[Zsuiuf;nuidm?

TS e gt
VML : B John: Hi anything exciing gong on
=iy hax st joinad= blary: [wands if you could hefp?
Jobim: Hello there Johin: O o ahesd
Mary: Hi now are you? hilary Actualer ['motrying 1o seiop
Jokm: Mot bad thanke, T wanied ta a search foomal Me thal can search
dizruss some prints related to the matiple DB s fram one form (L
papeT. seoms as though my format fle anly)
Mary Ol can we meet up searchs 1he last R mdertifisd. Ange
cormeticne” s1gEeslons YT
Inbm: Come down io the office and Jnhn: O BF the way ignore ey ast
WE can ChEcE the docment? MEsEags

Jahn Mary

Figure7.16 Exampleconferencing system transcript

Both John and Mary are chatting on two conferences, VRML and FILE MAKER. John's
focus is on the VRML conference as the window is in the foreground whereas Mary’ s focus
is on the FILE MAKER conference. Mary’s last contribution that was addressed to John on
the VRML conference was “ok can we meet up sometime’. Mary’s focus then switched to
the FILE MAKER conference. As the VRML conference is no longer Mary’s focus, John's
reply is not forwarded to her immediately.

A short while later, John decides to join the FILE MAKER conference, where he catches
Mary again and offers to help out with “Go ahead”. John remembersthelr last conversation
on the VRML conference, and seeing that it is not a good time for them to meet after al, he
tells Mary “oh by the way ignore my last message”. Mary isunaware of the context of this
last message from John and she obvioudy interpretsit as John being unable to help her with
her FILE MAKER problem!

120

Chapter 7 Impedance Matching: Coping with Limited Resources

A message flags up on Mary’s screen shortly after to inform her of anew contribution in the
VRML conference. Mary now receives John's reply “Come down to the office and we can
check the document?”. S0, Mary makes her way downdairs to John's office completely
oblivious of the fact that John's last message on the FILE MAKER conference was actudly
meant to tell her not to come down to his office a this very minute!

A possible solution to ded with the inconsstent ordering of messages is to take a sdlective
gance and delay al the messages until a certain time is reached and then send them out in
the right order. But this measure will raise additional issues a the user interface level. Ina
non-interactive system, event ordering is only a problem if there are dependencies between
the computational objects receiving the events and there are known ways of detecting this
(Lamport, 1978). However, in interactive systems there are additiona dependencies - the
user can see the effects on different objects whereas the computer regards them as being
digtinct.

7.6.3 Priority of notification

The ordering of events may aso be affected when events have some priority associated with
them. The notion of priority may be useful during impedance matching so high priority
events are sarviced before low priority ones. The notification server could in fact use the
priority as a means of flushing the queued events.

Consder a scenario where two messages are queued up a the notification server and
another message with higher priority joins the queue. The natification server has two
options: it can ether flush the two outstanding messages from the queue immediately and
send out the higher priority message straight after or it can leave the low priority eventsin
the queue and ded with the high-priority ones fird. The former option implies that low
priority messages will be sent out a the same time as the high priority message, thus
increasing the network load. The latter option instead requires the notification server to be
aware of the priority congdrants related to the ordering of the messages and this is
problematic to ded with especidly if there are some dependencies between the messages.
The natification server will therefore need to have some semantic knowledge about the
encapsulation of various kinds of messages and events.

The essence of impedance matching neither lies in changing the gpplication semantics nor in
increesing the load. Impedance matching is more concerned with reducing the
computational and network load. However, by pushing more semantic knowledge towards
the notification server, the latter will sdestep its fundamentd role of routing events between
clients during impedance matching and subsequently increase in complexity.

Another rdated issue is instead of having priority associated with a single event, priorities
could be assigned to event types. The handling of events types in such a stuation can be
problematic. For example, if an event type is of a higher priority but has a dow pace then
does this mean that it should overtake a high pace event type. Scheduling dgorithms are
traditionaly employed to ded with multiple threeds by prioritisng them. However,
scheduling will generate Smilar problems as event ordering particularly if high priority tasks

121

Chapter 7 Impedance Matching: Coping with Limited Resources

depend on low priority ones. Alternatively, such information could be pushed towards the
clients 0 they can inform the natification server directly of the desired rates of handling the
priority of naotification. The clients will thus need to have a lot more knowledge about the
ordering of the events and consequently increase in complexity.

7.6.4 Generating notification of non-events

Often some processes do not need to be aware of the occurrence of events but instead they
do care when the event does not happen. For example, the dlarm process in a heart beat
monitor only goes off when abegt ismissng! In the current framework, the support for the
notification of non-eventsis only possbleif dl events go through the gpplication. However,
the addition of a specidised service such as a Watchdog Manager within the architecture
(seefigure 7.17) can fadilitate this functiondity.

event

register
, / watchdog
Watchdog | register eventiNotification Server| event
Manager _—> ﬁy/ A .
[; Clients
ent lg-)
i r
reset timer W-—- ~~~~~~~~~ Vo) outpu
event L T7=== watchdog

event
event after time t

Figure7.17 Monitoring the occurrence of non-events

When an event occurs the Notification Server informs the Watchdog Manager of that
particular event. The Watchdog Manager then registers for the event with the Notification
Server. The dlient aso regigsters for watchdog events with the Noatification Server. The
Watchdog Manager keeps an interna timer and checks for the occurrence of the registered
events. If an event does not occur after a certain time, the timer is reset and the Watchdog
Manager generates a watchdog event, which is sent out to the clients.

The Watchdog Manager can thus monitor the generation of non-events and inform the
clients directly about them. Furthermore, the Watchdog Manager can reside on the same
machine as the Natification Server or it could be in-built within the Notification Server,
hence the above architecture would be efficient.

122

Chapter 7 Impedance Matching: Coping with Limited Resources

7.6.5 Optimising the timing of notification delivery

Congder the following scenario. Client A isinterested in event © and wants to know about
it after every 10 seconds. Client B is dso interested in event © but it wants to know about
it after every 1 second. In order to optimise the timing of notification ddivery, the
notification server can broadcast event @ to both clients smultaneoudy, thus reducing the
network load. Client A may either ignore event @ or it may place it in a queue and batch
processit later. The same thing could happen if say event © isin aqueue a the natification
server and the latter is about to send out event @ to client A. The notification server could
piggyback both events at the same time as they have the same recipient.

However, like priority issues, the optimisation of events may affect the ordering of the
events. For example, let us assume thet client A isinterested in both events © and © but it
does not want to know about event @ that often, whereas client B has a high urgency for
event ©. When the notification server broadcasts event @ to both clients, there is a danger
that client A may receive event @ before event ©. So, if the order of the events matters for
client A, in other words event @ depends on event @, thiswill give rise to the problem of
race condition. This Stuation is problematic to ded with unless the dients take it upon
themsdlves to manage the order of the events and this requires the clients to have alot more
semantic knowledge.

7.6.6 Impedance matching in other areas

The notion of impedance matching can be found in other aress, in particular in VR systems,
athough the mechanism adopted is not explicitly caled impedance matching and it has been
employed to achieve different purposes. However, it does satisfy asmilar functiondity.

The collaborative modd of awareness based on the spatid interaction of objects (Benford
and Fahlén, 1993) lies on the concepts of aura, nimbus and focus. Aura isavolumein
gpace that delimits the presence of a particular object. Focus represents the objects in
pace that a user is interested in while nimbus represents the space controlled by those
objects. The qudity of information transmitted is said to depend on the level of avarenessa
user has of an object and thisis negotiated through focus and nimbus. Therole of the focus
and nimbus are farly amilar to that of the focus objects (Section 7.3.4). The closer the
focus and nimbus, the greater is the level of awvareness, hence the higher is the qudity of
information transmitted.

This modd has been augmented with third party objects (Benford et d., 1997), which use
aggregation to achieve a form of volume impedance in collaborative virtud environments,
whereby areduced levd of detall is presented to the users without sacrificing the quality of
the information. In order to manage the volume of data in such a complex environment,
objects are grouped together and aggregate views of those objects are provided, which
expand further when they are sdlected (Ingram et a., 1996). Thistechniqueisaso usedin
the HIBROWSE interface (Ellis et d., 1994) to provide users with an overview of the
contents of the database while searching and browsing large data sets.

123

Chapter 7 Impedance Matching: Coping with Limited Resources

The implementation on the HIVE CVE system (Greenhalgh et d., 2000) uses full fiddity
information but it seems likely that scalegble implementation will require pace management.

124

Chapter 7 Impedance Matching: Coping with Limited Resources

7.7 Summary

The discusson in this chapter has centred on the andytic framework for impedance
meatching - the matching of the required and supplied of updeate events. The natification
server, through its central mediating position, was found to be idedly placed to support
impedance matching, by adjusting the frequency of noatification to meet the users pace of
interaction. Users can thus see the changes in the objects they are highly interested in
amog ingantly, while still being informed about changes to the peripherd objects, dbeit a a
lower pace. Impedance matching therefore enhances both god-directed feedthrough and
awareness, thus exploiting the limited avalability of computer resources and network
bandwidth.

In order to enable the notification server to provide effective impedance matching that
satidfies each client’s requirements, the clients should inform the notification server of ther
required pace interest on particular objects via some form of protocol. The communication
between the clients and the notification server does not require the latter to have any
knowledge of the gpplication semantics, hence the notification server can gill remain as a

Separate entity.

The issues surrounding pace impedance and volume impedance were then examined. Pace
impedance can be achieved by using the natification server as an intermediary to match the
required pace of updates of the passive client (user client who views the changes) with the
supplied rate of the active dients (users client who perform changes). Volume impedance
can be largdy met by having different forms of application-specific, low-granularity update
events. However, the issues surrounding volume impedance have not been dedt with in
much detail in this chapter. Pace impedance policies were anadlysed further by investigating
the different triggers for regulating pace and showing ther effects on the flow of events
through the use of time-gpace diagrams.

Some implementation issues related to impedance matching were aso considered. A few
scenarios were then explored to assess the feaghility of impedance matching within a
collaborative environment. The example systems facilitated communication over different
timescaes, thus producing different rates of feedthrough. Impedance matching was found to
improve the tempord behaviour especidly in Stuations where a large number of updates
were rapidly generated. Finaly, some outstanding issues related to impedance matching
were discussed.

Impedance matching controls the pace of feedthrough to the clients by delaying the updates
events. This may affect the order in which the events are propagated to the clients. The
incorrect ordering of events will not have abig impact if there isno causality or dependency
between them. But in a chat system for instance, usars can be easly confused if the
messages exchanged reach them in the wrong order. Furthermore, the way in which people
interact socidly with one another can aso influence the order of the messages. Some

125

Chapter 7 Impedance Matching: Coping with Limited Resources

sysgems avoid getting things in the wrong order by manipulating the semantics and
interconnections between the events, at the expense of some complex agorithms.

Additiond issues such as the priority of natification, the natification of non-events and the
optimisation of notification deivery were consdered and their impact on the impedance
meatching framework, in particular the way in which they may affect ordering of events was
discussed.

In order to investigate the actud behaviour of anatification server as an impedance matcher,
an experimental notification server cdled Getting-to-Know (GtK) has been constructed,
which will be described in the next chapter. GtK demonstrates most of the design principles
discussed in this chapter, but the provison of impedance matching is limited to pace
impedance matching based on the *fixed time intervd’ and ‘ volume of messages’ triggers.

126

Chapter 8 Getting-to-Know:
An experimental Notification Server

Notification servers operate at a low-levd within the computer system but their ultimate
purpose is to provide effective user-level behaviour. In Chapter 6, the framework for the
design options of notification servers emphasised the need for a separable notification
sarver. Chapter 7 presented an andytic framework for impedance matching to provide
users with a controlled pace of feedthrough, thus promoting tempora interface behaviour in
collaborative gpplications. The natification server was found to be ideally placed to perform
impedance matching between end-user clients.

The framework for impedance matching can be gpplied to augment other notification
mechanisms or build new natification servers over different low-levd messaging
infrastructures. Getting-to-Know (GtK) islargely an example to show that the principles for
notification server desgn and impedance maching can be achieved in a practicd
implementation. This chapter describes the issues surrounding the development of the GtK
purpose-built separable notification server, which is based on a distributed object
infrastructure. Some of these implementation issues are discussed in (Ramduny and Dix,
2002).

Impedance matching can be achieved through pace impedance and volume impedance.
Volume impedance is essentid for controlling the qudity/fiddity of notified information.
However, the issues surrounding volume impedance require further investigation, hence it
has not been implemented within GtK. Similarly, GtK is not concerned with event ordering
issues, as a solution to this problem lies either a the underlying sysem leve or a the
programmer level in understanding the semantics of the infrastructure. GtK only supports
pace impedance, based on two triggers. fixed timeinterva and volume of messages.

Section 8.1 describes the basic distributed layered architecture that supports GtK. Section
8.2 examines the messaging and event layer and andyses the protocol employed for passing
messages between different communication objects within the GtK infragtructure. The main
functions of the GtK natification server are discussed in Section 8.3. Section 8.4 shows
how GtK has been augmented to provide pace impedance matching. Findly, Section 8.5
congders the exchange of messages and events between the different components of an
example red-time Web conferencing application, which has been constructed to explore the
precticdity of GtK further.

127

Chapter 8 Getting-to-Know: An experimental Notification Server

8.1 Basic architecture

The GtK notification server is built over severd layers of custom and standard infrastructure
(figure 8.1). At the base lies the standard low-level Internet TCP/IP protocol accessed via
Java networking classes.

The Java socket classis used to implement ardiable stream network connection between
one or more clients and a multi-threaded server. The server uses the Ser ver Socket class
to accept connections from clients on a particular port. When a client connects to the port,
the Server Socket dlocates the client a new socket object attached to a new port to
endble it to communicate with the server. The server then carries on lisgening on the
Ser ver Socket for additiona client connections.

Application & % Notification Manager

Event Manager

Java Networking

Internet Protocols

Figure8.1 GtK infrastructure

On top of the Internet Protocols and Java networking layers, there is a cusom event
management layer, the Event Manager, which supports directed message ddlivery between
agents on different physical machines.

Findly, the Notification Manager uses the Event Manager to dlow the GtK notification
server to receive natifications about changes from active clients or information servers and
to pass on the notifications about those events to the passive dlients.

8.2 Messaging and event layer

A messging sydem essentidly alows separate, uncoupled applications to reiably
communicate asynchronoudy. The messaging system architecture generdly replaces the
traditionad dient/server modd with a peer-to-peer reationship between individua
components. Messaging systems offer several advantages. They encourage |oose coupling
between components, thus enabling dynamic and flexible sysems to be built, whereby some
components can be modified without affecting the rest of the sysem. They dso provide
high scalability, easy integration into heterogeneous networks and religbility due to lack of a
gangle point of falure.

128

Chapter 8 Getting-to-Know: An experimental Notification Server

With the proliferation of distributed applications, a number of messaging systems have
recently emerged to ded with the problems of synchronisation, religbility, scaability and
security. There are three types of messaging systems thet are commonly used:

Publish/Subscribe — this supports an event-driven model where producers “publish” events,

while consumers “subscribe’ to events of interes and consume the events. Producers

asociate messages with a specific topic and the messaging system routes messages to
consumers based on the topics consumers have registered their interests in. This model
therefore supports multiple senders and multiple receivers.

Point-to-point — this modd is used when one process sends a message directly to another

process. Usudly, messages are routed to an individual consumer, which maintains a queue

of “incoming” messages. Messaging applications send messages to a specified queue and
cients retrieve messages from the queue. Although there may be multiple senders of
messages, there is only asingle receiver for the messages.

Request-Reply — this modd is used when an gpplication sends a message and expects to

receive a reply in return. This is the standard synchronous object-messaging format and is

often defined as a subset of one of the other two models.

Very often, messaging systems support both point-to-point and publishysubscribe messaging
models. An example is the Java Message Service (IMS)13, which is part of J2EE (Java 2

Enterprise Edition). Although IMS defines Queues (for point-to-point) and Topics (for

publish/subscribe) as targets for messages, it does not require the provider to implement both.

SOAP14 (Simple Object Access Protocol) describes the format for XML-based messages
exchanged on the Web. It is a lightweight protocol for exchanging information in a
decentralised distributed environment. SOAP RPC (Remote Procedure Call) uses XML

for marshaling requests and replies. SOAP messaging is based on a point-to-point mode

with request-reply. Messages are exchanged either in the form of an inquiry, which is
initiated by the client, or an update, whereby the server sends information to dl registered
cientsin a‘push’ format. The exchange can ether be in a synchronous or an asynchronous
mode.

8.2.1 Messaging protocol

The event management layer within the GtK architecture implements a didributed
asynchronous messaging protocol, thus giving GtK a uniform, generic location-independent
event modd. Although the implementation of the event management layer is in Java, an
ASCII protocol has been developed for message passing instead of using Javas Remote
Method Invocation (RMI). Thiswas due to several reasons.

Firdly, a the time the development was Sarted, Java RMI did not have solid foundations.
Secondly, RMI is synchronous and has to be integrated with user interface code using
threads. Consequently, interfaces end up usng two models. event-based windowing code

13 http://java.sun.com/products/jms/fag.html
14 http://java.sun.com/webservices/docs/1.0/api/

129

Chapter 8 Getting-to-Know: An experimental Notification Server

and RMI networking code. An asynchronous event modd for distributed agents is
preferable as it is closer to the way modern Ul code works and it dso dlows a uniform

mode between user events and remote events. Thirdly, RMI depends on Java seridisation,
which does not tend to be robust in Web environments where different versons of the Java
code may co-exist. Findly, the use of an ASCII based asynchronous messaging protocol

makesit easier to add non+Java clients and servers.

The Event Manager does the marshdling of events or messages between the Noatification
Manager and the Application (figure 8.1). Whereas TCP/IP gives point-to- point messaging
between the gpplication processes, the Event Manager dlows point-to- point asynchronous
messaging between different communication objects in the same or in different address

gpaces by applying a post office type metaphor.

8.2.2 Message format

All messages and events are of the Smple form:
sender reference : recipient reference : event_type : data

wheresender ref erence ISOf type
sender _id : object_id

and recipient referenceis of type:
recipient_id : host_id

Each message has an associated type:
event _type

and the actual messageisatuple:

dat a

Applications add their own semantics for the uninterpreted ASCII dat a but utility classes
are provided to enable standard argument marshdling.

8.2.2.1 Message class

The Message() class provides utilities to structure the events exchanged between the
communication objects.

130

Chapter 8 Getting-to-Know: An experimental Notification Server

public class Message {
/1 Public Constructors

public Message (int fromObj, int fronHost, int toObj, int
toHost, String eventType, String data);

public Message (String ness);
/1 Public Instance Methods

public String format(); // returns formatted nessage

public void parse(String ness); // unpacks nessage

format () alows a message to be structured in the appropriate form whereas par se()
unpacks the message to extract the relevant data.

8.2.2.2 Event handler

Objects that handle events do so through instances of the methods of the Event Handl er ()
interface.

public interface Event Handl er {
/1l Public Instance Methods

public abstract void youAre(int id);

public abstract void newkvent (Message event);

When an object first connects to the Event Manager, it regidters itself as an event handler.
The connection handler uses the youAr e() method to tell the object its identifier { d).
newEvent () alowsthe object to handle aMessage event. A new object isassigned anew

i d through the addoj ect () method. The event handler object and itsi d are then stored
inatable.

/1 Public Instance Method in CommpbnConnecti onHandl er cl ass
public static int addObject (Event Handl er obj) {

int newd = tnpld+1; /[l newid value = old value + 1
if (newd not found in event handler table nmyQbjects) {

/1 add obj EventHandler and newid in table myObjects

myOhj ects. put (newi d, obj);
obj . youAre(newl d); } /1l assign newld to Event Handl er
tmpld = newl d; /1 assign tnpld to newid val ue

131

Chapter 8 Getting-to-Know: An experimental Notification Server

return new d; // return newld val ue

}

8.2.3 Message exchange

The following fragments of code show how messages are exchanged between client and
server objects. A client object registers itsdf to the server and launches the appropriate
event handler through the newevent () method cal.

/1 thread in Server Connecti onHandl er and Cli ent Connecti onHandl er
cl ass

do { // keep reading fromconnection until user exits
str = readLine(); // read in a line

/1 calls Message class to parse the string and get recipient id

Message M = new Message (str.trim)));

/1l check to see if recipient idis in table nyQbjects
Event Handl er theObj = (Event Handl er) nyObj ects.get(Mtohj);
if null error

el se

t heObj . newkvent (M ; // launch event handl er
}

For ingtance, if the client object launches the Tr anscri pt Panel () event handler, the call
inthe set Transcri pt () method shown below sends the event Type of the message to
the server object. The event Type is a specified string through which the client object
informs the server object of the type of event that is being exchanged. The same form of
exchange occurs between the server object and the client object.

S0 assuming thet the event Type iS“new cli ent”,thecdl inset Transcri pt () changes
to

/lcall from public instance nmethod setTranscript() in Cient
Transcri pt Panel () cl ass

my Shar edDat a. ch. sendTo(mnmyld, toCbj, toHostld, “new client”,
myShar edDat a. user Nane); --------)

Different kinds of events can be exchanged between client and server objects. For
example, a “new client” event from the client tells the server that a new client has just
joined, a “new 1ine” event ingead tells the server that the user client has sent some text
anda“client left” event statesthat the client has Ieft.

132

Chapter 8 Getting-to-Know: An experimental Notification Server

Both client and server objects use the sendTo() method cdl referred in © to send
formatted messages to each other. sendTo() first parses the input stream to extract al the
relevant data before sending the message across.

133

Chapter 8 Getting-to-Know: An experimental Notification Server

[/ Public Instance Method in Server Connecti onHandl er and
Cl i ent Connecti onHandl er cl ass

public static void sendTo(int frombbj, int toCbj, int toHost,
String event Type, String data) {

Message ML = new Message(frontbj, fronHost, toObj, toHost,
event Type, data);

String theMess = ML. format ();

out put. println(theMess); /1l send fornmatted nessage

When the server receives a formatted message from the client, its Transcri pt Obj ect ()
event handler interprets the event Type through itsnewevent () method call.

For example, if the server receivesa“ new cl i ent” event, the server object trandatesit to
a“greeting” event, which is sent back to the client object through a sendTo() method
cdl. The dlient object in turn, converts the “greeting” event, through its own
newEvent () method cdl in the Transcri pt Panel () event handler to display a more
meaningful message to the user screen such as“Hello user”.

/1 Public instance nethod newkEvent() in Client class
Transcri pt Panel ()

public void newkEvent (Message event) {

bj ect etype = event.type;
if (etype.equals("greeting")){

/1 display greeting text on screen

transcri pt.appendText("Hello "+ event.data + "\n");
} elseif ... { ...}

el se // event type not recognised by receiver

{ transcript.appendText (etype + " not recognised by " + nyld
+"\n");}

This section has described how the Event Manager has been implemented to support the
exchange of messages and events. The next section will now consider the functiondities of
the Notification Manager.

8.3 Notification Manager

The digtributed object layered infrastructure enables the Notification Manager to know
about every other object. The Natification Manager can be controlled directly through

134

Chapter 8 Getting-to-Know: An experimental Notification Server

message cdls or remotely via the messaging layer. It uses the same event modd as the
messaging infrastructure, but also alows optiond trandation of event types.

A new client object regigers itsdf with the Notification Manager in the same way as it did
previoudy with the Event Manager by launching the appropriate event handler. However,
unlike @ (Section 8.2.3), the recipient’s reference t oObj isnow replaced by NOT_MGR, a
well known identifier for the Notification Manager. Smilarly, the recipient’s host reference
t oHost | d isnow the Notification Manager’ s reference not Host | d.

/lcall frompublic instance nmethod setTranscript() in Client

Transcri pt Panel () cl ass

my Shar edDat a. ch. sendTo(nyld, NOT_MGR, notHostld, "add
interest”, d.format()); --------- @

Also, ingtead of passng a data string across asin © aformatted data packet d. f or mat ()
istranamitted in @. This contains specific information related to a particular client, such as
its identifier, event type and remote client event type al bundled together. Furthermore, the
new client object now sendsout an “ add i nterest” event to the Notification Manager.

8.3.1 Main functions
The Noatification Manager handles the three main functions of the GtK natification server:

add interest — tells the notification server that a specific network object wants to know
about specific events for a second network object

public static synchronized void addlnterest (int objid, String

event Type, int clientid, int
remObjid, String remevent Type);

remove interest — tdls the notification server to cance some or dl of the interests for a
given object
public static synchronized int renovelnterest (int objid, String

event Type, int clientid, int
renmobj i d);

tdl al — asks the notification server to broadcast an event to al interested objects

public static synchronized void tell All (int objid, String
event Type, String data);

135

Chapter 8 Getting-to-Know: An experimental Notification Server

The parameters used by addl nterest (), renovel nterest() andtel | Al () methods
are described below.

i nt obj i d: reference of the object which wants to register an interest
i nt renobjid: remote network object reference

int clientid: clientreference where the request is coming from
String event Type: event type of the object

String remevent Type: event type of the remote network object

String dat a: actud message that gets sent between the network objects

The above functions together with a few additiond housekeeping operations dlow the
expresson of awide range of different application specific notification srategies. They are
amilar to the fadilities offered by the Java AWT Observer/Observable classes and AWT
1.1 event listener modd (Flannagan, 1997), except that these Java events are limited to a
single Java process.

8.3.2 Managing interests

GtK maintains an interest table that keeps a list of interested clients for specific objects.
Each object in the interest table has one or more recipients (figure 8.2).

interest table recipient set

|0bjectid, eventType Recipient 2 (objectid, hostid, eventtype)

objectid, eventType|) Recipient n-1 (objectid, hostid, eventtype)
5: Recipient n (objectid, hostid, eventtype)

Figure8.2 Interest table

The interest table is updated through the ‘add interest’ and ‘remove intere” functions. The
following pseudocode explains how this happens.

136

Chapter 8

8.3.2.

public static synchronized voi d addl nterest

8.3.2.

public static synchronized int

8.3.3

Events are broadcast through the ‘tell dl’ function.

1 Add interest

reci pient set for Object

if null{ // first tinme object

put (objid, eventType)

create new Reci pient(renpbjid,

add Reci pient to recipient

2 Remove interest

reci pient set for Object

if null { error }

for each object
get

Reci pi ent (toQbj,

if (Recipient.toHost
renmobj i d){

/1 first time object

t oHost ,

Getting-to-Know: An experimental Notification Server

(int objid, String
event Type, int clientid, int
remobjid, String renmeventType) {

i nterest Tabl e. get (objid, eventType);
referred to
n interestTabl e;

}

clientid, reneventType);

set;

removelnterest (int objid, String
event Type, int clientid, int
remobjid) {

i nterest Tabl e. get (objid, eventType);

referred to

in the recipient set {

etype);
clientid &% Reci pi ent.toQbj

renmove Recipient fromrecipient set;}

}
if recipient set
renove (event Type

}

return O;

Broadcasting events

is empty {
objid) frominterestTabl e;

When an object asks GtK to

tell ALl (), GtK first matches the event type and objects with the interest table and then
passes on the event with optiona type trandation to al interested clients.

137

Chapter 8 Getting-to-Know: An experimental Notification Server

8.3.3.1 TellAll

public static synchronized void tell All (int objid, String
event Type, String data)
{

reci pient set for Object = interestTable.get(objid, eventType);
if not null {
for each object in the recipient set {
get Recipient (toQbj, toHost, etype);
/'l send data to all clients

Server Connecti onHandl er. sendTo(obj i d, Reci pi ent.toObj,
Reci pi ent .t oHost, Recipient.eType, data);}

}

Type trandation is a method that is used to represent the same event to two different remote
objects by gving it some meaningful name. For example, the event Type in
tel | All () gets trandated to a different event type a the Event Manager leve, based on
the recipient’s event type Reci pi ent. eType. The next section gives an example that
shows type trandation in progress.

8.3.4 lllustrating type translation

Consider an online conferencing system where users interact through an applet interface.
After regisering to the conferencing system, users can paticipate in one or many
conferences. Each conference is managed by a ‘transcript object’ at the server-end and
each client applet has a conference object attached to it. The Notification Manager
mediates the interaction between the client and server objects. Each object is identified by
aHost1d andan Obj 1 d. Figure 8.3 shows the flow of events between the different client
and server objects.

When a user joins a certain conference, the client-end conference object sends an event to
the Notification Manager to tdl it to ‘add an interest’ for that user and that particular
conferencein the ‘interest table'.

addl nterest (99, “newclient”, 7, 115, “new line")

Congder the case when the user is about to leave the cscw conference, she joined in
earlier. Inresponseto the user’ sinput “bye’, the applet object sends the following message
to the server-end ‘transcript’ object:

115:7: 43: 0: new | i ne: bye

The transcript object updates its interna state and asks the Notification Manager to inform
al the dlients who have an interest in the cscw conference through:

138

Chapter 8 Getting-to-Know: An experimental Notification Server

tell All (43, “new line”, “bye”)

Host 1d: 7 Client Applet
i | }Eﬁshﬂ Host 1d: O vV rver
BT IEI Java Serve
Ui i Canrwct
o] (=] B Boiia 43]
; At | ast soneone ...
trarlscrlpt es you can't ...
object | better get on ...
bye
115:7:43:0:"new line”:bye| |
N
e e e gloiﬁ?;rzﬂge tel | Al (43, "new |ine", "bye")
It i obi Coj [d: 99
o i Ject 43:0:115:7:” line”:b A
%‘Tﬁm%gﬂm | 43:0:115.7:"new line”:byp ~
S:.,.".'..E.'Jf;'..".‘.....m:?# o notification
: manager
Fatd ch Host 1d: 5 g interest table
frer
. T addl nterest (99,"new client”,7,
. 115, “new line”)
I | v H
=) (= e)
Frievins | e | = = i
E1IN & 1k o 43:0:63 :5:”add line”:bye

Other Clients

Figure8.3 Flow of eventsbetween client and server objects

The Notification Manager broadcasts the message to dl the client objects, but with a
different event Type in each case. For ingance, the Notification Manager may send this
event to the client object, with obj i d, 115:

43:0: 115: 7: new | i ne: bye

but the following event to the client object, with oj i d, 63:
43:0: 63:5:add |ine: bye

The event Type hastherefore been trandated from “new 1i ne” inthedient with j i d =
115to “add Iine” inthedient with Obj i d = 63. The dclient objects use this information
to update the content of the windows on each user’s machine.

Event trandation simplifies the process of differentiating between different clients. The
clients essentidly receive the same event, but in a dightly different format. If dl the
interested clients received the same event Type, it would be more difficult to track the
origin of the message. Event trandation therefore helps to increase comprehension.

139

Chapter 8 Getting-to-Know: An experimental Notification Server

8.4 Augmenting GtK for Impedance Matching

This section will now describe how the GtK natification server has been augmented to
provide pace impedance. Although impedance matching emerges from an abdiract notion, it
has been implemented in GtK to investigate its actua behaviour on apractica leve.

Asdiscussed in Chapter 7 (Section 7.3), the pace of feedthrough can be reduced by:
setting a certain limit (be it fixed or variable) on the volume of updates and
setting atimeinterval between the propagation of updates.

8.4.1 Pace parameters

Two pace parameters have therefore been defined:

i nt queuelLength; // length of queue

queuelLengt h dlows adlient object to oecify the maximum number of messages or events
that can be placed in a queue before they are passed on to the client. This corresponds to
the ‘volume of messages' trigger (Section 7.4.3).

long tinme; /1 duration

ti me enables a client object to pecify the maximum delay on events before they are sent
out and this represents the ‘fixed time interva’ trigger (Section 7.4.1).

queuelLengt h andt i me are combined into a Single data structure:

Frequency = (queuelLength:tine)

The default vdue for queueLengt h is 0, which implies an empty queue. The default vaue
for ti me is—1, which denotes infinity. For example, a Fr equency of (0,3) indicates that
messages are buffered and sent out every 3 seconds whereas a Frequency of (10, -1)
implies that messages are sent out in batches of 10.

8.4.1.1 Frequency class

public class Frequency {

/1 Public Constructors

public Frequency(int queueLength, long tine);

/1l Public Instance Methods
public I ong get QueueLength(); // returns queue |ength

public bool ean timeNow(i nt current QueueLength, |ong
currentDelay); // check if is time to flush queue

140

Chapter 8 Getting-to-Know: An experimental Notification Server

public | ong nextTime(l ong ol dest MessageTi ne) ;
/1 calculate next tinme to flush queue }

8.4.2 Managing interests with frequency
The need to support pace impedance brings about certain changes to the main functions of

GtK. In addition to keeping track of an object and its recipients, the interest table now has
to be aware of each recipient’ s frequency (figure 8.4).

interest table recipient se

| objectid, eventType |—) Recipient 2 (objectid, hostid, eventtype), Frequency 2 (queuelength, time)

e B LT PNV Lt T o

| objectid, eventType |—) Recipient n-1 (objectid, hostid, eventtype), Frequency n-1 (queuelength,time)

i | Recipient n (objectid, hostid, eventtype), Frequency n (queuelength, time)

Figure8.4 Effect of paceimpedanceon interest table

A NotifRecord() dassis crested to maintain the link between each recipient and its
frequency. Noti f Record() provides methods which dlow recipients to manage their
event queues.

public class NotifRecord {
/1 Public Constructor
public NotifRecord(Recipient recipient, Frequency howOften);
/1l creates a record of recipient and frequency
/1 Public Instance Methods

public void changeFrequency(Frequency howOften);
/1 change frequency of notification

public int queueLength(); /1l returns queue |l ength
public long tinme(); /[l return current systemtine
public bool ean timeToFl ush(); /'l check if tinme to flush queue

public long nextFlushTine(); // return next time to flush queue
public void addQueue(String nessage); // add nessage to queue

public String remveQueue(); /1l renove el ement from queue

When a network object now adds an interest for a second network object, it aso includes
the frequency with which it wants to be notified of the changes to the second object. The

141

Chapter 8 Getting-to-Know: An experimental Notification Server

‘add interest” function (Section 8.3.1) therefore accepts the pace parameters,
queuelLengt h andti me aspart of itscal:

public static synchronized void addlnterest (int objid, String
event Type, int clientid, int
remObjid, String remevent Type,
i nt queuelLength, long tinme)

The following pseudocode shows how the interest table is updated when the frequency of
notification is taken into account.

8.4.2.1 Add interest

addl nt er est () starts with the same ingtructions as before (Section 8.3.2.1). However,
after creating a recipient, the method creetes a corresponding frequency and they are linked
together to generate aNot i f Record. TheNot i f Recor d isthen added to the recipient set
and linked with the relevant record in the interest table.

public static synchronized void addlnterest (int objid, String
event Type, int clientid, int renObjid, String
remevent Type, int queueLength, long tine) {
reci pient set for Object = interestTable.get(objid, eventType);
if null{ // first tinme object refered to
put (objid, eventType) in interestTable ; }
create new Recipient(renmobjid, clientid, reneventType);
create new Frequency(queuelLength,tinme);
create new NotifRecord (Recipient, Frequency);

add NotifRecord to recipient set;

8.4.2.2 Remove interest

renovel nterest () removes some or al the recipients for a certain object in the interest
table by matching the Not i f Recor d inthe recipient set with the client reference where the
request came from.

public static synchronized int renovelnterest (int objid, String
event Type, int clientid, int remobjid) {

reci pient set for Object = interestTable.get(objid, eventType);

if null { error } [/ first time object referred to
for each object in the recipient set {

get NotifRecord (Recipient (toObj, toHost, etype), Frequency);

if (NotifRecord. Recipient.toHost == clientid &&
Noti f Record. Reci pient.toCbj == renmpbjid) {

142

Chapter 8 Getting-to-Know: An experimental Notification Server

renove NotifRecord fromrecipient set; }}
if (recipient set is enpty {
remove (event Type, objid)frominterestTable; }

return 0;}

143

Chapter 8 Getting-to-Know: An experimental Notification Server

8.4.3 Event queue management

For each recipient, a queue of outdanding events is mantained. New events are
timestamped and added to the rear of the queue. Events are flushed and delivered to
recipients at gppropriate times depending on the pace parameters.

Events are flushed from the queue when either:
(@ current queue length > vaue st for queuelLengt h.
(b) current delay > vaue st for ti ne.

where current delay = (current system time - time first event was queued).
Case (a) istriggered when an event is added to the queue.

Case (b) requires an darm process to be st in the natification server. Conceptudly, there
isone dam for each non-empty queue, which is set to flush the queue at:

next Ti me = (timestamp of the firs event in the queue +t i me)

In the actua implementation, only one darm process is used and set to the closest of the
relevant darm deadlines. This is reset when events are added to an empty queue or after
the queue is flushed due to the previous darm.

8.4.3.1 Tellall

With impedance matching, the ‘tell dl’ function hasto provide differert rates of feedthrough.
Instead of broadcasting the notification events to the interested clients sraight away as
before (Section 8.3.1.1), tel I Al I () now adds the event for each interested object to its
recipient’s queue and records the time the event was added. It then calls checkFl ush(),
which checks if it is time to flush the queue (when ether case (@) or case (b) above is
satisfied).

public static synchronized void tellAll (int objid, String
event Type, String data) {
reci pient set for Object = interestTable.get(objid, eventType);
if not null {
for each object in the recipient set {
get NotifRecord();
Noti f Record. addQueue(data); // add event to the queue

/1 check if it is time to flush the queue

checkFl ush(objid, eventType, NotifRecord);}

144

Chapter 8 Getting-to-Know: An experimental Notification Server

If the time to flush the queue has been reached, checkFl ush() sends the events to the

interested clients otherwise, the next flush time is cdculated and the darm is sat to ring at
that particular time.

public static synchronized void checkFlush(int objid, String

event Type, NotifRecord
noti f Record) {

if (notifRecord.timeToFlush()) { // if time to flush queue is

reached
fl ushQueue(objid, event Type, noti f Record);} /'l send out put

else { // this happens when events are added to an enpty
gqueue

/1 calculate the next time to flush the queue
I ong nextTime = notifRecord. next Fl ushTi ne();

al arm set (nextTine); } /1l reset alarmto nextTine

f 1 ushQueue() removes an event from a queue whose flush time has been reached and
sends it out to the interested clients.

public static synchronized void flushQueue(int objid, String

event Type, Noti f Record
noti f Record) {

String data = notifRecord.renpveQueue(); // renove event from
queue

/1 send output to all interested clients

Server Connecti onHandl er. sendTo(obj i d, notifRecord.recipient.toj,

noti f Record. reci pi ent.toHost,
eType, data);

8.4.3.2 Alarm process

The darm process cdls a calback that continuoudy polls to check if an event is ready to be
flushed.

public static class MyAl arntCal | back i nmpl ements Al arntCal | back {

public void ring() {
flushonTinme();}

145

Chapter 8 Getting-to-Know: An experimental Notification Server

Only one darm process is actudly used for each non-empty queue. However, each non
empty queue maintains a separate deedline for itsflush time. f1 ushonTi me() checkseach
recipient’s flush time deadline. If the flush time has been reached the queue is flushed
otherwise, thedarm is set to the closest of the relevant darm deadlines.

public static synchronized void flushOnTi me(){
set nextTine to Long. MAX VALUE; //set nextTinme to a | arge val ue
for each object in the interestTable(objid, eventType) {

for each object in the recipient set {

nrNext Time = get notifRecord. next Fl ushTi ne();

if nrNextTine <= current time { // if flush tinme is reached

fl ushQueue(objid, eventType, notifRecord);}//flush queue

// otherwi se calculate next tinme to flush
else if (nrNextTime <= nextTinme) {

set nextTime to nrNextTine;}

}

alarmset (nextTine); // set alarmto ring at nextTine }

The darm is reset when events are added to an empty queue or after a non-empty queue is
flushed due to a previous darm

8.4.4 Altering pace parameters

In order to provide an acceptable pace of feedthrough that matches the users' task at hand,
clients should be able to adjust the rate a which they receive updates from the notification
saver. GtK alows a client to change the frequency with which it wants to be notified of
any updates.

The client object sendsa“ change frequency” event together with the new vauesfor the
pace parameters queuelLength and time. This will dso dter the frequency of each
recipient for that client object.

8.4.4.1 Change frequency

changeFr equency() updates the frequency record for the client object with the new

vauesof queueLength and time. It dso dters the frequency of each recipient for that
object and subsequently checks to seeif it istime to flush the queue.

146

Chapter 8 Getting-to-Know: An experimental Notification Server

public static synchronized i nt changeFrequency(int objid, String
event Type, int clientid, int remobjid,
int bufferLength, int tinme) {

reci pient set for Object = interestTable.get(objid, eventType);

if null { /1 first time object referred to

return 1; } /'l return error
for each object in the recipient set {
get NotifRecord();

if (NotifRecord. Recipient.toHost == clientid &&
Noti f Record. Reci pi ent.toCbj == renpbjid) {

/1 build new frequency obj ect

create new Frequency(queuelLength,tinme);

/'l change old frequency
noti f Recor d. changeFr equency(Frequency) ;
/1l check if it is time to flush queue

checkFl ush(objid, event Type, noti f Record);

}

return O;

8.5 Example real-time online conferencing application

The previous sections have shown how the Event Manager and the Notification Manager
components have been implemented on the GtK framework. The last component on the
digributed layered infrastructure (Starting from the base in figure 8.1) is the Application.

The Application does not execute as a stand-aone component. It interacts closaly with the
Notification Manager through the Event Manager. This interaction is essentid for any
purpose-built application to function properly. Also, the Notification Manager needs the
rlevant informetion from the Application in order to broadcast information to the users at
the right pace and right granularity.

An example red-time online conferencing gpplication has been condructed on the GtK
infrastructure (figure 8.5). The gpplication dlows users to creste conferences on various
topics and launch sessons on one or more conferences with severa participants
smultaneoudy. The system supports live discussons but dso enables late joiners to caich
up on any ongoing sessons.

147

Chapter 8 Getting-to-Know: An experimental Notification Server

Application Notification Manager
Conference GtK Notification
Manager & % Server

Event Manager

Figure8.5 Conferencing exemplar on GtK infrastructure

The Conference Manager interacts with the client objects and the Notification Manager by
exchanging events and messages through the Event Manager. Throughout the discussion

presented in this chapter, the terms message and event seem to convey the same meaning.
However, there is a subtle distinction between them.

send event

receive event

receive message ‘\y

send message

Figure8.6 Event vs. message

A message is usudly directed towards a specific object whereas an event announces the
presence of a certain object. An application can be regarded as being in the centre
receiving and sending messages and events (figure 8.6). Both events and messages have the
same format and they are received through the same mechanism, but they differ in the way
they get sent out. Figure 8.7 shows the flow of messages and events between the different
components in the example conferencing system.

receive send
event

receive send receive send
event event event event

event

receiv Conference

Manager

receive send

message message

Figure8.7 Event and message exchangein confer encing exemplar

148

Chapter 8 Getting-to-Know: An experimental Notification Server

Messages are events that are sent directly from one object to another and the sender object
does not receive afeedback from the receiver object. For example, the client objects send
and recelve messages directly to and from the Conference Manager.

Events instead only announce the presence of an object and they are mediated through the
Notification Manager. For example, client objects register with the GtK natification server
by sending an event to the Notification Manager. The latter then responds to the user
clients by sending some feedback, such as a welcome note. Similarly, the Conference
Manager can send events to the client objects via the Notification Manager, for instance
through the ‘tel al’ function. The Notification Manager responds by sending broadcast
eventsto the user clients.

8.6 Summary

This chapter described how the GtK experimenta notification server has been implemented
over severd layers of custom and standard infrastructure. The functiondities of each layer
and ther implementation details were examined. A distributed asynchronous protocol is
used for exchanging messages and events within the GtK infragtructure. The Event
Manager dlows point-to-point asynchronous messaging between different communication
objectsin the same or in different address spaces.

The Natification Manager manages the main functions of the GtK natification server. The
distributed object layered infrastructure enables the Notification Manager to be aware of
every other object. Client objects can ether add or remove interests for different objects
with GtK. GtK maintains a ligt of interested clients for specific objects and their recipients.
When changes occur to certain objects, GtK broadcasts notification events to the
respective recipients.

The way in which GtK has been augmented to provide pace impedance matching was also
andysed. Two pace parameters are introduced to control the frequency of updates - the
queue length and maximum delay time. The ‘add interes’” and ‘remove interest’” functions
were subsequently modified to include each recipient's frequency of notification.
Furthermore, a FIFO queue of outstanding events is maintained for each recipient. The
events are flushed and broadcast to the recipients at the relevant time depending on the
pace parameters. An darm process sets and resets the maximum delay time parameter.

Users often interact with different interface objects at a non-uniform pace. A client object
can change the frequency which with it wants to be natified by sending a* change frequency’
event to GtK together with the updated pace parameters. GtK aso modifies the frequency
of each recipient for that client object accordingly.

An example red-time Web conferencing application has been congructed on the GtK
framework. The exchange of messages and events between the different components of the
goplication were findly congdered. The example gpplication is Smilar to many Web-based
chat sysems. However, its main purpose is to demondrate the practicaity of the GtK

149

Chapter 8 Getting-to-Know: An experimental Notification Server

separable notification server as a pace impedance matcher and this will be dedt with in the
next chapter.

150

Chapter 9 Demonstration through an Exemplar

The GiK infrastructure described in Chapter 8 provides a framework for building
goplications that support pace impedance matching by using a separable notification server.
Chapter 6 showed how a 'pure’ notification server separates the concerns of data from
notification and Chapter 7 emphasized that such a notification server could in fact be used
for performing impedance matching. As argued in Chapter 2, the interface affords an
effective user-level behaviour when users receive feedback and feedthrough information a a
rate that matches their pace of interaction. The analyss in Chapter 5 aso reinforced the
need for timely feedthrough of information to effectively support users engaged in distributed
collaborative work.

This chapter describes how an example real-time Web conferencing system has used the
GtK framework to provide collaborative users with an interface that matches the rate of

feedthrough they receive with thelr pace of interaction. This demondration acts as a
technicd evduation of the GtK framework. Although the evduation is unlike traditiond

forms of evauation, it does provide a critique of the framework. This chapter dedls with
aspects related to the congtruction of the real-time Web conferencing exemplar on the GtK
framework. It gpplies some of the issues discussed in Chapter 7 and uses the
implementation details described in Chepter 8. The next chapter complements this
assessment by evauating the framework from an architectura viewpoint.

Section 9.1 gives a raionde that justifies why a conventiond evauation method has not
been applied to the GtK framework. Section 9.2 describes the behaviour that users receive
a run-time when they interact with the different functiondities of the example Web
conferencing gpplication. Section 9.3 then shows how the example application has been
implemented on the GtK framework to support its interface behaviour. Findly, Section 9.4
examines the way in which the example gpplication uses the GtK natification server to
provide collaborative participants with a pace of feedthrough that matches their interest
levels.

9.1 Evaluation criteria

There are usudly two motivations for carrying out an evduation. The fird ams a
demondtrating the advantages of a particular concept, idea or artefact and proving that the
artefact is an improvement over what was previoudy available. The second motivation isto
bring out the disadvantages of an artefact, with a view of identifying those aspects that
require further work.

The example red-time Web conferencing application that has been developed is smilar to

many Web-based chat gpplications, dthough its novety lies in providing users with a
controlled pace of feedthrough. However, the main purpose for implementing the example

151

Chapter 9 Demonstration through an Exemplar

goplication was to demondrate the practicaity of the GtK notification server as an
impedance matcher within the GtK framework.

It is often problematic to evauate atoolkit or aframework embodied in code. If the aim of
the evauation is to show that the toolkit produces good applicaions, then multiple
gpplications should be built, not once but severd times. In addition, third party users should
be involved in the process of building those gpplications. But none of these techniques have
been employed here. Indeed, it would have been impractica to cover such an in-depth
eva uation within the scope of this research.

The focus of this research lies on gaining a degp understanding of how agpplications can be
built to provide a desirable tempora behaviour within a distributed collaborative setting and
hence facilitate user cooperation. In order to meet this god, the emphas's throughout this
work has been on the architectural aspects of agpplication building through a number of
anayticd sudies.

The findings of those sudies have enabled the development of the GtK framework thet
enables impedance matching. The conferencing application described through the rest of
this chapter merdly acts as an exemplar that demonstrates the feasibility of pace impedance
meatching in improving the tempora behaviour that user receives a the interface level.

9.2 Interface behaviour

This section describes the behaviour of the example red-time Web conferencing system
from the users perspective. It provides a system walkthrough that anayses the visible parts
of the user interface and shows how users interact with the different functiondities offered
by the interface.

The conferencing gpplication alows users to create conferences on severd topics and
launch discusson sessons with different participants a the same time. The discusson
sessons ae manly held in red-time but late joiners can dso catch up with any ongoing
sesson. The agpplication offers functiondities that are common to most Web-based chat
systems. However, the novel feature of the conferencing gpplication is its ability to enable
users to interact with multiple conferences smultaneoudy while adjudting the pace of
feedthrough to match the users rate of interests.

9.2.1 Connectto application
Like many Web-based chat applications, the nature of the interaction pushes towards the
use of applets for maintaining conversations. Users connect to the conferencing application

that runs on a server through an applet interface from any common Web browser.

A user launches a conference client by typing the correct URL on a Web browser.
Following this action, atypica applet is downloaded on the user’s screen (figure 9.1).

152

Chapter 9 Demonstration through an Exemplar

P i e g Qb fe »
- o = ST R (U - - L L
B k] Ll o Inict Fomdn Heloy g i
Laws @B) L B e o e
O T e —r— o]
Ll rpem Loy
i bl
T e e
U PR LR
& et et i b e i e T
e [D
e L
|
3 | 1
L |

Figure9.1 Typical client applet
The Message area displays feedback information in response to users actions. For

ingtance, when a user first connects to the server, a message notifies her if the connection is
successful or not.

9.2.2 Register with application
Let us assume that Jane has just launched a client gpplet on her screen. Jane registers with

the conferencing application by fird typing in her name in the User name fidd and then
clicking onthe Connect button (figure 9.2).

B DS ¥ Fpe ol B o
e T e T Py weprar T
e [Emms],

“
Lk E

L1l
& borw i Local moasmt

Figure9.2 User registration

If Jane is successful in registering with the server, she can proceed to create and join any
conference. Note, if other users are adready logged on to the system and created some

153

Chapter 9 Demonstration through an Exemplar

conferences prior to Jane sregidration, alist of the existing conferences would be displayed
under the Conf erence Li st a this stage (seefigure 9.3).

9.2.3 Create new conference

If Jane wants to create a new conference caled JAVA, she smply has to type in the
conference name intheNew Conf er ence fidld and dick on the Cr eat e button (figure 9.3).
The Conf erence Li st issubsequently updated and sent out to al the participants who are
logged on to the system.

i pR e Fyeais Jadk H

] e ————— =] i

- o]

T s

A L e
vrd. rrrmcird Lo vt crgted e w—
T et cornscied o ncahar 1709
IO (i O

=i
] Do P Lo rimm

Figure9.3 Createnew conference
9.2.4 Join conference

Jane joins a conference by firg sdecting its name from the Conf erence Li st andthen
clicking on the Joi n button (figure 9.4).

net Explorer provided by screaming.net
Tools Help
ate/Client/NewClisnt htmi =] &oo |

| Eie Ede
| ddress [2] hitp: //local

User name: I: Jane Connect

Message window

HewClhent stat Crealed Sockel
CommonConnectionHandler start: created input stieam
L start ta 789

CommonCe
[NewClient action: now connected

New Conference: [Cieate

Conference List
VRML — L,.L
ML = it _
]
2] Done [[T% Localntanet 7

Figure9.4 Join conference

154

Chapter 9 Demonstration through an Exemplar

A new window |abdled with the conference name pops up on Jane' s screen followed by a
welcome message “ Hel | o Jane”, which is disolayed on the * Users contri buti on’

area (figure 9.5). Thelower * public chat’ text areaaccepts usersinput while the upper
“Users contribution message area digolays dl the participants contributions to that
particular conference.

| JAWA (=100 =]

Wiedn o onirbedons
Heado e

Pibda chat

S Lesue |

Figure9.5 Pop-up conference window

Soon dfter Jane is active on the JAVA conference, Tom decides to join in. Jane
subsequently receives the message “ Tom has j ust j oi ned” which informsher of Tom's
presence (figure 9.6).

9.2.5 Add contribution
Users can add their own contributions to a conference by typing in some text and clicking

on the send button. The contributions are then broadcast to dl the participants logged on
to the same conference.

LA = B

Uaests corinbition

Hello e

Ton ha Lt jored

Jarvat frdio Tan

Tore: Chhidana. Fyow & ke peog an doarg 7

e Schually | heavea shohi poblen, | vaorde £
Tan: fiie s

il | =

Pubic chat

Ipoe kriows oo misesaging spsken | an sorkiog on

_ﬁ'e_ﬂ Leu.-:i
Figure9.6 Add contribution

155

Chapter 9 Demonstration through an Exemplar

9.2.6 Interact with multiple conferences

Users can participate in more than one conference smultaneoudy. For each conference,
the user needs to sdlect the conference name from the Conf erence Li st and then click
on the Joi n button (figure 9.4). A separate conference window pops up on the user's
screen each time. Usars may therefore receive severa overlapping windows, each
representing a particular conference contribution.

Figure 9.7 shows two overlgpping conference windows for Tom, one representing the xm.
conference and the other showing the JAVA conference. Although it gppears that Tom is
active on both conferences, his focus in fact lies on a specific conference a any ingance in
time.

In any windowing system, the top-most window indicates the user’s focus as it has
keyboard control. From this we can deduce that, Tom's focus is on the XM conference,
given itswindow position. Hence, any new contributions to the XML conference are likely to
be of more interest to Tom. The JAVA conference window is instead in the background,
which implies that Tom only has a passve interest in the dianges to that conference. A
gmilar reasoning was gpplied when investigating potential scenarios for impedance matching
in Chapter 7 (Section 7.5.2).

Fe Edt Yiew Lo Comminoso H_oh

- T HE=E
<« = 3 4
Bach. e FAebed Home
.- *I' o Locadmm Usars commbdons
Helln Tair =]
Tofre hella syone thees, KMok KIDEH
vzarrame | Tem
L=er= corbribuiions
Hallo Tam _J_I
Jans halln Tom 4] :
Tam: Ch hlJas, how 15 the prog
Jaripe Al | have @ Slighd prob Fublic ¢hal
Tom: fire sway E
1] _JJ

FPublic chiat

Serd Leawa
& [Tt J=va Popk: vindon

i J

L .
Send Leaup .LI

Figure 9.7 Overlapping conference windows

Tom therefore receives changes to the XML conference immediately after anew contribution
is added. This high rate of feedthrough may in some cases be redricted by the network

156

Chapter 9 Demonstration through an Exemplar

latency. Tom does not necessarily receive new contributions to the JAVA conference &
soon asthey are sent out.

However, if Tom decides to shift his focus back to the JAVA conference or wants to catch
up on the thread of conversation going on there he smply hasto dick on the title bar of the
JAVA conference window at any time, to bring it into focus. This action immediatey
increases the pace of feedthrough that Tom was getting for the JAVA conference.
Consequently, any outstanding contributions are displayed straightaway on Tom's JAVA
conference window. Furthermore, Tom will receive new contributions to the JAVA
conference amost as soon as they are posted but any new contributions to the xwm
conference will be communicated to him a a much lower pace. The implementation issues
surrounding pace frequency are described in Section 9.4.

9.2 7 Leave conference

A user can leave a conference a any time by clicking on the Leave button on the
conference pop-up window (figure 9.8). After Jane leaves the JAVA conference, the
conference window closes on her screen. Shortly after, Tom and any other partcipants on
the JAVA conference receive the message“ Jane has just |eft” onther screen, which
informs them of Jan€' s departure (figure 9.9).

AN M=l FLJAVA, Hi=E
U=ars raniriautone
Ugmes contrbufions Jang: helia Tom =]
- Tarn: OF hiJane, hiv & e progiam deng?
E“h b :I dane: Actualyl heve & slight problemn lwanderifye
T o ks juid pined S
L aree: o T oen TOM: I8 Sy
Tore: Oh Filans, bow is the progam doing 7 Jane. you know ihe megdaging sysbam Lamworki
ane Ay | haes = shght pioblem | sondss if Torn: Ohyes
T fina sy . . Jana: Hnink fmay e a ol complicaled o eoEn
iﬁlﬁh.mlftm.unmu:Hmm-.mtkr- Toin: ok, se2 ol
Jarws | Hink § may e bi sonphesind b mplen L
TiofH: ok, daE W Jang has Justlef
Mare Eje
-
i | 4] »
Plublc chat Public chat
Serd | Lasve I'I Kl | _H
Send Laave
Figure9.8 Leaveconference Figure9.9 Notification of departure

9.2.8 Quit application

Users can quit the conferencing application by smply clicking on the “ Qui t ” button on the
main window of the client applet (figure 9.1). This action closes down the gpplet window.
Moreover, users do not have to explicitly leave the conferences they had joined before
quitting the application. For example, if Jane quits the gpplication before leaving the JAVA
conference, Tom and any other partcipants on the JAVA conference would still be informed
that she has eft.

157

Chapter 9 Demonstration through an Exemplar

This section has demondrated the behaviour of the example red-time Web conferencing
goplication a run-time. It has dso examined the effect of users smultaneous participation
on multiple conferences and shown how the pace of feedthrough is adjusted to match their
focus. The next section will now describe how the underlying GtK framework supports the
goplication’ sinterface behaviour and asssts in implementing its various functiondities.

9.3 Application implementation

The gpplication is deployed as a number of client objects, which run as gpplets on a user’s
Web browser (Section 9.2) and a Conference Manager that executes on a server and uses
GtK for notification purposes. The Conference Manager is implemented at the Application
leve of the GtK framework and Sts on a server (possibly remote) dongside the Notification
Manager (Section 8.5). The Conference Manager manages the conferences created by the
USErs.

The fallowing discusson will use some of the method calls aready described in Chapter 8
and will aso build on them to show the interaction between the Conference Manager and
the Notification Manager through the Event Manager. The interaction is illudrated as a
series of events and messages exchanged between the different components. The
distinction between events and messages was established in Chapter 8 (Section 8.5).

9.3.1 Connectto Conference Manager

The server runs on a pre-defined port and starts up the Conference Manager and the
Notification Manager by registering them as event handler objects with the Event Manager
(Section 82.2.2). A unique identifier is assgned to the Conference Manager and the
Notification Manager respectively.

/1 call frommain() in NewServer.java

/1 add Notification Manager event handler with id = 99
Server Connecti onHandl er. addObj ect (99, notifier)
/1 add Conference Manager event handler with id = 999

Server Connect i onHandl er. addObj ect (999, conference)
The server then carries on listening for connections from client objects.
9.3.2 Register with Conference Manager

When a user connects to the application (Section 9.2.2), the client object registersitself with
the Notification Manager through an “add i nterest” event type (Section 8.3) and asks
the Notification Manager to be told about the Conference Manager by sending its identifier
CONF_MGR = 999 as part of the data packet, d. Thisis represented as event @ in figure
9.10.

/1l call frompublic instance nethod action() in Client.java

158

Chapter 9 Demonstration through an Exemplar

t heShar edDat a. ch. sendTo(confld, NOT_MGR, notHostld, "add
interest",d.format())

Client Applet [Host 1: 0| Java Server

L (AT ey] e

Object 1d: 999

- | 115:3:999:0:"liet conference®, Jane, | Conference Manager

Conference Set
confld | confName

Mg e

et a7 L i
T e e T =
rde Fa. roTerEr kelea LT
o

IObject Id: 99|

Notification Manager

O g Lnid

Figure9.10 Client object registerswith Conference Manager

The client object also asks the Conference Manager to list any conferences, if some have
aready been created, by sending out message ® witha“1i st conference” event type.

/1 call frompublic instance nethod action() in Client.java

t heShar edDat a. ch. sendTo(confld, CONF_MGR, confHostld, "list
conference", theSharedData. user Nane)

Onrecavingthe“1i st conference” event type, the Conference Manager first checksto
see if the conference set is not empty. If that is the case, the Conference Manager then
sends out a “conference |ist” event type and a data packet d, which contains the
conference names and their identifiers, to the client object (figure 9.11).

/1 call frompublic instance nmethod |istConference() in Server
Conf er enceManager cl ass

public static synchronized void |istConference(int renoteQbjid,
int clientid) {

/1 build new conference list and send list to clients
create new Bui |l dConf erencelLi st (conferenceSet);
Dat aPacket d = buildList.getList();// get list into data packet

Server Connecti onHandl er. sendTo(CONF_MGR, renpt eObj i d, clientid,
"conference list", d.format());}

159

Chapter 9 Demonstration through an Exemplar

Client Applet
Host 1d: 5 PP Host 1d: 0 Java Server
BB — : Ebject Id: 999|
— B — B = ﬁonference Manager \
User name lﬁ Conveect | - — } Conference Set
115:5:999:0:")ist1 conferenge™:Jene
essage i confld | confName
e . 10001 | HTML
et e o ected e oeahostE7E3 10002 | C++
| 1 10003 | C

%0 | [10004 | VRML

e
_ /

Carference List
’?—-‘
VRML
ETML
where d.formar() is of typs:
= HTML10001:C++110002:C:10003 :VRML:10004

@] Done [[5% Local inranet]

New Corference:

Figure9.11 Conference Manager sendsconferencelist to client object
9.3.3 Create new conference

When a user creates a new conference (Section 9.2.3), the client object sends message @
(figure 9.12) to the Conference Manager with a “new conf er ence” event type and the
conference name.

/1 call frompublic instance nethod action() in Cient
Conf er encePanel cl ass

nmyShar edDat a. ch. sendTo(confld, CONF_MGR, confHostld,
"new conference", conf Nane)

If the conference name does not dready exist in the conference s, the Conference
Manager proceeds to create the new conference.

createConference() regiders the conference name as an event handler, which
automaticaly generates a new conference identifier (Section 8.2.2.2). The conference name
and its identifier are added to the conference set and thereafter rebuilt into a data packet.
The Conference Manager then tells the Notification Manager to broadcast the updated
conference list to dl the users by sending message ® with a“ conf erence |ist” event
typethrough thet el I AI'l () method cal (Section 8.3.3).

160

Chapter 9 Demonstration through an Exemplar

/1l call frompublic instance nethod createConference() in Server
Conf er enceManager cl ass

public static synchronized void createConference(String
conf Narme, int rempteQbjid,int clientid) {

create new Transcri pt Cbject(confNanme); // create new event
handl er for conference

/1l return automatically generated conference identifier

confld = Server Connecti onHandl er. addObj ect (Transcri pt Obj ect);
add conference Transcript Object to conferenceSet;

create new Buil dConferenceli st(conferenceSet); // build new
conference |i st

Dat aPacket d = buildList.getList(); // get list into data
packet

/1 broadcast updated conference list to all the clients

NotificationManager.tell AIl (CONF_MGR, "conference list",
d.format());

[Host Id: 5 Client Applet Host Id: 0 Java Server
S Object Id: 999

L] T - +| i

3 ﬁonference Manager

[B e g e

e — Conference Set
e acloM confld | confName
e o 10001

I o e e ok e
. M 10002 | c++
9% v o 10003 | c
W 10004_| VRML
O \| 10005 | sava

Cotererin N— —/

2]
telAll (959, “conference Est”, d.formay())

v [object 1d: 99]

Notification Manager

Bl

whers d formet() & of type:
HTML:10001:C++10002:C:10003:VRML:20004:T AVA :10003

e

161

Chapter 9 Demonstration through an Exemplar

Figure9.12 Createnew conference and broadcast updated list

On receiving that request, GtK usesthet el I Al I () method (Section 8.3.3.1) to broadcast
the updated conference ligt to dl the registered clients with a “ conf erence 1ist” event
type (events © in figure 9.12). As each dient maintains its own copy of the conference
table that stores the conference names and tharr identifiers the conf erence i st” event
type triggers them to update their local copy of the conference table.

Each client gpplet then refreshes the conference lig locdly to reflect the change. By
maintaining a loca copy of the conference table, client objects do not need to query the
notification server if they require any conference details, thus reducing network exchange.

9.3.4 Join conference

Consder the example of Jane joining the JAVA conference (Section 9.2.4). Jan€'s client
object launches a new frame on the screen with the conference name asiits titte. The new
client conference object has its own identifier alocated to it, but it ill runs on the same host
asthe client object.

/1 call frompublic instance nethod action() in Client
Conf er encePanel cl ass

// find selected conference nane fromthe conference |ist
String sel ectedConf = nySharedDat a. confLi st. getSel ectedltem);

if (selectedConf !'= null) {// find conference id fromlocal
conference table

sel ectedConfld = myconferenceTabl e. get Confl d(sel ect edConf,
nmy Shar edDat a) ;

myShar edDat a. t heTranscri pt Li st. cr eat eNewFr ane(sel ect edConf | d)
; /1l create new conference w ndow

}

The client object sends message @ (figure 9.13), which includes the conference object
identifier and “new client” event type, to the Transcript object on the Conference
Manager. Each conference is associated with a Transcript object, which is responsible for
monitoring the interaction between different clients registered to a particular conference.

The client object also sends event @ to the Notification Manager with an “add
interest” event type, the client conference object identifier and a whole ligt of other
interested event types, as part of the data packet, to make GtK aware of the Jane' s interest
in the JAVA conference.

162

Chapter 9 Demonstration through an Exemplar

Host Id: 5 Jane Client Applet
lient - Microsof wovided by screaming.net [_[CIx]

‘ Java Server

| Fle Edt Viw Favoites Took Help " X Host |d O
| Address [£1 g /10 shost/private Ciert/NewClent him b eCt |d 115‘
[[object 1d: 10005]
Username: [Jane Connect
esson v Conference Transcript

NewCienl start. Cresled Sockel . -3 o,
CommarCormectionardier start created ngul stieam “{'
Commonte shart
[NewClent action: now corne cled l}"’
L

1.5-0066‘9‘ (1)
o W Object 1d 09

— / o Notification Manager

i . (1UTS9907gd nterest* 10005 New bent? | Recipient Set
'new lima"s"cdint (aF""clignt died" conf client eventtype
objectid | objectid

XML
c

=l ~/
[&] Dore [[(%% Localiranet "

Figure9.13 Join conference

/1 call frompublic instance nethod setTranscript() in Cient
Transcri pt Panel class

/1l send “new client” event and client name to Transcript object
on Conference Manager

myShar edDat a. ch. sendTo(nmyld, toCbj, toHostld, "new
client", mySharedDat a. user Nane) ;

/1l add interest with Notification Manager

my Shar edDat a. ch. sendTo(nyld, NOT_MGR, notHostld, "add
interest",d.format());

The “add interest” event type triggers GtK to add Jan€'s interest in the JAVA
conference through the addl nt erest () method (Section 8.3.2.1). This creates a new
recipient for the JAVA conference with Jan€'s conference client object identifier and its
related event types. Therecipient is then added to the recipient set (figure 9.14).

The Transcript object then tells the Notification Manager to notify Jane's presence to any
other clients logged on the JAVA conference by sending event ©. At the same time, the
Transcript object acknowledges Jane's presence by sending message @ with a
“greeting” event typeto her conference client. The latter interprets the event type localy
to display awelcome message, ‘Hello Jane'’ on her JAVA conference window.

GtK uses the tel I Al () method (Section 8.3.3.1) to find the list of interested clients
(recipients) for the JAVA conference by matching the event type and object identifier in the
recipient set. Figure 9.14 shows the case when only Jane is active on the JAVA conference,
therefore GtK does not need to notify her presence to any other users.

163

Chapter 9 Demonstration through an Exemplar

Jane JAVA conference window

AN al:
“b'ect Id: 117

Host Id: 5 Jane ClientApplet = 1§006:0:117:5'gruﬂn5' Jane
3 icrosoft Internet Explorer pre screaming.net M= E3
Object Id: 115|
e — 4]

Message window

[MewClent stat: Created Socke!
CommonConnectionHandler start created inpul stieam
CommonC stat

- kit

Host1d- 0 Java Server

lobject 1d: 10005]

[NewClient action: now connected

Coieence Lt 0 \(Conference Transcript

IIZ=D=IOOOD:0=‘MW client":Jane

c =l
7% 1ellAN(LO0O5, "new client”,(Jaus)
(3]
] Dore [[T Localnranet \

Notification Manager

Recipient Set
objectid | c objid eventtype
10005 117 “new client” “new line’
“client left” “client died”
LS = |

Figure9.14 Send greeting message

However, if Sue decides to join the JAVA conference shortly after, the sequence of event
and message flows changes to those shown in figure 9.15.

Sue's client registers with the Transcript object by sending message @ and with the
Notification Manager though event ®. The Notification Manager updates the recipient set
with Sue's conference client’s details. The Transcript object then tells the Notification
Manager to notify Sue's presence to any other clients on the JAVA conference with event
©, whileit responds to Sue' s conference client object with message @.

GtK responds to the Transcript object request for broadcast by searching through the
recipient set to find the list of interested clients, which in this case is Jane. GtK sends event
O to Jane's conference client object with a “new client” event type and Sue's client
name. Jane s conference client object trandates the “new cl i ent” event typelocdly by
digplaying the message * Sue had just joined’ on her JAVA conference window.

164

Chapter 9

Demonstration through an Exemplar

Jane JAVA conference window

101 =
Object Id: 11
Lisans coatibusior
?v:'-cnh-q-:w-.lv"‘ (
L . it 10005:0:117:5 new client":Sue

Ussirane: [fane Lot |
Eﬁ%& S BeaeacG7E9 Pl oo
freentzne s by
e (— (5)
Eo— B - w—
\[/R:«L ;"‘1‘
W o o | L
Ny Supk Wrdre
& 4 .
(&1 Oece. = Local et 4 Ob]a:t Id 1000
Host Id: 7 Sue Client Applet -
T G Conference Transcript
Fle Edt View Go Commuicater Help 0 b
2 A 8 2 B 2obiectid: 116] [up7hooos 0 mr diesn
7| i Bookmarks i Locatior: [Http:/#10.0.1 7 /piivate/Client/NewClient hirl ~] @ whats Related
s Al = +ellA (10005, fnew client”, Sue)
Uzar nama Crerrari -
e =) © vlobject 1d: 99]
Mesage varden Rr H
Notification Manager \
H el ..
fwmﬂ?m:l:tMmlw Reci Pl ent Set
Ft cormacted b lacshart BTR " " "
Hesel s actuoe: raes cormaciend i objectid | c objid | eventtype
}r-mﬁ-l gy 2 a g 10005 117 new cllen't’"““ new I|r_1e”" il
Imwmmlmfm:law client left” “client died
10005 118 “new client” “new line’
“client left” “client died”
Pl Lontmanca: Ereads NS
Conkiores L L (2
My - =
ol 118:7:99:0:"2dd interes)" 10006 new client":‘nsw line”:"cliant lkeft""eheny died"
i - ey
&= °

Sue JAVA conference window

10005:0:118:7“greeting”:5ux

[]
Object Id: 118
N (7
L) =

Figure9.15 Another user joinsconference

165

Chapter 9 Demonstration through an Exemplar

9.3.5 Add contribution

When Jane adds some contribution (Section 9.2.5) to the JAVA conference, her conference
client object sends message @ (figure 9.16) to the Transcript object on the Conference
Manager witha“ new | i ne” event type and the text as the data packet.

/1 call frompublic instance nethod action() in Cient
Transcri pt Panel cl ass

/1l send “new client” event and input line to Transcript object

myShar edDat a. ch. sendTo(nyld, toQbj, toHostld, "new line",|ine);

The Transcript object then tells the Notification Manager to broadcast Jane's input through
event @. If Janeis the only user who is active on the JAVA conference, GtK responds by
sending event © back to her conference client object with the input text and a“ new 1i ne”

event type. As a result, Jane's conference client object digplays the text on her JAVA
conference window.

Jane JAVA conference window Host Id: 0 Java Server
Hostld: 5 Object I1d: 117 Bbject Id: 10005'
=10 x|
Conference Transcript
Lz coninbauban ;
Huba Jam
10005:0:117:5 en rh'::] anyons there? 1NAIK10005, 'naw Iime®, Tane: , hallo qayome)
9\ IObject Id: 99 I
(3]
4 Notification Manager \
Fubke that Recipient Set
Tl trpons Beed] objectid c objid eventtype
10005 117 “new client” “new ling”
“client left” “client
died”
I
117:5:10005:0:"naw line":helle onyone thare? \ /

‘Ware Apphl ‘Windom n

Figure9.16 User addscontribution

But if Sueis dso active on the JAVA conference, GtK will broadcast Jane€' s input to Sue's
JAVA conference window sSmultaneoudy. Figure 9.17 shows the flow of messages and
events between the client objects, the Conference Manager and the Notification Manager
when both Sue and Jane are converang on the JAVA conference.

166

Chapter 9 Demonstration through an Exemplar

Jane JAVA conference window Sue JAVA conference window

Host 1d: 5] [Object id: 118]

Hos1d. 0 Java Server

Conference Transcript

EE—— -0l . [=]
Lerz conlibubiore: Users cortibufions
Helzlzne
dane hedo 2npone there :::uha;;
a,;ar:'ajmu:-m:l e Gue how i Yol dema programiming o gt
e o] tal d
ane Sus how B o Java progiamening going? i wal ral b e it ah e
sue: el ok boe masy bo ket st P
» <
Ny,
Vad
= =
H H
' [)
! Public chat Public chac g
[- = . e
[did pour s ok d Could you cons round o havs 8 ook & & congins [
‘ “
' [
= =
g °
> >
B
e
| Leae | B e Lz | .
- .U
£
'U.Ia;rr:: & Uiy i Spplked e indos ; a
9
1]
n
[8
[}
-
-l
Q
D
[>d
[
o
=1

10006:0:117:5:"newline*:"did

© (i) telAN(I000B, "new line'| Jane:, did your server..)
© (i TellAN{10005, *new line"| Sve:, Could you come..)

[Object 1d: 99]

117:5:10006:0:"aew line*:"did your server ..",
118:7:10005:0:"new Mna"=*Could you come _.

10005:0:117:6:"new line®:"Cavld you come ...
10005:0:118:7:*new line";"Cavld you come ...

/ Notification Manager)
Recipient Set
o objectid | ¢ objid eventtype
10005 117 “new client” “new line”
“client left” “client died” o
e 10005 118 “new client” “new line”
“client left” “client died” °

Figure9.17 Contributionsfrom multiple users

Because messages are exchanged between more than one client object, the messages may
overlap, thus giving rise to the posshbility for race condition. Chapter 7 consdered an
example where race conditions can occur as a result of the incorrect ordering of messages
(Section 7.6.3). However, in the conferencing exemplar, the data is managed centraly and
this at least ensures that the Notification Manager broadcadts the users input in the same
order asit received them.

167

Chapter 9 Demonstration through an Exemplar

9.3.6 Leave conference

When Jane leaves the JAVA conference (Section 9.2.7), her conference client object sends
message O (figure 9.18) witha“client 1eft” event typeto the Transcript object on the
Conference Manager. In addition, the conference client object sends event @ to the
Notification Manager with & renove interest” event type plus a lig of the client’s
registered event types enclosed in a data packet to inform the Notification Manager that the
client no longer has an interest in that conference.

/1 call frompublic instance nethod leave() in Cient
Transcri pt Panel cl ass

/1 send “client left” event to Transcript object

my Shar edDat a. ch. sendTo(myld, toCbj, toHostld, "client
left",”l eave”);

/1 tell Notification Manager to renove interest

my Shar edDat a. ch. sendTo(myl d, NOT_MGR, notHostld, "renove
interest”,d.format());

GtK subsequently removes Jan€'s interest in the JAVA conference from its recipient set
throughther enovel nt er est () method (Section 8.3.2.2).

Furthermore, on recelving the “client left” event type the Transcript object on the
Conference Manager removes Jane's conference client object and tells the Natification
Manager to inform al dients on the JAVA conference that Jane has just |eft through event ©.

/1 call frompublic instance nethod personLeft() in Server
Transcri pt Obj ect cl ass

clientNanes.renove (hostid); // renmove hostid fromthe
Cli ent Nanmes table

/1 tell NotificationManager to informall interested clients of
the client’s departure

NotificationManager.tell All (nmyld, "client left", client);

GtK usesthetel I Al () method (Section 8.3.3.1) fird, to find the list of clients that need
to be informed and second, to broadcast event @ witha“client 1eft” event typetothe
relevant conference client objects.

When Su€'s conference client object receivesthe “cl i ent 1eft” event type, it interprets
it locally and displays the message ‘ Jane has just |eft’ on Sue's JAVA conference window.

168

Chapter 9

Jane JAVA conference window

Demonstration through an Exemplar

Sue JAVA conference window

9.3.7

Quit application

Figure9.18 Leaveconference

Object 1d: 117 Host Id: 5| [Object Id: 118 Host Id: 7
=TT IO x]
Uszts porbuoes Ussas conimibutiors:
ane: helo srpons thes™ - =
B e I T | ' = ara i?nrﬂwelhemlwwmm'«‘ =
Hans: Sum how o the progrsmmrg gang? ue: Ml not oo peey To starl vith
Suer el vl oo mamy ko ckanl wily e chl po seveer walh?
Hlama: did wor carser ok T ua: Could you conm rourd ko harvs & ook sk i aor
S Dol vou come cnd bo e 8 ook & & wor wre vl | do Laber
e mill do ke s e | vcnc] poid cotild Gl e SO L
Sum Jara | veonde i you could give ma some Lags ua: Tha program keeps iehuning a bed clank aes
G The progran keeps whanng 2 bad obenl sec S | i i oF thferert brosers bl o luck
S | b i of difencn! bocessans bl no bk Ure: ok, | shal cons over shagiil avap, bye..
mne ok | shall coms over shaght swey, bos, = Llarm baz uxi lah (
(8| | [| J ¥ |
Fuiic ohat Pubdio chat
S rl:'ﬁ:;-f e erl
wharring; applet Winces “wlareh Applec Wirdow
a2
3|6 Jva S ‘
5 v | = ava server
T |3 ||Hostid 0 i
=t | " -
$E |3 fobject 1d: 10005 | :
I PN ;
.E . % O . |Conference Transcript s
- = a
8|3 :
S8 s =
|8 i
+5|8 © i
3 S|e TellAIK10003, “clieht left" Tane) @
s |0 - =
£ |Object Id: 99 | e
N =]
23 —— ™ 8
£3 Notification Manager a
EE Recipient Set)
< @ ||| objectid | c objid | eventtype
g 16065 PEE new-ehert—Rew-HAe:
'E’ “ et eniteft eHent-died”
E 10005 118 “new client” “new line” (4]
“client left” “client died” /

When a users quits the conferencing application (Section 9.2.8), the client object sends a
message to the server Connection Handler with a“ qui t 7 event type, which tels the server
to stop listening on the user’s client socket. At the same time, the client object sends an
event to the Notification Manager with a “renove interest” event type. This triggers
GtK to remove any interest that the client object may ill have on any other objects in the
recipient set through ther enovel nt er est () method.

169

Chapter 9 Demonstration through an Exemplar

/1 call frompublic instance nethod action() in Cient
Transcri pt Panel class

// tell Server Connection Handler that client has |left the

application, line = “quit”
myShar edDat a. ch. sendTo(confld, CONF_MGR, confHostld, "l|eave
conference",line);

/1 tell Notification Manager to renove user interest

myShar edDat a. ch. sendTo(confld, NOT_MGR, notHostld, "renove
interest”,d.format());

This section has described how the main functiondities of the example conferencing system
have been implemented at the gpplication leve through the GtK framework. The following
section will now discuss how users who are conversing on multiple conferences can receive
arate of feedthrough that matches their focus or rate of interests.

9.4 Pace controlled feedthrough

GtK uses pace impedance matching to manage the rate of feedthrough that users receive
when they interact with saverd conferences smultaneoudy. This section will examine how
pace impedance matching is actudly implemented in the example conferencing gpplication
by applying the method cals in Chapter 8 (Section 8.4). The interface behaviour was
shown in Section 9.2.6.

9.4.1 Setfrequency levels

The provison of feedthrough information is based on the user's focus on a paticular
conference a any indance in time. The example red-time Web conferencing application
uses two frequency levels

(& high-leve frequency

A high pace of feedthrough is used for the top-most conference window and the client
object requedts ingtant feedthrough (limited by network latency), corresponding to the
default pace parametersfor queueLengt h and t i me (Section 8.41) namely, queuelLengt h
= oandtine = -1.

(b) low-levd frequency

When a conference window is moved to the background this is detected by the client object
which sets a lower pace of feedthrough by using non-zero queuelLengt h and ti me pace
parameters.

In order to associate the right frequency with each conference window, the users focus
need to be tracked.

170

Chapter 9 Demonstration through an Exemplar

9.42 Track users focus

Java generates a GOT_Focus event if a particular window is in focus and a LOST_FOCUS
event if the window is in the background. The client object therefore monitors the Java
event generated by each conference window. As the usaers focus changes from one
conference to another, the frequency level changes accordingly.

If a conference window triggers a GOT_FOcUS event, the client object uses the
set Hi ghFrequency() method cdl to sat a high-levd frequency to the conference.
Instead, if a conference window triggers a LOST_FOCUS event, the client object first double
checks to see if that window is dill inactive after a short time delay, by setting up an darm
that wakes up after the ddlay has dapsed. This safeguards againgt a user accidentaly
clicking on awindow. If the conference window is il in the background, the client object
usesset LowFr equency() method call to set alow-leve frequency to the conference.

When a background window is brought to the front, the client object resets the conference
to ahigh-leved frequency with default pace parameters.

9.4.3 Register pace interest

In order to enable GtK to provide a controlled pace of feedthrough, client objects have to
register different frequencies of pace interest with the Notification Manager through a
“change frequency” event type. The frequency leve is tranamitted as part of the data
packet, d.

/1 call frompublic instance nethod doSet Frequency() in Client
Transcri pt Panel () cl ass

/1 change frequency with new val ues for queuel ength:tine

my Shar edDat a. ch. sendTo(myl d, NOT_MGR, not Hostld, "change
frequency",d.format ())

The “change frequency” event type triggers GtK to change the client’s object pace of
feedthrough to the reevant frequency leve through the changeFrequency() method
(Section 8.4.4.1). Thefrequency of each recipient (or interested client) for that client object
isdso dtered and GtK subsequently checksif it istime to flush the queue.

Contributions to the top-most conference window are flushed out immediately from the
recipients queue each time a new contribution is added and sent Straight away to the
respective client objects. On the other hand contributions to the background conference
window remain in the recipients queue until it is the time to flush the queue (Section 8.4.3).
However, when a background window is brought to the front, any contributions waiting in
the recipients queue become ‘overdue and they are ingtantly sent out to the relevant dient
objects, thus leading to the ‘ catch up’ behaviour.

171

Chapter 9 Demonstration through an Exemplar

Note that, different interface objects may require different pace of feedthrough. For
example, focus objects, such as the top-most window typicaly require a fagter rate of
feedback and feedthrough from background or iconised windows. Therefore, GtK alows
the setting of frequency parameters on a per object basis. Furthermore, the required pace
will vary dynamicdly, for indance, when a new object is made visble or a window is
popped to the front. This is precisdy why GtK separates registering interedts, typicaly
once per object, from setting frequency which may happen repestedly.

9.4.4 lllustrating pace impedance matching

Let us assume that there are three users Jane, Sue and Tom who have logged on to the
example conferencing application, as shown in figure 9.19 (a). The Recipient set for each
conference is managed by the Natification Manager and it includes the following fieds:

source id: thisis of the form bj ect1d: Host 1d (Section 8.22) and it a unique
identifier for the transcript object. Each conference has arelated transcript object on the
Conference Manager. For example, the source id for the cscw conference is
10005: 0.

target id: thisisadso of the form bj ect!d: Host 1 d but it idetifies eech dient
object. The obj ect I d on its own is not unique (for ingtance, both Jane and Sue have
the same bject1d for ther cscw conference objects) but when it is used in
combination with the Host 1 d, then it becomes a unique identifier.

event t ype: this represents the type of event associated with a message or event.

frequency: thisisthefrequency leve that a client object registers with the Notification
Manager.

queue: thisshows the different contributions placed in the recipient’ s queue.

In figure 19 (&) both Jane and Tom have joined the cscwconference while Sue has joined
two conferences, namely the JAVA conference where her main focus lies (window in the
foreground) and the cscw conference where she only has a passive or periphera interest
(window in the background).

Jane and Tom clients' register a high pace interest in the changes to the cscweonference by
sending a “change frequency” event type to the Notification Manager with default
frequency parameters.

Sue s main focus lies on the JAVA conference, so her client registers a high pace interest in
the changes to the JAVA conference. Su€'s client also registers a low pace interest in the
changes to the cscw conference by sending a “ change frequency” event type to the
Notification Manager with a pre-defined frequency of (3, 30000).

172

Chapter 9

Object I1d: 116

EEEE
Jane CSCW conference window

Useiz colnbiibiong

Host Id: 5
JRT=TE

[Heto T
o ke D Jars
s bas sl oned

Fublc chat

Sand

e rirm; Bppbsk Yindo

Laare

Demonstration through an Exemplar

Object Id: 115 Host Id: 7

Object Id: 116 Host Id: 7
T M=

Sue cscw conference window

Uszarz conbibulors

Hallo Sue

Sue JAVA conference window

Uzaiz conbibubons

H

=l Gus

Recipient Set

chal
Giend
Fubiic chat prre
Send lumel
! Mwmrag Appked irdom

Host Id: 3

Object Id: 114

Tom CSCW conference window
Ik ez a0 i DO

Heda Tam

Fuble ched

ane e st joired
Tom ‘monirg Jae
Cige has jusl joned

Leme |

Iwm-g. Fadet indor:

Transcript object source id target id | eventtype | frequency | queue
cscw conference | 10005:0 116:5 0,-1)

114:3 ©,-1)

116:7 (3, 30000)
Transcript object source id targetid | eventtype | frequency | queue
JAVA conference | 10006:0 115:7 (0, -1)

Figure9.19 (a) Examplescenario

The Notification Manager will thus update Sue's cscw conference dient when ether a

maximum of 3 messages are reached or the length of time the messages have been in the
gueueisover 30000 mi | |i seconds.

173

Chapter 9

_oix

Jane CSCW conference window
Users poondnbetaers

Helok=n=
Tove ‘wecd g d ane

Fbiin ot

e i Fop e Wirdoes

= has ol joired a
G Fieo o TG e £ 11 2 i vt P

Demonstration through an Exemplar

[Object 1d: 116

Host Id: 7

R ol
Sue CSCW conference window
szt coniihuliors

Halo Sue
_O_bJeCt Id: 115| Host Id: Z| [

Sue JAVA conference window

Uyery conlsbubong

Hok Qb

chiad
) Fubli chat E
Oy Tindon
st =

W RN ARE Wireki e

Object Id: 114

Tom cScw conference window

L caonin bufiors:

Hedo Tom

A b s jored
Tom ‘momrg Jans
Sase has jus! jnined

Fubl ol

P you bnshed CE112 pracical :,ldﬂ

Gt Loz
|'1'\-'ur-:|1_:|: Aapint idar
Transcript object sourceid targetid | eventtype | frequency | queue
cscw conference | 10005:0| |3 116:5 “newling” | (0, -1) “have you finished CS112 practical yet?
'» 114:3 “newline” | (O, -1) “have you finished CS112 practical yet?
* 116:7 “newling’ | (3,30000) | “haveyou finished CS112 practical yet?
Transcript object sourceid | targetid | eventtype | frequency | queue
Java conference | 10006:0 % 115:7 | “newline’ | (0,-1) “Hello anyone there?

Figure9.20 (b) Adding contributions

Figure 9.19 (b) shows that Tom has added contribution @a to the cscwconference while
Sue has added contribution @b to the JAVA conference. When the Notification Manager
receives input @a and @b, they are first added to their relevant recipient’s queue. GtK

174

Chapter 9 Demonstration through an Exemplar

then verifies whether the time to flush each recipient’s queue has been reached by checking
if either one of the pace parameters, queuelLengt h Or ti me iSMet.

This condition is satisfied, in the case of the cscwconference by Tom and Jane, and in the
case of the JAVA conference by Sue. Consequently, GtK flushes Tom and Jane cscw
conference clients queue straight away and sends out input @a to them. The same happens
with Sue's JAVA conference client queue and she receives input @b immediately. However
input @a remains in Sue's cscweonference client queue and GtK sets an darm to wake up
at the next flush time (Section 8.4.3.1).

175

Chapter 9

Object 1d: 116 Host 1d: 5
| CSEW =0l x|

Jane Ccscw conference window

Demonstration through an Exemplar

[Obiect I1d: 116

= CHDW

=10 x]

Sue, CSCw, conference window

Haby Sue
Usfarinbetion Object Id: 115 [Host Id: 7|
Hedo Jare AN
Tam: ‘maming Jans =iLral
Sk P pined .
T e CS112 practicl et 2 a Suge JAVA conference window
Jarez | e otartad el s g
;‘Euhfhlfu I.I_,II'.".\I-\' eb
T i s (
i
Fublic chat
laﬁha-.-a elatlad - what's e
Pubba chat Gend | Leawn
mydran
Seﬂ:l| Laave |
Warning: Applet Windows E"&l ﬂ
e Appl el Wonciow
bject 1d: 11 Host Id: 3
| CECW
ToEn CsCW conference window
seis corlibubonm
Helln Tan
bl hiaes jusl joned
Ton: 'marendlans
Sue bz ol pred
Tom. heve you firided C511 2 acicd yet? ga
ane | bewe sharted - whet's
Pubic chae
Sand L
[afaming: Applet wirdos
Transcript object source id | target id eventtype | frequency | queue
cscw conference | 10005:.0 —} 116:5 “newline” | (0, -1) “| have started - what’s up? —
—P114:3 “newline’ | (0, -1) “I have started - what's up? -
—T116:7 “newling” | (3, 30000) | “haveyou finished CS112 practical yet?’
1 have started - what’sup?’
Transcript object sourceid | targetid | eventtype frequency | queue
savaconference | 10006:0 Pp 115:7 “newclient’ | (0,-1) ||
—» 1186 newclient” | (0,-1) e oot o ?

Sam joins JAVA

Figure9.21 (c) Managing contributions

Figure 9.19 (c) shows Jane replying to Tom on the cscwconference with contribution @a.
As before, GtK broadcasts input ®a to Tom and Jane cscw conference dlients straight
away. But input ®ais added to Sue's cscweonference client queue asthe time to flush the

gueue has not been reached.

176

Chapter 9 Demonstration through an Exemplar

Another user Sam who has now joined the JAVA conference (represented by the blue
arrow). Note that, Sam’s conference window has been omitted from the figure in order to
keep the layout smple. The JAVA conference Transcript object on the Conference
Manager sends a message with a “newcl i ent” event type to Sam’'s JAVA conference
client, to which the latter responds by displaying a gregting message on Sam's JAVA
conference window (Section 9.3.4).

At the same time, GtK finds dl the recipients for the JAVA conference to inform them of
Sam’'s presence. Sue therefore receives event ®b to her conference dclient with a
“newclient” event type. Sue's JAVA conference client responds by displaying the
message ‘ Sam had just joined’ on her JAVA conference window (Section 9.3.4).

177

Chapter 9

Demonstration through an Exemplar

Object Id: 116 Host Id: 7
Object Id: 116 Host Id: 5 -g_;_lnlzj
CSCwW
ioix U s nrerence window
Jane CsCwW conference window e i T R
Users cortmbatons - bbbk petzbeni el et
[fistn Jane |Ob]eCt d: 115| |HOSt Id: 7| Tot Dl i vamch e srnk el 4chifan?
1 L g AT =
e 02+ 0210
[]} 2 prachc 1
(S| e W el b it ga Sue JAVA conference window
ari Did s ual dir Uzzrz: cordidutions:
Bt Lok e thas?
L L] Ll
Sam har el pred 9b
e Al aormen e here | e d dorme help e penth <
vhad
Fublc chal
Fubiic: chat m] Laiva
e) Led e o s hess™? | eed sones b p wpenth] e
Hand Leave
\earning: fpplet Yindor
5.1|:| Laws
‘;Immﬁ.ﬁ:ﬂw’rdun
Object Id: 114 Host Id: 3
| EE0W H=1E3
Tom cscw conference window
Uy con nbaseore:
Helz Tom
Hane bes et jored
o ‘moimirg Jans
Giaz e st jomed
Tome have wou inehed C5112 machcal pet?
ane | bave Zaied - what's vp?
Toerc Db e Pecach & cosrinediseed ooluliony Qa
Fubiic chel
(3] Dvicl o iz @ cenbiaizn ooy
s-en:lj Laarual
[wdarmieg Applel wWindows
Transcript object source id | target id eventtype | frequency | queue
cscw conference | 10005:0 116:5 “newline” | (0,-1) “Did you reach a centralised solution?” s
114:3 “newline’ ©,-1 “Did you reach a centralised solution?” ||
116:7 “newling” | (3, 30000) | “haveyou finished CS112 practical yet?
“| have started - what's up?”
“Did you reach a centralised solution?”
Transcript object sourceid | target id | eventtype frequency | queue
JAvA conference 10006:0 —}115:7 “newling”’ 0, -1) “At last someoneis here? | need some help urgently” S
—*118:6 “newling” ©,-1) “At last someone s here? | need some helpougiemlys’ W?

Figure9.22 (d) Queueflush timereached

Figure 9.19 (d) shows Tom's response to Jane on the cscweonference with contribution
©a while Sue sends cortribution ©b to the JAVA conference. Again, GtK ingantly

178

Chapter 9 Demonstration through an Exemplar

forwards input ®a to Tom and Jane cscweonference clients and input ©®b to Sam and Sue
JAVA conference dlients.

GtK adds input ®a to Sue cscweonference client, but now the ‘check for the flush time

returns true as the queuelengt h pace parameter of the frequency equas its maximum

length of 3 messages. Consequently, GtK flushes the items from Sue's cscw conference
queue and Sue recaives dl three contributions @a,®a and ®a in asngle event on her cscw
conference window. Note that, if the t i me pace parameter had exceeded, it would trigger
asmilar reaction

179

Chapter 9

Object Id: 116

P ORI

Demonstration through an Exemplar

=10 =]

Object Id: 116 Host Id: 7]

T - (O]
Sue cscw conference window

Lsers conibrdnns

Jane cscw conference window

Hexla SUE
Toem: b pou linished C511 2 paciicd yat?

Hse conibasere Object Id: 115| [Host Id: 7| ot aci gt s i TR
Helo Jars
Lo kgl
T:: h:\:s;ﬂl}:mcs.na;mdwwv Sue JAVA conference window
Hare: | have stamed - what's un? Loy i w
Tom: Did wou reach & cerbizised sobdion? Oa Helooom
) = :"I"'I.":.""'I':il’I r 1
e < |
U t orseone i hare 7 | namd Tana [r= g
S WA pRograneTl g eb‘-E
Fublic chat
(4) T Ihaughl et of 1 gt o Eae replcated] A 1 H
Pubdic: chat Eﬂ'-‘.ll Laiva
o Huevtin vous progremanieg going| Ulindon
Sah:ll Laave |
Warning: Spplst Window M &1
Do St Wirda s
[object 1d: 114 Host Id: 3
[cosew _ MmIE)
Tom, csew conference window
Hella Tom
ans ha: pd pnad
Tem: ‘moning.) sre
CLE st izt il
T hawe poi frashed C5172 prachical pet?
e | b amed - whal's L7
Tem: D poureach & cerbiakesd soluton? 9a
e | Baowght pai or £ oughl o e replealed
«
Pk chat
Gend Laene I
| Irmring: epplet Wincowe
Transcript object source i | target id eventtype | frequency | queue
cscw conference | 10005:0Dy 116:5 “newling’ | (0, -1) “I thought part of it ought to be replicated” ||
-* 114:3 “newline” | (0, -1) “| thought part of it ought to be replicated” _—
'H’ 1167 “newling” | (3, 30000) | “Ithought part of it ought to be replicated”
Transcript object sourceid | | targetid | eventtype freguency | queue
Java conference 10006:0 * 115:7 “newling’ 0,-1) “How isyour programming going?”
* 118:6 “newline’ 0, -1) “How is your programming going?” ta Sam’ < %&

Figure9.23 (e) Adding contributions

Figure 9.19 (e) shows Jan€'s contribution @a to the cscw conference and Su€'s
contribution @b to the JAVA conference. GtK broadcasts input @ato Tom and Jane cscw
conference clients immediately but adds input ®@a to Sue's empty cscwconference queue.

GtK aso broadcasts input @b to Sue and Sam JAVA conference clients straight away .

180

Chapter 9 Demonstration through an Exemplar

In the find scenario, Tom replies to Jane on the cscw conference with contribution ©a.
Once again, GtK sends out input ®a to both Tom and Jane cscwconference clients but
adds it to Sue’' s cscweonference queue.

However, if Sue suddenly decides to catch up on the thread of conversation in the cscw
conference, she smply clicks on the conference window to bring it into her focus, as shown
in figure 9.19 (f). This action triggers Sue's cscweonference client object to register ahigh
pace interest with the Notification Manager by sending a“ change frequency” event type
with default pace parameters. As aresult, the frequency leve for Sue's cscweonferenceis
resst and any outstanding contributions waiting in the queue now become overdue.
Consequently, GtK flushes out contributions @a and ©a from Sue's cscw conference
queue and sends them out to her cscwconference window immediately, thus leading to a
‘catch up’ behaviour.

Sue's JAVA conference window has now moved to the background, hence her JAVA
conference client object dters her interest in the JAVA conference with the Notification
Manager by sending a “change frequency” event type with low pace frequency
parameters (3, 3000) . Asaresult, GtK will only broadcast Sam'’s contribution ®a on the
JAVA conference to his own conference client object. GtK adds contribution ®ato Sue's
JAVA conference queue and it will remain there until the flush time is reached or Sue's focus
changes back to the JAVA conference.

181

Chapter 9

Demonstration through an Exemplar

Object I1d: 116 Host Id: 7
Object Id: 116 Host Id: 5 [csow ________ EE6
= I: Sue cscw conference window
-loi = T et
1 Halo Som
Jar‘lﬁn&%@ﬂm@”fe rence window T e g 5112 i
T . . L arid .| +
T bject Id: 115| [Host Id: 7] i b o AN
e s o T
e e T Sue JAVA conference windpw Qat+Oa
T DV ot reach o e e lal 2 ed =obulion™ Lhexns poniniba bons
sare | Ihoughl patt of & oughl to be repleated ga 3
Tk o mesan more ar & Frabi id soluion Hre %ﬁiu&
« Halo ayone hem™
b el poeed
Ailagk somsara i hae? | rssd 1ome
2 Ham i poir pmgesneming goingl? Pubb: chet
Pitiic chad
|
Futikc chat e | Lese |
P Epbet Wit
[Eend L=
“iarring: dpoket Yirdoas
Gard Lome-l
Ity el "W ndce
Object Id: 1lzl| Host Id: 3
[cosow MR
T(Ul._l esew conference window
Hedl Term
ans baz pal pnad
Tom: ‘moming.) sre
G by st jried
Tome hawe pou fiees hed C5172 practical pet?
A | faras plamen - whal's g
Tome D pouresch & cerliakesd soion?
ane: | thought el of it ought 1o be e plicsed ga
Tom: riold Mee B Mhote o & ksl sodunor thien
Fuiokc: chi
Oa ‘v m e e of & babid salon |
Gend Leawe I
Iuesring: dinpiet irchow
Transcript object sourceid | | targetid eventtype | freguency | queue J
cscw conference | 10005:0 [3116:5 “newling’ | (0, -1) “Y ou mean more of a hybrid solution then”
2 114:3 “newling’ | (0,-1) “Y ou mean more of a hybrid solution then” e
?116:7 “newling” | (O, -1) “| thought part of it ought to be replicated’ }_
Y ou mean more of ahvbrid solution then”
Transcript object source id | target id | eventtype frequency | queue
Javaconference | 10006:0 Pp115:7 | “newline’ (3,30000) | “Iam having troublewithit too”
'gj 118:6 “newling” 0,-1 “1 am having trouble with it too” —B
Sam’sinput on JAVA —")|’9b (0,-1) g 5

to Sam’'s JAVA

Figure9.24 (f) Changein conference focus

182

Chapter 9 Demonstration through an Exemplar

The scenario discussed in this section has demongtrated pace impedance matching within
the example red-time Web conferencing application. Pace impedance matching isvery
useful for providing an effective leve of feedthrough to group members collaborating
through different artefacts. The pace of interaction (how often one interacts) is generdly
more important than the bandwidth (how much one communicates) when providing
feedthrough in collaborative sysems. Thisis even more obvious on the Web as faster
modem and network speeds have meant that large pages and graphics can download very
rapidly, but these download times are usudly dominated by the time it takes to establish a
connection with the remote server.

However, a fast pace of feedthrough is not only unnecessary, but dso undesirable. For
awareness purposes, rgpid change a the periphery of our vison becomes digtracting.
Indeed, if updates were propagated too quickly, applications would need to suppress some
updates or 'smooth' the output. Consequently, it makes sense that if an application object
or artefact is the focus of the user’s attention then the user requires high pace, high fiddity
notification about that object. But if the object is in the background within the user’s
peripheral awareness, the user will require a much lower pace and lower fiddity notification.

9.5 Summary

The discussion of the real-time Web conferencing gpplication in this chapter demongtrates
the practicdity of the GtK framework. The conferencing exemplar was designed in order to
investigate the issues surrounding impedance matching and it has been implemented to
execute specificaly within the GtK framework. The focus of the design is on those aspects
that facilitate the provision of a controlled pace of feedthrough and not on developing afully
functiond system with enhanced features that exploit server-side technologies. In some
ways, the implementation described here is representative of more complex issues than a
generd conferencing system.

The behaviour of the example application a run-time was first examined with a view to
andyse how users interact with the different functiondities offered by the interface. The
application offers functionalities that are common to many chat systems, but its nove feature
lies in providing collaborative users, who are interacting with multiple conferences
smultaneoudy, with a pace of feedthrough that matches their rate of interests. The way in
which the example gpplication uses the GtK framework to support its interface behaviour
was aso thoroughly explored.

Thiswas later augmented with a description of how the functiondities of the GtK notification
server were gpplied to provide users with a pace of feedthrough that matches their interest
levels. Users areinformed of the changes to the conferences depending on the pace interest
frequency that their client objects have registered with the notification server. As the users
focus change from one conference to another, the client objects ater the conference pace
interest frequency accordingly, thus alowing GtK to readjust the user’s pace of
feedthrough, eventually leading to a catch up behaviour.

183

Chapter 9 Demonstration through an Exemplar

In the example application, users client objects register a high pace interest with the
changes to the top-most conference window but only a low pace interest with the
background conference windows. Users therefore see the updates to the top-most
conference window, which is dso their focus object, dmost immediatdy (limited by
network latency). However, updates to the background conferences, which lie in the users
periphery, are placed in a queue and only sent out to them when ether one of the pace
impedance parameters is reached.

The example gpplication has demondrated that the GtK notification server can indeed act
as an impedance matcher both in terms of the tempord dimension, by regtricting the pace of
feedthrough and in terms of the bandwidth, by not sending dl the information across
smultaneoudy. The matching of the rate of feedthrough with the users pace of interaction
(in this casg, the users interest levelsin particular conferences) may not necessarily resultin
a remarkable inprovement in the user interface, but the gain in performance is sgnificant.
Information sent in chunks or batches reduce overheads consderably as the transmission of
message headers and process swapping is minimal. Besdes, it is usudly more efficient to
send data over anetwork in burdts.

The redl-time Web conferencing system is not the only application that can gpply impedance
matching. It was chosen merely as an example to show the potentia of pace impedance
matching in providing a controlled pace of feedthrough through the GtK framework. The
use of the top-level window to manage the rate of feedthrough is just an gpplication of the
example but it is not limited to it. The demongtration presented here is complemented with
an andysis of the GtK framework from an architectura point of view.

184

Chapter 10 Architectural Evaluation

The design space for notification servers in Chapter 6 showed that the notification server
should idedlly be an independent component that separates notification issues from the data.
Chapter 7 proposed that a separable notification server could indeed facilitate the provision
of an effective rate of feedthrough through impedance matching. This gpproach was gpplied
in the implementation of the GtK experimenta notification server that dso supports pace
impedance matching in Chapter 8.

The practicdity of the GtK notification server as a pace impedance matcher was further
explored within a distributed collaborative environment via the condruction of an example
real-time Web conferencing application. Chapter 9 described how the example application
had been built on the GtK framework and how pace impedance was achieved by matching
the frequency of natification with the usarsinterest levelsin the different conferences.

This chapter complements the previous assessment of the GtK framework by evauating it
from an architectural viewpoint. The benefits and limitations the GtK architectura
framework are andysed and a number of potentia issues for further @nsderation are
rased. The conferencing exemplar is used to support the discussion accordingly. Also, the
notification server taxonomy is employed to assess ways of change discovery and
propagation.

Section 10.1 assesses the flexibility of the GtK framework within the design space for
notification servers. Section 10.2 explores the posshility for migrating the components
within the GtK framework to a distributed platform. Section 10.3 investigates whether the
GtK framework can execute in a dynamic mobile environment. Dynamic mobile interaction
causes implicit pace changes and opens up the possibility for impedance matching further.
Section 10.4 examines the event management scheme of the GtK framework and consders
whether impedance matching has any effect on the ordering of events within the exiging
infrastructure. Findly, Section 10.5 briefly looks a the posshbility of using the GtK
natification server for handling exigting forms of data

10.1 Flexibility

An important criterion for any framework that facilitates digtributed interaction lies in the
ease of supporting flexible architectures. This section revidts the notification server
taxonomy (Section 6.5) to analyse the role that the GtK framework plays in the design
gpace of natification servers. The number of possible arrangements in reaching a notification
cycle (Section 6.5) was represented as a 4x2 matrix (figure 10.1).

185

Chapter 10 Architectural Evaluation

B2 B3
(NS iells PC) (PC easks NS)

Al (NS 3 Data) [== e
A2 (AC iells NS) ------------

A3 (NS 2 AC)
A4 (NS© ¢ Data)t - e

Figure10.1 Revisitingthe 4X2 matrix

A full notification cycle congds of:
A: the way in which the natification server (NS) is made aware of the changes from the
active dient (AC) and
B: how those changes are then broadcast to the passive client (PC).

This method of anadysng change discovery and change propagation will be gpplied to
examine the type of notification supported by the example conferencing application. The
possihility for any further arrangements in the taxonomy of notification server types will dso
be investigated.

10.1.1 Current notification arrangement

The three main components of the example conferencing gpplication are the dlients, the
Conference Manager and the Notification Manager (figure 10.2).

Conference
Manager
Notification
Manager

Figure10.2 Main components of conferencing exemplar

The Noatification Manager handles the functions of the GtK natification server while the
Conference Manager mainly acts as the data repository. Both the Conference Manager
and the Natification Manager are located on the server. Although dl the components are
independent of each other, the clients are aware of the Conference Manager and the
Notification Manager.

The propagation of updates usualy relies on issues such as the location of the data, the
location of the control and who takes the initiative to send the updates. In the example
conferencing application, the active client (client who initiates the change) takes the initiative
to send update events to the Conference Manager (figure 10.3). The Conference Manager

186

Chapter 10 Architectural Evaluation

then tells the Notification Manager to broadcast the changes to all the passve dients (clients
who view the changes). This action triggers the GtK notification server to invoke its
tell ALl () method (Section 8.4.3.1). The Conference Manager thus assumes an active
role in change propagation; however, it is separate from the Notification Manager.

Server

Conference
Manager

Notification

Manager --->» Control

Figure10.3 Flow of eventsduring change propagation

The flow of events between the different components of the example conferencing
goplication therefore satisfies the A4-B2 arrangement (figure 10.4).

B2 B3
(NS 9teIIs PC) (PC -)asks NS)

Al (NS epous Data)

A2 (AC D eis NS)

A3 (NS D . AC)

A4 (NS ° Data)

Figure10.4 GtK within the conferencing exemplar

The GtK notification server knows that data objects exist and that other objects are
interested in them, but it has no other gpplication knowledge. Similarly, the data objects
have to inform GtK to broadcast updates by using the ‘tell al’ function, but they need not
be aware of other remote or local interested objects. GtK is thus only loosely coupled to
the data repository.

As the GtK framework aready achieves a separation of concern between the natification
saver and the data repostory, one could ask whether there is a posshility that the
framework may actudly function in any other arrangement within the notification server
taxonomy.

187

Chapter 10 Architectural Evaluation

10.1.2 GtK as a pure notification server

The taxonomy of natification server types emphasised that a ‘puré notification server
arangement A2-B2 was desrable for promoting feedthrough on the Web, where the
protocols that access data are fixed, thus forcing notification to be added at a separate level.
The example conferencing application does not exploit the GtK framework in such a way
that dlows the GtK notification server to function as a'pure notification server. However,
thisis not a fundamenta restriction on the GtK framework. Because the data service is not
tied to the natification service, GtK can in fact function in different ways, induding that of a
'pure notification server.

If GtK were to satisfy a 'pur€ notification server arrangement within the conferencing
exemplar, the flow of events between the different architectura components would need to
follow the mode shown in figure 10.5.

B2 B3
(NS 9tells PC) (PC -)asks NS)

Al (NS epous Data)

A2 (AC D eis NS)

A3 (NS .4 AC)

A4 (NS ° Data)

Figure10.5 GtK asapurenatification server

The active clients still send update events to the Conference Manager, as was the case in
the A4-B2 arrangement (figure 10.4). However, the Conference Manager will no longer
trigger updates to be broadcast. The active client itsdf will do so by sending ‘tdll al’ events
directly to the Notification Manager. GtK can then inform the passve dients who are
interested in the updates that some changes have taken place. Thiswill enable the interested
passve dients to find the changes in the data sraight from the Conference Manager. The
Conference Manager therefore has a very passive role in the A2-B2 arrangement - it
merely acts as a data repogitory.

The exigting GtK architecture does not need to undergo any mgor dterations if the
conferencing exemplar is to operate in the A2-B2 location. The Conference Manager
should merdly function as a data repoditory that has no knowledge of the Notification
Manager. In addition, when an active client makes any changes to the data, it has to take
the initiative to inform the Notification Manager directly of this occurrence.

188

Chapter 10 Architectural Evaluation

10.1.3 Further architectural possibilities

This section will now explore any further arrangements that the GtK framework may
support in the notification server taxonomy and assess their efficiency.

Al-B2 arangement

Figure 10.6 shows the flow of events between the different components of the conferencing
exemplar under the A1-B2 arrangement.

B2 B3
(NS 9tells PC) (PC -)asks NS)

Data)

A2 (AC = eis NS)

A3 (NS 935'(5 AC)

A4 (NS ° Data)

Figure10.6 Additional location for GtK

The active clients still send update events to the Conference Manager. But the Notification
Manager has to watch for changes in the data, for instance by polling the Conference
Manager. GtK does not currently support polling, thus it will not function in the A1-B2
arrangement within the exigting framework, unlessit is modified.

Although the Conference Manager assumes a less active role, the Notification Manager has
to be aware of it. In order to send the updates directly to the dients after polling the data
repogitory, the Notification Manager needs to be aware of each client’s location. For
ingtance, clients could inform the Natification Manager of thelr URL when they regiter at
launch time.

The main problem with the A1-B2 arrangement lies with deciding on the frequency with
which the naotification server should pall the data repository. Frequent polling increases both
network and computational load. However, this opens up the prospect of using impedance
matching for determining the frequency of polling. Also, the updates can remain in a queue
for a catan length of time thus offsetting any ddays that the notification server may
introduce when palling for the changes.

189

Chapter 10 Architectural Evaluation

While it is posshble to modify the GtK framework to dlow GtK to function in the A1-B2
arrangement in the example conferencing application, there will be no gain in performance
because the exemplar largely supports synchronous interaction. The A1-B2 arrangement is
more efficient during asynchronous communication on the Web.

A3-B2 arangement

In this arrangement, the data repository has to be completely separate from the notification
server and the natification server hasto ask for changes directly from the clients.

This implies that the notification server will have to send control messages dl the clients to
query for changes, even if only a few of them may have actudly made those changes.

Furthermore, the notification server may not necessarily discover the changes from the
cients in the same order as they initidly hagppened, thus generating the possibility of race
conditions during change propagation. Consequently, the A3-B2 arrangement is not viable
under norma circumstances, as it requires some complex computational mechanism to
synchronise the order of events.

B3 options

The arrangements under the B3 options involve the passve dients asking for changes
directly from the notification server. This is undesirable both in terms of network and
computation load because each client will need to continualy poll the naotification server.

However, if the network suffers from frequent disconnections, then this method of change
discovery isuseful. Also, it is recommended on the Web that gpplets should not maintain a
permanent socket connection with the server as the latter may suddenly run out of file
descriptors. In the example conferencing application, the client gpplets do hold on to their
socket connection, after registering with the server, for the whole duration of the exchange.
If palling is to be supported within the GtK infragtructure, the notification server has to
associate each client with an identifier. So, at each polling interval or after a disconnection,
the notification server can perform a handshake operation to establish the nature of the
identifier.

The discusson in this section has edtablished the flexibility of the GtK framework by
showing that GtK can occupy different arrangements within the notification server
taxonomy. Although, GtK was used in the A4-B2 arrangement in the example red-time
conferencing application, GtK is in fact a ‘pure notification server. The exemplar can
execute in the A2-B2 arrangement after some minor changes to the GtK framework. GtK
can dso reside in other viable locations in the taxonomy but the exigting framework will
need to be modified.

190

Chapter 10 Architectural Evaluation

10.2 Distribution

Another important architecturd criterion lies in the ease of moving components to different
physicd locations. This section will examine whether the GtK framework can operate in a
digtributed layout and assess any related performance issues that may arise.

10.2.1 EXxisting physical location
Although the natification server is logicadly diginct from the data source in the example
conferencing gpplication, both components currently reside in the same physicd address

gpace. The Conference Manager represents the data source in figure 10.7 and the
Notification Manager implements the functions of the notification server.

/ Server \

Conference
Manager

Ktification

Manager

Key

—> Data / Event link
--->» Control link

Figure10.7 Physical structure of conferencing exemplar

The data link alows messages to be transferred between components. Note the arrow
direction arts from the agent who initiated the transfer. The event link is more like an event
control that dso caries some data, such as the tell Al () method cdl from the
Conference Manager to the Notification Manager (Section 8.3.3.1). The contral link is a
form of meta control (Section 5.5.2) that exists between the clients and the Notification
Manager. The dients use the contral link to inform the natification server of the different
types of updates they are interested in (data) and the rate a which they want to be notified
of those updates (event).

The separation of concern between the notification server and the data source is an inherent
property of the GtK framework (Section 10.1.1). This facilitates the GtK natification
sarver to run in a different address space as the data objects. Consequently, the functions
of the natification server (Section 8.3.1) can be invoked both locally via method cals and
remotely through asynchronous messages.

Let us consgder the behaviour of the components of the GtK framework in a distributed

environment, with possibly multiple data sources. Although the issue of digtribution and the
use of multiple data sources are independent, they do tend to be linked together.

191

Chapter 10 Architectural Evaluation

10.2.2 Possibility for supporting multiple data sources

Figure 10.8 shows the physicd structure of the GtK framework with severd heterogeneous

data sources located on different servers.
ﬁ

ﬂ
Key

Server

> .

Notification
Server

—>y Data / Event link
---» Control link

Figure10.8 GtK framework with heter ogeneous data servers

Options A1-A4 from the noatification server taxonomy (Section 10.1) will now be used to
asess the feasibility of change discovery and propagation between the components of the
GtK framework within a digtributed setting.

In the conferencing exemplar, the data repository triggers the GtK notification server to
broadcast updates to the clients through the “tell dl’ function. But when the architectura
components are physicaly distributed, the load transfer between the data store and the
remote notification server becomes sgnificant. Therefore change discovery through option
A4 can only be supported if the data repository knows about the notification server, in
other words, the data repository must behave like an active database.

Smilaly, if the notification server were to discover the updaes by polling the data
repository directly (option Al), this would involve a large number of network exchanges
and high computationd load between the data store and the remote notification server.

Consequently, the rate of change propagation may be affected and the rate of feedthrough
may dow down. Change discovery through option A1 will depend heavily on where the
complexity lies.

However, in both options A4 and Al, the active clients do not have to be aware of the
notification server when they make any changes So, even if the clients are not very
cooperative, change propagation can Hill take place. Also, this prevents dlients from finding
out changes directly from the data repository, which would otherwise amplify the volume of
data transferred over the network and subsequently increase both computational and
network |oad.

192

Chapter 10 Architectural Evaluation

Unlike the link between the natification server and the data Store, change discovery between
the client and the notification server does not involve much tranfer of data. The notification
server can ether ask the clients directly if they have made any changes in the shared data
(option A3) or the active dients can independently inform the notification server after they
have made the changes (option A2).

The problem with option A3 is that ot dl the active clients will necessarily respond at the
same rate when the notification server queries them, thus affecting the timeliness in which
passve clients will receive the updates. The task of synchronisng the order of events
discovery is more daunting in a distributed environment. However, option A3 optimiseson
the number of control messages exchanged and reduces the message overheads. But if the
notification server ends up acting as a database, the message load will definitely increase.

Option A2 is the most efficient solution for change propagation on a distributed setting with
a separable natification server. It will show a smilar behaviour as the locking mechanism
used in the UNIX file system where gpplications explicitly request locks on remotely stored
files from the lock daemon. The lock daemon has no control over the filesit is referred to
and is thus logicdly diginct from the file sore. The GtK framework can support this form
of change discovery, but dl the dlients need to cooperate with each other and they will have
to be aware of the notification server.

This section has highlighted the various issues that arise with change discovery and
propagation within a distributed GtK framework. The discusson has dso shown that the
use of separable notification server like GtK is mog effective within a didributed
environmen.

10.3 Mobility

The GtK infragtructure is primarily a atic framework. 1t may enable some form of mobile
communicetion, for ingance a PDA could interact with a naotification server that dSts
remotely from the data. However, the GtK framework itself does not generate components
that are dynamicadly mobile. Dynamic mobility poses two man problems: firdly, the
components usudly have a roaming IP address and secondly, the network is very often
subject to disconnections, hence the clients connections are not persigtent. It is therefore
more problematic for the notification server to handle the timing and delivery of eventsto the
clients; consequently, the system’s efficiency may be affected.

This section will firgt examine how dynamic mobility can influence change discovery through
the GtK framework and then consider some important pace issues that are inherent within a
mobile environment.

10.3.1 Introducing mobility in the GtK framework

The GtK framework conssts of the following logica components. the dient interface, the
data repository and the notification server (figure 10.9).

193

Chapter 10 Architectural Evaluation
Client
Interface
Notification
Server

Figure10.9 Logical componentsof GtK framework

But in order to support a dynamic mobile environment, a Point of Presence is required
within the framework.

10.3.1.1 Point of Presence

A previous work1> that investigated the architectures for mobile user interfaces proposed
the need for a Point of Presence (PoP) in a mobile network, which acts as an important
additiond gte for computation (Dix et al., 2000). The PoP was defined as the point where
adlient machine has its connection to the physical network (figure 10.10).

Figure10.10 Point of Presence

For example, with ahand-held PDA, the PoP may be theloca cell’ s base station. The PoP
is not necessarily the firgt point of contact. It dso satisfies some functiondity criteria, such
as the closest point with grester computationa power or better network connectivity.
Consequently, the PoP is able to engage in a faster pace of interaction than a server-based
interaction.

10.3.1.2 Interaction through the PoP

The logica components the GtK framework (figure 10.9) can be mapped onto the PoP
layout (figure 10.10) to produce the logical components of the GtK framework within a
mobile environment (figure 10.11).

15 | nterfaces and I nfrastructure for Mobile Multimedia Applications research project - as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

194

Chapter 10 Architectural Evaluation

‘ Notification ’
Server
< _—

Figure10.11 Logical componentsin mobile environment

The client interface ill gts on the dient, but the presence of the PoP opens up the
posshility of having ether the data store or the notification server distributed in the PoP.
Each case will now be andysed in turn by gpplying options A1-A4 from the notification
server taxonomy.

Data repository distributed in PoP

When the data repostory is distributed in the PoP, the PoP acts as a cache and the
natification server remains centrised. A centrdised notification server will facilitate options
A2 (the active client tels the natification server) and A3 (the notification server asks the
active dient) for change discovery. However, because the PoP only holds a cached copy
of the data, the interested passve clients may take longer to find out the red changesin the
data

In order to perform change discovery though option Al (the notification server polls the
data), the notification server has to be aware of the data location prior to polling. Also, the
success of this option relies on how far the datais cached and on the state of the network
connection. Option A4 (the notification server is bound to the datd) is more practica
because the natification server is dready aware of the data location. So, even if the datais
mobile, the notification server can Hill discover the changes.

Notification server disributed in PoP

Thisis an interesting layout, which can be useful in a scenario where two users are working
together in the same meeting room through their digital pads. For feedthrough reasons, it is
more efficient if the users actions get propagated through a loca notification server instead
of linking with a remote centra natification server. The purpose of a notification server isto
know when the data has changed but not its actua content. So, if the data repogitory is
kept centraised when the notification server is disributed in the PoP, the notification server
will take longer to retrieve the updates, thus dowing down feedthrough. Hence, the data
too has to be distributed when the notification server is distributed in the PoP.

Change discovery viaoption Al (the natification server polls the data) is impractical with a
distributed data repository. However, change discovery through option A4 (the notification
server is bound to data) may gill be possible as the locad natification server can be closdy
bound to some locally cached data.

195

Chapter 10 Architectural Evaluation

Change discovery via options A2 (the active client tdlls the notification server) and A3 (the
notification server asks the active client) can aso be supported when the notification server
is digtributed in the PoP. However, if one of the clients in the above meeting room example
leaves the room, this will generate some significant notification issues. For ingtance, how will
the notification server know the new location of the client and more importantly, should the
client keep a persistent connection with the loca notification server within the PoP or should
it connect to the centrd notification server.

Another difficulty with using a digtributed notification server and data repogtory lies with
data synchronisation. If the data gets log, the notification server can at least contact the
central repository, but if notification events get lost (eg. there is a sudden network
disconnection or the same network connection is not maintained during an exchange), it is
more problematic to retrieve those events. These issues need further consideration.

10.3.2 Paceissues in mobile interaction

The very nature of mobile interaction introduces some implicit pace changes - the hosts are
mobile, the context of execution is dynamic and above dl, the retwork connection is
intermittent. If users are provided with a uniform pace of feedthrough in such an
environment, the load on the network will be too high. Therefore the users context of
interaction has to be taken into account and impedance matching can be applied to provide
a controlled pace of feedthrough.

Consder the fallowing scenario. John and Mary are interacting in the same room through
their digital pads, for instance copying data to each other. As they are both in the same
room, they require a high pace of feedthrough. But if Mary moves to another room shortly
after to cary on working offline for a while, she does not require the same pace of
feedthrough until she meets up with John later to resynchronise their work.

Consequently, the users pace of feedthrough can vary depending on their location - pace
impedance. Furthermore, the volume of data can be reduced as the users move to lower
the network load - volume impedance. Given that the GtK framework adready enables
pace impedance netching, it could be applied in a mobile environment to adjust the pace of
feedthrough that users receive. But unlike the conferencing exemplar, where the
feedthrough rate matched the users interests (Section 9.4.2), the pace of feedthrough in a
mobile environment can be adjusted depending on the users location.

There arein fact three ways in which the pace of feedthrough can be managed remotely:

(a) application driven - the gpplication can change the pace by informing the notification
server that the user has moved.

(b) user driven - the user can send a request for a change in the pace when moving to a
new location.

(c) viaageneric component - ageneric component can be used to track the userslocation
and send location events to the notification server.

196

Chapter 10 Architectural Evaluation

The GtK framework requires an additional generic component within its infrastructure - the
Location Manager, to provide pace impedance in a mobile environment. The Location

Manager will be respongble to send information such as the type of gpplication and the type
of location to the natification server (figure 10.12). The latter can then use this information

to provide a pace of feedthrough that matches both gpplication type and location type. This
will not only enhance location awareness but it will aso provide users with a better service.

Location “\aPplicationtype/” Notification nace of
Manager /|ocation type Server feedthroug

Figure10.12 Paceimpedance matchingin mobile environment

This section has shown that the GtK framework requires a PoP within its infrastructure to
support dynamic mobile interaction. As the PoP is an additiona computational component,
it will influence the ways in which the notification server discovers and propagetes changes
to the users. Mobile interaction causes implicit pace changes, thus impedance matching can
be applied to improve the timing and ddlivery of events to the users. The GtK framework
can be enhanced to provide pace impedance in a mobile environment.

10.4 Event Management

Event management is a key architecturd concern with impedance matching as it introduces
delays in change propagation. As a result, certain types of ordering problems that would
not normaly arise can in fact surface here. Chapter 7 gave an example that explored the
effects of impedance maiching on the ordering of events and the resulting impact on the
users interaction (Section 7.6.3). This section will analyse the event management scheme
within the GtK framework and consider the impact of impedance matching on the existing
infrastructure.

197

Chapter 10 Architectural Evaluation

10.4.1 Event ordering in the GtK framework

Event ordering in the GtK framework is based on a star configuration (figure 10.13). This
amplifies the seridisation of events, as the natification server is the angle locus of control.
The centrd natification server facilitates the synchronisation of client events when they are
broadcast even if the naotification server initidly accepted the events in a different order or
the events hit the server a the same time. Note that, the events may not necessarily reach
the notification server in ‘red-time order due to network latency. It is more complex to
ensure that events are broadcast in ‘red-time order, as each client event will need to be
time stamped with some ‘globa’ time.

CEDCS

Figure10.13 Star configuration in GtK framework

Notification

An dternative method for event propagation is through a decentraised peer-peer network.
This generates multiple paths for event propagation. Also, when aclient performsan action
it may trigger changes in other dlients, which is a direct consequence of the causdlity effect.
The peer-peer network does not guarantee the ordering of events as illustrated by the
scenario in figure 10.14.

Figure10.14 Possibility of race condition with peer-peer network

Client A sends message m1 to both client B and client C. Message m1 reaches client B
amogt ingantly but for some reason, it gets delayed in trangt to client C. When dient B
receives message ml, it processes it and generates message m2, which is then sent to client
C. If the network connections are equaly fast dong both paths, client C will receive the
messages in the right order; that is m1 followed by m2. But because there are different
paths for change propagation, there is a possbility that client C receives message m2 before
message m1. o, if client C processes message m2 and then receives message ml, race
condition will arise,

198

Chapter 10 Architectural Evaluation

The gar configuration in the GtK framework guarantees the order in which the Event
Manager tranamits events at the lowest level. However, a the higher Notification Manager
leve, impedance matching introduces delays as the events are placed in a queue when they
reach the notification server (Section 8.4.3). Hence there is a risk that the notification
server may not necessarily broadcast the events in the same order that it received them
origindly.

10.4.2 Maintaining event ordering with impedance matching

The incorrect ordering of events can lead to inconsgstenciesin the interpretation of messages
exchanged between users (see example in Section 7.6.3). The conferencing exemplar
avoids such inconsstencies by being a ample application that stays in a quescent state.
Also, the fact that the datais managed centrdly is a contributory factor.

The following example illustrates event ordering with pace impedance in the GtK framework
(figure 10.15). A client object generates two types of events: A and B. The queue length
(Section 8.4.1) for type A event is 3 and that for type B event is 0.

Action Event Effect of action
tel ALl () Al placein queue
tellAIL() B send immediately —»B
tel ALl () A2 add to queue
tel ALl () A3 flush queue —> A1, A2, A3

Figure10.15 Event ordering with impedance matching

Afteratel | All () action (Section 8.4.3.1) for broadcast, GtK sends out the type B event
to the interested clients mmediately after receiving it. However, GtK places the type A
event in a queue and subsequent type A events are added until the queue has reached its
maximum length of 3. GtK then flushes the queued events and broadcast them to the
interested clientsin a single stream (A1, A2, A3). So as long the events are of the same
type, the notification server will broadcast them to dl the interested clients in the right order,
even with impedance matching.

The conferencing exemplar treats dl user contributions asa“ newl i ne” event type (Section
8.2.3) to ensure that they reach their destination in the right order. Furthermore, the clients
st the same frequency of updates with the notification server. This guarantees thet the
events are removed from the queue and broadcast to the users in the same order. If

inconsigtencies till occurred despite these measures, users can smply click on the rlevant
conference window to bring it into focus and they will receive any outstanding events
ingtantly (Section 9.4.3).

10.4.2.1 Limitations

199

Chapter 10 Architectural Evaluation

Although the star configuration helps to preserve the order of eventsin the GtK framework
with impedance matching, it does have certain limitations. A single path for event ordering
through a centrd notification server will promote consstency within the gpplication and
provide users with a fast rate of feedthrough. But the rate of feedback rate may not be o
fast. However, if an gpplication uses GtK as a ‘pure notification server, the users will ill
receive arapid feedback.

The ordering of events becomes more problematic when different modes of data exchange
are dlowed, such asimages. The conferencing exemplar only supports data transmisson in
text form. Because images usudly take longer to send than text, the clients will need to set
different frequencies of updates with the notification server. This will obvioudy generate
events of different types and it will be more problematic for the notification server to
broadcast them in the right order. Event ordering in such cases, have to be dedt with by
using fairly complex dgorithms. Another possible solution is to let the naotification server
decide when it wants to flush the event queue by synchronising the events from the same
objects.

This section has examined the event management scheme within the GtK framework.
Although the gtar configuration can preserve the ordering of events even with impedance
meatching, it does have some limitations.

10.5 Interacting with existing data

Whereas other sudies have implemented natification servers that are tightly bound to the
data they regulate, GtK is a'pure notification server (Section 10.1.2). Any gpplication built
using the GtK framework will require a bespoke data manager, such as the Conference
Manager in the conferencing exemplar. Because GtK is separate from the data service, it
has the advantage that it can handle many types of data- from a standard database to third
party databases including multiple data sources (Section 10.2.2) and more importantly,

legacy data.

NSTP (Patterson et al., 1996) is an example of a bundled solution that combines the data
sarvice and the notification service together. The notification service cannot be easly
integrated with existing applications, thus reducing its scaability condgderably. Thelack of a
clear separation between the functiondities of the notification server and the data restricts
NSTP capahility for reuse in a different environment with different types of data Also,
because the data is shared with the rotification server, the quality of the code will be
affected during reuse.

In contragt, GtK is solely a natification service that can be easly plugged with other

components in a different environment, thus making it easly portable and adaptable for
reuse with legacy data.

200

Chapter 10 Architectural Evaluation

10.6 Summary

This chapter has provided a systematic critique of the GtK framework by focussng on
architectura issues such as flexibility, digribution, mobility, event management and data
interaction. The options for change discovery and propagation from the notification server
taxonomy were gpplied throughout this analysis to show how they influence the different
architecturd criteria

The flexibility of the GtK framework was assessed by examining the effects of placing the
components of the example red-time Web conferencing application in the different
arrangements of the notification server taxonomy. The conferencing exemplar does not
exploit the GtK framework in such away that dlows GtK to function as a 'pure natification
server. But asthe natification service is only loosely coupled with the data service, GtK can
in fact function in different arrangements, including that of a 'pure noatification server.
Basicdly, the client objects will need to inform GtK after they have made some changesin
the conferencing exemplar. GtK can then pass on this information to dl the interested
clients or recipients and the latter can pull the updates straight from the data repostory.
GtK can dso stisfy other arrangements within the design space, such as poll for changes,
but the existing framework will need to be modified.

The separation of concern between the notification server and the data source can enable
GtK to function in a distributed environment with multiple data sources. The natification
server can discover changes in the data either directly from the data repository or from the
clients themsaves. The former option involves data transfer over the network, thus issues
such as network and computetiond load become sgnificant. The latter option is more
efficient especidly when the dlients themsalves inform the notification server when they make
the changes, which implies a 'pure€ notification server arrangement. However, dl the
digtributed clients should be aware of the notification server and their peers to improve user
feedthrough.

The GtK infragtructure is primarily a satic framework. In order to support dynamic mobile
interaction, it is dedrable to have a Point of Presence (PoP) within its infrastructure. The
PoP is an additiond sSite for computation, which can hold ether the data or the natification.
Thiswill influence the way in which the natification server discovers and propagates changes
to the users. The nature of mobile interaction causes implicit pace changes. Impedance
meatching can be applied to provide users with timely feedthrough depending on their context
of interaction. The GtK framework can be used to provide pace impedance in a mobile
environment by maiching the rate of feedthrough with the users location. However, an
additiona generic component for location awareness is required within the infrastructure.

The event management scheme within the GtK framework was aso andysed. The GtK
framework uses a star configuration and al client events are managed through the central
natification server. The gar configuration helps the marshdling of events at the lower levels
of the GtK framework. However, impedance matching does not consolidate the ordering

201

Chapter 10 Architectural Evaluation

of events a higher levels, when propagating changes to the clients, because it introduces
delays. The dternative peer-peer network for event management increases the likelihood of
race conditions. The star configuration at least ensures that events of the same type will be
broadcast in the right order, even with impedance matching.

The scope of the star configuration is however limited to gpplications with smple event
management schemes. It will be more problematic for the centrd notification server to
preserve the ordering of events in applications that support different modes of data
exchanges, as they will generate different types of events. Event ordering in such cases,
have to be dedt with by using more substantia agorithms.

The separation of the notification service from the data service is a desrable feature of the
GtK framework for handling different types of data The GtK notification server can
interact with a stlandard database or third party databases including multiple data sources.
But more importantly, GtK can ke eadly plugged with other components in a different
environment, thus making it easily portable and adaptable for reuse with legacy data.

202

Chapter 11 Conclusion

This thess has presented an architectural framework that dlows the congruction of
tempordly coherent collaborative gpplications. The andytic focus of this work was on
gaining a degp understanding of how collaborative gpplications can be built within a
digtributed environment in order to provide a desirable tempord behaviour. The emphasis
throughout this work has been on the architectural aspects of gpplication building through a
number of andytica sudies.

The tempora issues of interaction were andysed in Chapter 2. Chapter 3 examined the
interface and architectura issues involved in Single-user interaction. A Smilar investigation
was caried out for multi-user interaction in Chapter 4. Chapter 5 provided an anadyticd
framework for analysing collaborative architectures on the Web. The design space of
notification servers were andysed in Chapter 6 and a taxonomy of notification server types
was presented. Chapter 7 proposed impedance matching as a method for providing
collaborative users with a controlled pace of feedthrough.

The results of the above studies were applied to develop the Getting-to-Know (GtK)
separable notification server that provides pace impedance matching. Chapter 8 described
the implementation detals of the GtK notification server. Chapter 9 demondrated the
practicdity of the GtK framework through a red-time Web conferencing exemplar. Findly,
Chapter 10 provided an architectura evauation of the GtK framework.

This chapter reflects on the work described above. Figure 11.1 shows an overal structure
of the discusson that now follows.

broader use of concepts
outside thesis

I'"'"""l""'"""""""""""' i’ s = = il
' Thesis | i
mmTmmemes | Chapterl Chapters2-7 Chapters8-10 i
! Introduction Analytic studies GtK development, use i
i | and evaluation

1

Chaprer 11—y YN

[}
' 111
1

11.2
Issues Meeting
raised obiectives

Figurel1l.l Chapter structure

Section 11.1 condders the sdient issues raised by the andytica Studies described in
Chapters 2 - 7. Section 11.2 then reviews the objectives set out in Chapter 1 to show how
these have been met through the development of the GtK framework, its use and evauation

203

Chapter 11 Conclusion

in Chapters 8 - 10. The work described in the thesisis aready being developed in severd
aress of research. So ingtead of discussing the possibility of future work, Section 11.3
describes the ongoing work as broader research themes.

11.1 Issues raised by analytical studies

Chapter 2 discussed the importance of tempora issues and their effects on users
interaction. Deays and interruptions generate inappropriate timing and increase user
frugtration and application errors. Tempora properties have traditionaly been linked to the
system response time. Feedback is the dominant tempora property during single-user
interaction. But in collaborative interaction, feedthrough is another vita tempora property.
Cooperative users require both timely feedback of their own actions and feedthrough of
others actions to enable successful collaboration. Tempora problems become more
sgnificant in digributed collaborative applications as delays are likely to arise from both
network-related issues and the nature of collaborative work. The theoretica foundations of
interface behaviour and pace of interaction were gpplied to anayse the tempora problems
that users perceive a the interface.

Chapter 3 invedigated the interface and architecturd concerns for sngle-user gpplications.
The discusson showed that the underlying architecture of a system affects its externd
behaviour. A number of desrable requirements for Sngle-user interfaces were identified,
among which separation, direct manipulation and rapid semantic feedback have a mgor
influence on the tempord properties of the interface.

Some common architectura models and interface development tools were aso reviewed.
Most of these architectures promote the separation of the application semantics from the
user interface functionality. However, such a degree of separation is sometimes difficult to
achieve in practice and often ignored. Separation conflicts with the needs of rapid semantic
feedback in direct manipulation interfaces. Consequently, aspects of the user interface may
‘lek’ into the gpplication and vice versain sngle-user gpplications.

Chapter 4 extended the architecturd andysis to te context of multi-user collaborative
goplications. Separation was found to be an essentid architectural requirement in such an
environment for providing effective user-level behaviour. In addition to rapid feedback, the
requirements of timely feedthrough, awareness and sharing are critical in mesting the needs
of collaborative users. Furthermore, the shared data should be kept consstent and an
effective control mechanism is required to handle change propagation.

204

Chapter 11 Conclusion

Some multi-user architectura models and interface development tools were dso reviewed.
Mogt systems use a networked solution with access to information through either centralised
or replicated window architecture. A hybrid architecture is employed in some cases, where
certain parts of he system are centraised and others are replicated. However, there is
adways a tension between the responsive nature of replicated architectures that alow rapid
loca feedback and the need for a centralised component to promote feedthrough.

The provision of feedthrough is a mgor concern in collaborative gpplications. Most
collaborative solutions tend to assume ‘control’ over the entire system, with bespoke
software running at the users own workstations and at various servers. In addition, they
aso implicitly assume that the machines are connected to asingle loca area network and the
properties of this network are stable. These assumptions are chalenged by the dynamic
nature of the Web.

Chapter 5 presented an analytic framework for constructing collaborative applications on
the Web. The examination of behaviourd requirements identified the key architecturd
components of collaborative sysems. The placement decisions reveded the conflicting
needs of feedback and consstency on the Web. This is commonly dedt with by usng
either caching or replication to bring the shared data ‘closer’ to the user. The Web dso
forces the concern between where the data is stored and where the contral lies, thus
generding various dternatives for the location of architectural components.

For example, Web applications use Java applets to download code to users own
machines. Thisimpliesthat both code and data can be stored in a permanent location while
having an ephemerd location for execution or use. The mobility issues associated with data
and code generated a storage/use matrix for data and a storage/execution matrix for code.
The combinations for code and data placement showed that dynamically downloaded code
of which gpplets are the most common together with caching is a truly Web-based option.
Although this favours rapid feedback, as the red data is located centrdly, it does conflict
with the needs of feedthrough.

The andyds in Chapter 5 narrowed the focus of this work on facilitating the mportant
behavioura requirement of feedthrough. Feedthrough is an intringc limitation of Web-based
collaborative gpplications. Also, the provison of feedthrough is more demanding, as both
the pace of group users interaction and network-related delays have to be taken into
account. This work proposed an architectura solution to address this problem by using a
suitable notification mechanism, which not only manages the rate of feedthrough, but aso
optimises on the temporad performance. The standard Web protocol offers some weak
forms of natification, which are essentidly polling mechanisms that are largely semantics
free.

Chapter 6 explored the different ways in which notification services can be managed in a
collaborative sysem by gpplying the foundation of Status—Event andyds. The anaytic
study generated a framework and vocabulary to compare and discuss different notification
mechanisms. The taxonomy of natification server types showed that a notification server

205

Chapter 11 Conclusion

should idedly dlow a separation of concern between notification and data, thus behaving as
a‘pure notification server. Thisis particularly important on the Web as the protocols that
access data are mogtly fixed; hence notification has to be added at a separate level.

Chapter 7 presented an andytic framework for providing collaborative users with timely
feedthrough and awareness through impedance matching - the matching of the required and
supplied of update events. The natification server, through its centrd mediating position, is
idedly placed to support impedance matching, by adjusting the frequency of natification to
meet the users pace of interaction. Users should however inform the notification server of
their required pace interests in the shared objects. The communication between the user
clients and the notification server does not require the latter to have any knowledge of the
gpplication semantics; hence the natification server can ill remain separate from the data.

Impedance matching enhances both goal-directed feedthrough - by alowing users to see
the changes in the objects they are highly interested in dmogt indantly, and awareness - by
informing them about the changes to the peripherd objects, dbeit a a lower pace. This
exploits the limited avalability of computer resources and network bandwidth. Chapter 7
aso explored the different ways of achieving impedance matching, namey through pace
impedance and volume impedance. Pace impedance policies were andysed in detalls.

Different triggers for regulating pace were identified and their effects on the flow of events
were shown through the use of time-space diagrams.

Because impedance matching controls the pace of feedthrough to the clients by delaying the
updates events, this may affect the order of event propagation. The incorrect ordering of
events will not have a mgor impact on a system where there is no causdlity or dependency
between the users exchanges. But in systems where the ordering of events is crucid, the
semantics and interconnections between those events have to be dedt with by usng some
complex dgorithms.

The successive anadytical studies led to the congtruction of a separable notification server

cdled Getting-to-Know (GtK) that provides pace impedance matching. Table 11.1
summarises the important issuesraised in Chapters 2 - 7.

206

Chapter 11

Conclusion

Chapter

Main issues

2: Timeand Interactivity

- temporal problemstraditionally linked to responsetime

- single-user interaction => feedback dominant temporal property
. BUT collaborative interaction also need feedthrough”

. delays arise due to network + nature of group work

. applies analysis of interface behaviour + pace of interaction”

3. Single-user Interface
and Architecture
Issues

- application architecture affects its behaviour
- need for separation, direct manipulation, rapid semantic feedback
- separation conflicts with needs for rapid semantic feedback

- separation often ignored in direct manipulation interfaces”

4: Multi-user Interface
and Architecture
Issues for
Collaboration

- separation isvital in multi-user collaborative applications”

- asorequire timely feedthrough + awareness in addition to rapid feedback

- need consistent data + effective control mechanism

- replicated vs. centralised architecture® feedback vs. feedthrough”

- overall ‘control’ + stable local areanetwork connection commonly assumed

- BUT assumption challenged by dynamic nature of the Web”

5: Why, What, Where,
When: An analysis of
Collaborative
Architectures
on the Web

. behavioural analysis => identified key architectural components”

. placement decisions => feedback conflicts with consistency on the Web”
- code and data storage location® execution location on the Web

. presents framework for analysing location options for dataand code

- true Web-based option: dynamically downloaded code with caching

- favoursrapid feedback BUT conflicts with needs of feedthrough

. provision of feedthrough is problematic and lacking on the Web”

- proposes an architectural solution through suitable notification mechanism |

6: Exploring the Design
space for Notification
Servers

- uses Status—Event analysis to analyse design space for notification services
. generated framework + taxonomy to discuss notification mechanisms”
. ‘pure’ notification server isideal — separates notification issues from data”

- separate notification vital on the Web dueto fixed protocols for data access

7: Impedance Matching:
Coping with Limited
Resources

. presents impedance matching framework for timely feedthrough”

. use notification server to match updates with users pace of interaction”
- BUT users have to inform notification server of their pace interests

- impedance matching supports both goal-directed feedthrough + awareness |
- exploitslimited availability of computer resources + network bandwidth
. examines volume impedance + pace impedance issues”

- identifies pace triggers and showed effects on time-space diagrams”

- event ordering isamain concern that may require complex algorithms

Table11.1 Summary of issuesraised in analytical studies

207

Chapter 11 Conclusion

11.2 Meeting the objectives of the work

The overd| objective of the work was broken down into three sub-gods in Chapter 1
(Section 1.2). Theway in which each sub-goa has been met is examined below.

Objective 1

“To develop an architectural framework that enables the construction of
collaborative applications that satisfy appropriate temporal properties’

The GtK architectura framework that was constructed supports the GtK separable
notification server, which provides pace impedance matching to manage the tempord
behaviour at the user interface level. Chapter 8 described the implementation of the GtK
framework. GtK does not provide volume impedance matching and it does not handle the
ordering of events. A solution to the latter problem liesether a the underlying system level
or a the programmer leve in understanding the semantics of the infrastructure. GtK only
supports pace impedance matching based on the ‘volume of messages and ‘fixed time
intervd’ triggers.

GtK is a separable natification server that has been built on a distributed object layered
infragtructure. The Event Manager controls the exchange of messages and events within the
infrastructure by using an asynchronous messaging protocol. This gives GtK a uniform,
generic location-independent event modd. The Notification Manager handles the main
functions of the GtK natification server. GtK alows a client object to add an interest in
another object or remove some or al of its interests for a certain object. GtK maintains a
list of interested clients for specific objects and their recipients, and broadcasts notification
events to dl the interested clients recipients. These functions together with a few
housekeeping operations, alow the expresson of a wide range of different gpplication
gpecific notification Srategies.

Pace impedance was implemented by introducing two pace parameters to control the
frequency of updates namdy, queue length and maximum delay time. GtK maintains a
queue of outstanding events for each recipient. Events are flushed from the queue and
broadcast to the recipients when either pace parameter is reached. An aarm process sets
and resets the maximum delay time parameter. Client objects can request GtK to change
therr frequency of natification through a ‘change frequency’ event. Subsequently, GtK
modifies the rate of feedthrough for each recipient of that client object accordingly.

Objective 2

“ To demonstrate the feasibility of the conceptual framework by using it as a basis
for developing an exemplar that provides collaborative users with a temporal
behaviour that meets their pace of interaction”

Chapter 9 demondtrated the practicdity of the GtK notification server as a pace impedance

matcher through an example red-time Web conferencing gpplication built on the GtK
framework. The gpplication offers smilar functionaities as many Web chat sysems, but its

208

Chapter 11 Conclusion

novety lies in dlowing collaborative usars to interact with multiple conferences, while
adjugting their pace of feedthrough to match their pace of interaction.

The conferencing application enables users to create conferences on various topics and
launch discusson sessons with different participants a the same time. The discussion
sessons ae manly held in red-time but late joiners can aso catch up with any ongoing
sesson. The conferencing gpplication executes on the server and users connect to the
gpplication through an gpplet interface from any common Web browser. The Conference
Manager on the server is respongble for managing the conferences and acts as the data
repository. The GtK natification server is only loosaly coupled to the Conference Manager.

Each conference session is represented as a separate window on the users screen. Asthe
top-most window usudly indicates the user’s focus, users are more likely to have a high
interest in the changes to the conference which features on that particular window.
Likewise, users may only have a passve interest in the changes to the background
conference windows, as they lie within the user’s peripherd awareness. The usars clients
aoply this reasoning to register the relevant pace interest for each conference with GtK.

GtK provides users with the updates to their top-most conference window amost
indantaneoudy (limited only by network latency) but it sends out the changes to their
background conference windows less frequently, depending on the interest rate associated
with them. However, users can shift their focus to catch up on the thread of conversationin
a background conference a any time by ssimply clicking on the window. GtK subsequently
readjusts the pace of feedthrough for that particular conference, thus alowing users to see
any outdanding contributions immediately.

The example conferencing application thus provides collaborative users with a pace of
feedthrough that match their interest rates on the different conferences. The focus of the
design was on those aspects that facilitate the provison of a controlled pace of feedthrough
and not on developing a fully functiond sysem. Also, the use of the top-level window to
manage the rate of feedthrough is just afunction of the exemplar but it isnot limited to it.

Objective 3

“ To evaluate the effectiveness of the approach embodied by the model”

The GtK framework was assessed through the example red-time Web conferencing
goplication in Chapter 9 by examining the effects of pace impedance matching on the
interaction between the different components within the infragtructure. This was then
complemented with an architectura evauation of the GtK framework in Chapter 10. Such
amethod of evauation was chosen because it is often problematic to evauate a framework
that is embodied in code. Furthermore, it would have been impractica to cover amorein-
depth evauation within the scope of thiswork, given its extensve andytic focus.

The example gpplication supports pace impedance matching by dlowing dlient objects to
register pace interest frequencies with the GtK natification server for each conference that

209

Chapter 11 Conclusion

the user joins. The pace frequency is related to the pace parameters queue length and
maximum delay time Client objects therefore register a high pace frequency with default
pace parameters for the changes on the conference that features on the user’s top-most
window but they only regiser a low pace frequency (usng some pre-defined pace
parameters) for al the other contributions in the background conference windows.

The GtK natification server maintains each conference contributions in a separate queue.

GtK immediatdly flushes out al contributions that are associated with a high pace frequency
conference from the queue and sends them out to the respective client objects. The low
pace frequency conference contributions remain in the queue until one of the pace
parameter is reached. When the user’s focus changes to a background conference
window, the client object resets the pace interest frequency and informs GtK about it. GtK
subsequently readjusts the user’ s pace of feedthrough, thus leading to a catch up behaviour.

The exemplar has therefore demonstrated the behaviour of the GtK natification server asan
impedance matcher both in terms of the temporad dimension, by redtricting the pace of
feedthrough and in terms of the bandwidth, by not sending dl the information across
smultaneoudy. Although a controlled pace of feedthrough may not necessarily provide a
remarkable improvement in the user interface, the gan is peformance is dgnificant.
Information sent in chunks or batches over a network reduce overheads considerably.

The critique in Chapter 10 evauated the GtK framework in architectura terms by ng
issues such as flexihility, distribution, mobility, event management, and data interaction. The
GtK framework supports a separable model where the natification service is only loosely
coupled with the data service and this offers anumber of advantages.

Although the conferencing exemplar does not explait the GtK framework in such away that
dlows GtK to function as a 'pure notification server, the separable nature of the GtK
framework increases its flexibility. GtK is in fact a 'pure notification server within the
framework. In addition, GtK can stisfy other feasible arrangements in the notification
server taxonomy. However, the GtK framework will have to be modified to satisfy those
purposes.

The separation of concern between the natification server and the data source can aso
dlow GtK to function in a digtributed environment with multiple data sources. The 'pure
natification server arrangement is the mogt efficient solution in such a setting, but dl the
digtributed clients will have to be aware of the notification server and ther peersto improve
user feedthrough.

The nature of mobile interaction causes implicit pace changes. Impedance matching can
thus be applied effectivdy in such an environment for providing users with a timdy
feedthrough depending on their context of interaction. While the GtK infragtructure is
primarily a gatic framework, its pace impedance matching functionality could for instance,
endble the matching of the users rate of feedthrough with their location. However, this
requires an additiona generic component for location awareness within the GtK framework.

210

Chapter 11 Conclusion

The GK framework adopts a star configuration for event management. Although this helps
the marshdling of events a the lower levels of the infrastructure, impedance matching does
not consolidate the ordering of events a the higher notification level because it introduces
delays. However, the star configuration ensures that events of the same type are broadcast
in theright order, even with impedance matching.

The scope of the gtar configuration is limited to applications with Smple event management
schemes. The ordering of events could in fact be enhanced in two ways - ether the
goplication could provide a better control, for example through explicit flush requedts, or the
framework could itsef do so. However, the latter option requires substantial agorithmic
and conceptud advances, which involve cgpturing semantic knowledge directly from the
gpplications.

The separable nature of the GtK framework promotes interaction with different types of
daa The GtK notification server can thus interact with a standard database or third party
databases including multiple data sources. But more importantly, GtK can be easly
adapted for reuse with legacy datain a different environment without affecting the qudity of
its code.

Table 11.1 summarises how the objectives of thiswork have been met in Chapters 8 - 10.

Objectives Main issues

1: develop an - addressed in Chapter 8 through the GtK architectural framework
architectural . e . .
framework that supports GtK separable notification server that provides pace impedance

enablesthe - GtK isbuilt on adistributed object layered infrastructure
construction of

collaborative - Event Manager: uses asynchronous protocol for messages and events

applications that - Notification Manager: handles main functions of Gtk
satisfy appropriate) .
temporal properties - two pace parameters: maximum event queue length + delay time

- GtK maintains a queue of outstanding events for each recipient
- GtK flushes events for broadcast when either pace parameter is reached
- user clients use ‘change frequency’ event to change rate of notification

- GtK does not address volume impedance and event ordering

2: demonstrate the - addressed in Chapter 9 through Web conferencing exemplar
feasibility of the
conceptual framework
by using it asabasis

- Conference Manager - on server
- holds central datafor conferences

for - user client - applet on Web browser

developing an - provide user interface and rapid feedback
exemplar that provides)

collaborative users - GtK isonly loosely coupled to the Conference Manager
with

- clientsregister pace interest for conferences
- top conference window (user focus) => high pace
- other conferences (users' periphery) => low pace

a temporal behaviour
that meetstheir pace
of interaction
- GtK matches pace of feedthrough with usersinterest rates
- focus conference => almost instantaneous updates
- other conferences => less frequent updates

211

Chapter 11

Conclusion

- GtK readjusts pace of feedthrough as users’ focus change

- sends outstanding contributions immediately

- use of top window to manage feedthrough is only afunction of exemplar

- but not limited to it

3: evaluate the
effectiveness of the
approach embodied
by the model

- addressed in Chapter 9 + Chapter 10

- objective 2 shows GtK can be used for temporally rich exemplar

- client objects register pace frequency with GtK

- high pace (focus conference) => default pace parameters
- low pace (other conferences) =>pre-defined pace parameters

- GtK maintains conference contributions in aqueue

- high pace b flushes queue immediately
- low pace b remainin queue until either pace parameter is reached

- exemplar demonstrates GtK as impedance matcher

- restricted pace of feedthrough => temporal reduction
- chunking of transmitted information => network reduction

- notification and data service only loosely coupled in GtK framework

- offers many architectural possibilities

- GtK isa'pure' notification server within framework

- GtK can satisfy other arrangements in notification server taxonomy
- but framework will need to be modified

- GtK can aso function in distributed environment with multiple data sources

- can use GtK framework in a dynamic mobile environment

- match users' rate of feedthrough with their location

- GtK framework uses star configuration for event management

- correct order for same event types even with impedance matching
- but better support requires substantial algorithms

- GtK caninteract with other types of datawithout affecting its code

- in particular, legacy data

Table11.2 Summary of how objectives have been met

212

Chapter 11 Conclusion

11.3 Broader research themes

The work described in the thesis has taken place over a number of years. Consequently, it
has dready led and contributed to a number of projects that are not described in the thesis.
This section examines the broader themes that this work has been leading out into research
for along time. Thisaso acts as atest to the value of the concepts and the work within the
thesis.

The firg contribution originates from the study of tempord problems during long-term
interaction. The sscond sems from the andytic technique employed in investigating
collaborative architectures on the Web. The third emerges from the main focus of this
work, which was primarily concerned with the underlying computationa infrastructure to
support feedthrough in collaborative systems.

11.3.1 Trigger analysis

The indghts gained from the sudy into long-term nteraction (described in the Appendix)
have important ramifications that have reached far afild from the scope of the thess. Both
the case dudy and its later agpplicationt¢ reinforced the collaborative aspects of
organisationd moddling and emphasised the importance of reminders as an enabling
mechaniam for resuming activities following delays and interruptions.

The 4Rs (Request, Receipt, Response, Release) framework is a generic pattern, which
repedts itsdlf with amilar triggers and smilar falure nodes. The 4Rs framework can be
applied to any process-oriented task analyss. The existence of generic patterns can
uncover potentia problems before they actualy occur and solutions found in one Stuation
can be adapted and applied to another. Also, ay deviation in the generic pettern will
indicate possible breakdown points.

The trigger analyss technique has therefore been proposed as a method for task
decompostion in HCI (Dix et d., 2003) and it can be used in conjunction with many task
andysis and workflow methods. The strength of the 4Rs andlysis lies in uncovering triggers
that cause each process to occur. Triggers can determine whether a process is robust to
interruptions or forgetfulness and if not, identify the cause of the failure and the ingtance
where any problem islikely to arise. The theoretica and practical design implications of the
4Rs andyds can benefit anyone who is investigating the ecology of the workplace.

16 MaPPi T project for mapping the Placement Process with Information Technology, a HEFCE project.
Details available at: http://www.hud.ac.uk/scom/mappit/home2.htm

213

Chapter 11 Conclusion

11.3.2 Analysing architectural options for mobile interfaces

There has recently been a massive growth in mohbile communications and mobile computing.
Although the end points here may be wel understood (but in the case of smdl mohbile
devices difficult to design for), the network itsdf is much more dynamic than even the
Internet, with limited bandwidth, temporary disconnection, and an ever changing network
topology. The widespread use of mobile devices has increased the importance of designing
gopropriate user interfaces for mobile environment. This is reflected by the growing
research interests in communities such as CSCW, mobile HCI and Ubicomp.

The need to congder the dynamic nature of this infrastructure and its effects on interaction
places new demands on the software architecture and the overdl role of the architecture.
Essentidly, software architecture is about ‘what goes where. In dtationary networks, the
‘wherée's tend to be fairly obvious and are normally characterised as ether clients or servers.
Even this can lead to arich sat of architectura dternatives, as described in Chapter 5.

However, in mobile systems, the changing network topology suggests a much richer set of

possibilities

The systematic technique used during the analysis of collaborative architectures on the Web
in Chapter 5 was applied in a later research projectl’ to investigate software architecture
options for mobile user-interfaces. This generated a PoP mobile framework (Dix et d.,
2000) which darified the desgn options of mobile sysems with the am of improving
collaboretive interaction.

There is an important trade-off between efficiency and locdity issues in a mobile
environment as people are more likely to move between contexts. These complex issues
can be thoroughly analysed by combining the PoP mobile framework (Dix et d., 2000) with
that of the notification server taxonomy (Ramduny et d., 1998). Such an andyssremansa
very interesting possibility for extending thiswork.

11.3.3 Requirements for notification mechanisms

The main concern of this work was on the underlying computationa infrastructure that
enables collaborative systems to support feedthrough, and in particular, in the requirements
and design of natification servers. This work has highlighted three main requirements for
notification mechanisms to support feedthrough and awareness.

(& the notification server should be a separate component
(b) it should be possble to control the pace of notification
(¢) it should be possible to contral the qudity/fiddity of notified information

17 | nterfaces and I nfrastructure for Mobile Multimedia Applications research project - as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

214

Chapter 11 Conclusion

The issue of separability (a) led to the investigation of the design space of notification
servers, as described in Chapter 6. The systematic method applied to categorise the design
options of natification servers contributes to the academic credibility of the discipline, as it
clarifies the smilarities and differences between different example sysems and identifies new
directions. The framework for notification servers commenced a desgn vocabulary in
CSCW (Ramduny et d., 1998) for the implementation of natification services with the am
of improving design.

The taxonomy of notification server types highlighted the critical features of a ‘pure
notification server, separate from the data it regulates and the clients it supports. Thiswork
has confirmed, through the development of GtK, that notification servers should be
regarded as separate entities - certainly a a conceptud level and often physicdly distinct.

The posshility for controlling the pace of natification (b) was explored through pace
impedance matching. GtK implemented pace impedance based on both ‘time delay’ and
‘number of outstanding updates . Pace impedance matching facilitates the development of
client applications that require rgpid detailed feedthrough for god-directed activities while
supporting lower pace and lower granularity notification for awareness purposes.

The lagt requirement (c) for notification mechanisms corresponds to volume impedance
matching. Although volume impedance can be supported within the GtK infrastructure, it
has not been implemented in this work. Volume impedance can largely be met by having
different forms of gpplicationspecific, low-granularity update events. However, more
generic approaches to this issue would be a vauable extenson to this work.

The GtK framework thus implements both requirements (8) and (b) for a Web-based
feedthrough and awareness infragtructure. Table 11.3 compares the main functiondities of
GtK with some exigting notification sysems.

notification system [functionalities

GtK - pure notification service”
- pace impedance matching support feedthrough and awareness”

- explicit notification to improve user-level performance”

NSTP - tightly bound notification service
- cannot be re-used with different types of data

- no consideration for time and pace issues

Elvin - pure notification service”

- only operates at the system level with little explicit user notification

- no impedance matching

Table11.3 Comparing GtK with other notification systems
Although Elvin (Fitzpatrick et a., 1999) supports a 'pure notification service, it primarily

operates a the system leve by alowing applications to exchange natifications. It has very
little explicit support for user notification and impedance matching is non-inexistent.

215

Chapter 11 Conclusion

NSTP (Patterson et d., 1996) instead offers a bundled solution that combines the data
sarvice and the notification service. This redtricts its capability for reuse in a different
environment with different types of data. Performance considerations of time and pace are
aso absent.

GtK is the only extant notification service that embodies true separability from data, while
aso providing pace impedance matching to improve tempora behaviour, thus increasing
user-leve performance and reducing network oad.

11.4 Final remark

Timing issues are becoming increasingly more important on both large scale group work and
fine scale networked environments. Delays and tempora properties are vital concerns in
the design of ubiquitous and mobile devices. Thus, the understanding of tempora problems
and the management of delays are likely to become ever more sgnificant.

As the thesis is being findised, a whole sesson was devoted to the issues of time in the
recent CSCW conference where some studies (Begole et al., 2002), (Reddy and Dourish,
2002) have gpplied the notion of rhythm (Zerubavel, 1985) for interpreting the tempora
pattern of work iterated over time and for coordinating work. By integrating rhythms in
system design, people not only become aware of their current activities but they can dso
see how those activities are rdated to past activities and how they may influence future
activities.

Current research on notification servers (Shen and Sun, 2002) is aso drawing on the work
on natification server taxonomy described in the thess. Timing issues are dreedy playing a
maor role in the provison of awareness or notification services and their importance will
continue in the future.

216

(Abowd and Dix, 1994)

(Anderson, 1994)

(Baecker et al., 1995)

(Barth, 1986)

(Bass, 1993)

References

Abowd, G. and Dix, A. (1994) Integrating status and event
phenomenain forma specifications of interactive systems,
S GSOFT'94, New Orleans, ACM Press, pp. 44-52.

Anderson, R. J. (Ed.) (1994) Representations and
Requirements : The Value of Ethnography in System
Design, Human Computer Interaction, Vol. 9, Lawrence
Erlbaum pp. 151-182.

Baecker, R., Grudin, J., Buxton, B. and Greenberg, S.
(Eds.) (1995) Readings in Human-Computer
Interaction: Towards the Year 2000, Second edition,
Morgan-Kaufman pp. 950.

Barth, P. S. (1986) An Object-Oriented Approach to
Graphical Interfaces, In ACM Transactions on Graphics,
5(2), pp. 142-172.

Bass, L. (1993) Architectures for Interactive Software
System: Rationde and Design, In Trends in Software Issue
on User Interface Software, 1, pp. 31-44.

(Beaudouin-Lafon and Karsenty, 1992) Beaudouin-

(Begeman et d., 1986)

(Begole et d., 2002)

(Benford et d., 1993)

(Benford and Fahlén, 1993)

Begeman, M., Cook, P., Ellis, C., Graf, M., Rein, G. and
Smith, T. (1986) Project Nick: meetings augmentation and
andyds, Proceedings of the ACM 1986 conference on
Computer Supported Cooperative Work, Austin, Texas,
ACM Press.

Begole, J. B., Tang, J. C., Smith, R. B. and Y ankelovich,
N. (2002) Work Rhythms: Anayzing Visudisations of
Awareness Higtories of Digtributed Systems, Proceedings
of Computer Supported Collaborative Work (CSCW
2002), New Orleans, USA, ACM Press, pp. 334-343.

Benford, S., Bullock, A., Cook, C., Harvey, P., Ingram, P.
and Lee, O. (1993) From room to cyberspace: models of
interaction in large virtua computer spaces, In Interacting
with Computers, 5 (2), pp. 217-237.

Benford, S. and Fahlén, L. (1993) A Spatiad mode of
Interaction in Large virtud Environments, Proceedings of

217

(Benford et d., 19944)

(Benford et a., 1994b)

(Benford et d., 1997)

(Bentley et al., 19929)

(Bentley et al., 1992b)

(Bentley, 1994)

(Bentley et ., 1994)

(Bentley et d., 1996)

(Bentley, 1997)

References

the third European Conference on CSCW, ECSCW 93,
Sept., Milan, Italy, Kluwer Academic, pp. 109-124.

Benford, S., Bowers, J, Fahlén, L., Mariani, J. and
Rodden, T. (1994) Supporting Cooperative Work in Virtual
Environments, In The Computer Journal, 37 (8), pp. 653-
668.

Benford, S., Fahlen, L., Greenhage, C. and Bowers, J.
(1994) Managing mutual awarenessin collaborative virtua
environments, ACM S GCHI conference on Virtual
Reality and Technology (VRST'94), Singapore, ACM
Press.

Benford, S., Greenhagh, C. and Lloyd, D. (1997)
Crowded Collaborative Virtud Environmerts, Proceedings
of CHI'97, March 22-27, Atlanta, Georgia, pp. 59-66.

Bentley, R., Hughes, J. A., Randdl, D., Rodden, T.,
Sawyer, P., Shapiro, D. and Sommerville, I. (1992)
Ethnographicdly-informed sysems design for ar traffic
control, Proceedings of CSCW 92, Nov., Toronto,
Ontario, ACM Press, pp. 123-129.

Bentley, R., Hughes, J. A., Randdl, D. and Shapiro, S. Z.
(1992) Technologicd support for decison making in a
sdfety critica environment, Computing Department,
Lancaster University, CSCW/5/92.

Bentley, R. (1994) Supporting Multi-User Interface
Development for Cooperative Systems, PhD Thesis,
University of Lancagter, UK.

Bentley, R., Rodden, T., Sawyer, P. and Sommerville, 1.
(1994) Architectural support for cooperative multi- user
interfaces, In [EEE COMPUTER special issue on CSCW,
27 (5), pp. 37-46.

Bentley, R., Horstmann, T., Skke, K. and Trevor, J.
(1996) The BSCW Shared Workspace System, In ERCIM
wor kshop on CSCW and the Web (Eds, U. Busbach, D.
Kerr and K. Sikkel), GMD/FIT, Sankt Augustin, Germany.

Bentley, R. (1997) Time and the Web: Experiences from

BSCW, Time and the Web Seminar, June, Staffordshire
Universaty.

218

(Bentley et ., 1997a)

(Bentley et al., 1997b)

(Berners-Leeet al., 1994)

(Bier and Freeman, 1992)

(Brewster, 1994)

(Brewster et al., 1994)

(Brink and Gomez, 1992)

(Byrne and Picking, 1997)

(Card et al., 1983)

(Card et dl., 1991)

References

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr,
D., Skked, K., Trevor, J. and Woetzd, G. (1997) Basic
Support for Cooperative Work on the World Wide Web,
In International Journal of Human-Computer Sudies,
special issue on 'Innovative Applications of the World
Wide Web', 46, pp. 827-846.

Bentley, R., Horstmann, T. and Trevor, J. (1997) The
World Wide Web as Enabling Technology for CSCW: The
Case of BSCW, In Computer Supported Cooperative
Work: Thejournal of Collaborative Computing, 6, pp.
111-134.

Berners-Lee, T., Calliau, R., Luotonen, A., Frystyck
Nielsen, H. and Secret, A. (1994) The World Wide Web,
In Communications of the ACM, 37 (8), pp. 76-82.

Bier, E. and Freeman, S. (1992) MMM: A user interface
architecture for shared editors on asingle screen,
Proceedings of UIST'91, Hilton Head, pp. 79-86.

Brewster, S. A. (1994) Providing a structured method for
integrating non-speech audio into human-computer
interfaces, PhD Thesis, Universty of York, UK.

Brewster, S. A., Wright, P. C. and A.D.N., E. (1994) The
design and evauation of an auditory-enhanced scrollbar,
Proceedings of CHI'94, Boston, Massachusett, ACM
Press, pp. 173-179.

Brink, T. and Gomez, L. M. (1992) A Callaborative
Medium for the Support of Conversationa Props,
Proceedings of CSCW92, Nov., Toronto, Ontario, ACM
Press, pp. 171-178.

Byrne, A. and Picking, R. (1997) Is Time Out to be the Big
Issue?, Time and the Web Seminar, June, Staffordshire
Universty.

Cad, S. K., Moran, T. P. and Newell, A. (1983) The
psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Card, S. K., Robertson, G. C. and Mackinlay, J. D. (1991)
Theinformation visudizer: An information workspace,
CHI'91 Conference Proceedings : Human FactorsIn
computing Systems, 28 April-2 May, New Orleans, LA,
ACM Press, pp. 181-188.

219

References

(Computer, 1985) Computer, A. (1985) Inside Macintosh, Addison-Wedey.

(Conn, 1995) Conn, A. P. (1995) Time affordances. the time factor in
diagnogtic usability heuristic, CHI'95 Conference
Proceedings. Human Factors In computing, ACM Press,
pp. 186-193.

(Coutaz, 1987) Coutaz, J. (1987) PAC, An Object Oriented Model For
Didog Desgn, Human-Computer Interaction -
INTERACT '87 (Eds, H.J. Bullinger and B. Shackd), pp.
431-436.

(Crowley et d., 1990) Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and
Tomlinson, R. (1990) MM Conf: An infrastructure for
building shared multimedia gpplication, Proceedings of
CSCW90, ACM Press, pp. 329-342.

(Curtiset d., 1988) Curtis, B., Krasner, H. and Iscoe, N. (1988) A Field Study
of the Software Desgn Process for Large Systems, In
Communications of ACM, 31 (11), pp. 1268-1287.

(Cypher, 1986) Cypher, A. (1986) The Structure of Users Activities, In
User Centred System Design - New Per spectives on
Human Computer Interaction (Eds, D.A Norman and S.
Draper Lawrence), Erlbaum Associates, pp. 243-263.

(Dewan, 1990) Dewan, P. (1990) A tour of the Suite user interface
software, UIST'90: Proceedings of 3rd ACM S GGRAPH
Symposium on User Interface Software and Technology,
ACM Press, pp. 57-65.

(Dewan and Choudhary, 1991) Dewan, P. i

(Dewan, 1992) Dewan, P. (1992) Principles of designing multi-user user
interface development environments, Proc. 5th IFIP
Working Conf. on Engineering for HCI (Eds, J. Larson
and C. Unger), August, Ellivuori , Finland, pp. 35-48.

(Dewan and Choudary, 1992) Dewan, P. and Choudary, R. (1992) A High-leve and
Flexible Framework for Implementing MultiUser User
Interfaces, In ACM Transactions on Information
Systems, 10 (4), pp. 345-380.

(Dewan, 1993) Dewan, P. (1993) Toolsfor Implementing Multiuser User

Interfaces, In Trends in Software; Issue on User Interface
Software, 1, pp. 149-172.

220

(Diaper, 1989)

(Dix et d., 1993)

(Dix, 19944)

(Dix et ., 1995)

(Dix and Abowd, 1996a)

(Dix and Abowd, 1996b)

(Dix et ., 1996)

(Dix, 1997)

(Dix, 1998)

(Dix et ., 1999)

References

Digper, D. (1989) Task Anaysisfor Knowledge
Descriptions (TAKD); the method and an example, In Task
Analysis for Human-Computer Interaction (Ed, D.
Diaper), Chapter 4, Ellis Horwood, Chichester, pp. 108-
159.

Dix, A., Finlay, J., Abowd, G. and Bede, R. (1993)
Human-Computer Interaction, second edition 1998,
Prentice Hall.

Dix, A. (1994) Que serasera- The problem of the future
perfect in open and cooperative systems., Proceedings of
HCI'94: People and Computers IX, Glasgow, Cambridge
University Press, pp. 397-408.

Dix, A., Ramduny, D. and Wilkinson, J. (1995)
Interruptions, Deadlines and Reminders: Investigations into
the Flow of Cooperative Work, University of Huddersfield,
RR9509.

Dix, A. and Abowd, G. (1996) Moddling status and event
behaviour of interactive systems, In Software Engineering
Journal, 11 (6), pp. 334-346.

Dix, A. and Abowd, G. (1996) Delays and Temporal
Incoherence Due to Mediated Status- Status Mappings, In
S GCHI Bulletin, 28 (2), pp. 47-49.

Dix, A., Ramduny, D. and Wilkinson, J. (1996) Long-Term
Interaction: Learning the 4Rs, CHI'96 Conference
Companion Proceedings. Human Factors In computing
Systems, Apr., Vancouver, British Columbia, ACM Press,
pp. 169 -170.

Dix, A. (1997) Challenges and Perspectives for
Cooperative Work on the Web: An Andytica Approach, In
CSCW: The Journal of Collaborative Computing, 6 (2-
3), pp. 135-156.

Dix, A. (1998) Finding Out - event discovery using satus-
event andyss, Formal Aspects of Human Computer
Interaction FAHCI98, 5-6th September 1998, Sheffield.

Dix, A., Ramduny, D. and Wilkinson, J. (1998) Interaction

inthelarge, In Interacting With Computers, Special Issue
on Temporal Aspects of Usability, 11, pp. 9-32.

221

(Dix et ., 2000)

(Dix et d., 2003)

(Dix, 1987)

(Dix, 1991)

(Dix, 19923)

(Dix, 1992b)

(Dix, 1994D)

(Dix, 19954)

(Dix, 1995b)

(Dourish and Bellotti, 1992)

References

Dix, A., Ramduny, D., Rodden, T. and Davies, N. (2000)
Places to stay on the move: software architectures for
mobile user interfaces, In Personal Technologies - Special
Issue on Human Computer Interaction with Mobile
Devices, 4 (2), pp. 171-181.

Dix, A., Ramduny, D. and Wilkinson, J. (2003) Trigger
Anaysis. understanding broken tasks, In The Handbook of
Task Analysis for Human-Computer Interaction (Eds, D.
Digper and N. Stanton), Lawrence Erlbaum Associates.

Dix, A. J. (1987) The Myth of the Infinitedly Fast Machine,
Proceedings of the Third Conference of the BCSHCI
SG: People and Computers I11, Cambridge University
Press, pp. 215-228.

Dix, A. J. (1991) Formal Methods for Interactive
Systems, Academic Press.

Dix, A. J. (1992) Pace and interaction, Proceedings of
HCI'92: People and Computers VII, Sept., York,
Cambridge University Press, pp. 193-208.

Dix, A. J. (1992) Beyond the Interface, Engineering for
Human-Computer Interaction: Proceedings of IFIP
TC2/WG2.7 Working Conference, Ellivuori, Finland,
North-Holland.

Dix, A. J. (Ed.) (1994) Computer-supported cooperative
work - a framework, Design Issuesin CSCW, D.
Rosenburg and C. Hutchison (Series Eds.), Springer Verlag,
Berlin pp. 9-26.

Dix, A. J. (1995) Cooperation without (reliable)
Communicetion: Interfaces for Mobile Applications, In
Distributed Systems Engineering, 2 (3), pp. 171-181.

Dix, A. J. (1995) LADA-A logic for the andyss of
distributed action, Interactive Systems: Design,
Soecification and Verification (Ed, F. Paternd), 1st
Eurographics Workshop, Bocca di Magra, Itay, June 1994,
Springer Verlag, Berlin, pp. 317-332.

Dourish, P. and Bdllotti, V. (1992) Awareness and

coordination in shared workspaces, CSCW 92, Toronto,
Canada, ACM Press, pp. 107-114.

222

(Dourish and Bly, 1992)

(Edmonds, 1992)

(Elliset d., 1990)

(Elliset d., 1991)

(Elliset dl., 1994)

(Engelbart, 1975)

(Ensor et a., 1988)

(Erickson et al., 1999)

(Fidding et d., 1997)

(Fitzpatrick et ., 1995)

References

Dourish, P. and Bly, S. (1992) Supporting Awarenessin a
Distributed Work Group, Human Factors in Computing
Systems, CHI'92 Conference Proceedings, Monterey,
CA, pp. 541-547.

Edmonds, E. A. (Ed.) (1992) The Separable User
Interface, Computer and People Series, Academic Press.

Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1990) Design and
use of agroup editor, Proceedings of the IFIP
Engineering for Human-Computer Interaction
Conference (Ed, G. Cockton), North-Holland,
Amsterdam, pp. 13-15.

Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1991)
Groupware: Some issues and experiences, In
Communications of the ACM, 34 (1), pp. 38-58.

Ellis, G. P, Finlay, J. E. and Pdllitt, A. S. (1994)
HIBROWSE for Hotels: bridging the gap between user and
system views of a database, IDS94 2nd I nter national
Workshop on User Interfaces to Databases, April 1994,
Ambleside, UK, Springer Verlag, Workshops in Computer
science (July 1994), pp. pp.45-58.

Engelbart, D. (1975) NLS Teleconferencing Fegatures, In
Proceedings of Fall COMPCON, pp. 173-176.

Ensor, J. R., Ahuja, S. R., Horn, D. N. and Lucco, S. E.
(1988) The Rapport Multimedia Conferencing System: A
Software Overview, Proceedings of the 2nd IEEE
Conference on Computer Workstations, March, pp. 52-
58.

Erickson, T., Smith, D. N., Kdllogg, W. A., L&f, M. R,,
Richards, J. T. and Bradner, E. (1999) Socialy tranducent
systems. Socia proxies, persistent conversation and the
design of 'Babbl€e, Proceedings of CHI'99, May 15-20,
Pittsburgh, PA, ACM, New York, pp. 72-79.

Fding, R., Gettys, J., Moghul, J., Frystyk, H. and
Berners-Lee, T. (1997) Hypertext Transfer Protocol --
HTTP/1.1, In RFC 2068, U.C. Irvine, DEC, MIT/LCS.

Fitzpatrick, G., Tolone, W. and Kaplan, S. (1995) Work,

Locaes and Digtributed Socid Worlds, ECSCW 95, 10-14
September 1995, Stockholm, Dordrecht: Kluwer, pp. 1-16.

223

(Fitzpatrick et d., 1999)

(Flannagan, 1997)

(Foundation, 1989)

(Garfinkd, 1967)

(Gaver et d., 1992)

(Gillian and Breedin, 1990)

(Gleick, 2000)

(Goland et d., 1999)

(Gram and Cockton, 1996)

(Grasso et d., 1997)

(Gray et al., 1994)

References

Fitzpatrick, G., Mandfidd, T., Kaplan, S., Arnold, D.,
Phelps, T. and Segdll, B. (1999) Augmenting the workaday
world with Elvin, Proceedings of the sixth European
Conference on Computer Supported Cooper ative Work
(ECSCW99) (Eds, S. Badker, M. Kyng and K. Schmidt),
12-16 September 1999, Copenhagen, Denmark, Kluwer
Academic Publishers, Netherlands, pp. 431-450.

Flannagan, D. (1997) Java in a Nutshell, 2nd Edition (Java
1.1), ORailly.

Foundation, O. S. (1989) OSF/Matif, Programmer's
Reference Manudl., In Open Software Foundation.

Garfinkel, H. (1967) Sudies in Ethnomethodol ogy,
Prentice Hdll, Englewood Cliffs, NJ.

Gaver, W., Moran, T., MacLean, A., Loévstrand, L.,
Dourish, P., Carter, K. and Buxton, W. (1992) Redizing a
Video Environment: EuroPARC's RAVE System,
Proceedings of CHI'92: Human Factorsin Computing
Systems (Eds, P.Bauersfield, J.Bennett and G. Lynch),
ACM Press, pp. 27-35.

Gillian, D. J. and Breedin, S. D. (1990) "Designers’ Modds
of HumanComputer Interface, Proceedings of
SCCHI'90, Apr. 1990, Sesattle, WA, pp. 391-398.

Gleick, J. (2000) Fa:st:er the acceleration of just about
everything, Reissue 6 July, 2000, Abacus, London.

Goland, Y. Y., J,W. J E, Faz, A., Carter, S.R. and
Jensen, D. (1999) HTTP Extensions for Digtributed
Authoring -- WEBDAYV, In RFC 2518, Microsoft, U.C.
Irvine, Netscape, Novell.

Gram, C. and Cockton, G. (Eds.) (1996) Design
Principles for Interactive Software, Chapman & Hall,
UK.

Grasso, A., Meunier, J., Pagani, D. and Pareschi, R. (1997)
Didtributed Coordination and Workflow on the World Wide
Web, In Computer Supported Cooperative Work: The
Journal of Collaborative Computing, pp. 175-200.

Gray, P., England, D. and McGowan, S. (1994) XUAN:
Enhancing UAN to Capture Tempora Relationships among

224

(Greenberg, 1990)

(Greenberg et d., 19929)

(Greenberg et d., 1992b)

References

Actions, Proceedings of HCI'94: People and Computers
IX, Glasgow, Cambridge University Press, pp. 301-312.

Greenberg, S. (1990) Sharing views and interactions with
sngle-user gpplications, Proceedings of COIS90,
Cambridge, Massachussets, pp. 227-237.

Greenberg, S., Roseman, M., Webgter, D. and Bohnet, R.
(1992) Issues and experiences in implementing two group
drawing tools, IEEE Proc. 25th Annual Hawaii Intl.
Conf. System Sciences, Val. 4, pp. 139-150.

Greenberg, S., Roseman, M., Webgter, D. and Bohnet, R.
(1992) Human and technica factors of distributed group
drawing toals, In Interacting with Computers, 4 (3), pp.
364-392.

(Greenhalgh and Benford, 1995) Greenhdglr

(Greenhdgh et a., 2000)

(Gust, 1988)

(Hall et dl., 1996)

Greenhagh, C., Purbrick, J. and Snowdon, D. (2000)
Insde MASSIVE-3: flexible support for data consstency
and world structuring, Proceedings of the third
international conference on Collaborative virtual
environments, ACM Press, pp. 119-127.

Gugt, P. (1988) SharedX: X in adistributed group work
environment, 2nd annual X Conference.

Hal, R. W., Mathur, A., Jahanian, F., Prakash, A. and
Rassmussen, C. (1996) Corona: A Communication Service
for Scaable, Reliable Group Collaborative Systems, ACM
Conference on Computer Supported Cooper ative Work
(CSCW 96), Nov. 1996., Boston, MA, ACM Press, pp.
140-149.

(Hammerdey and Atkinson, 1995) Hammerde

(Hayneet d., 1993)

(Hezth et d., 1993)

Hayne, S., Pendergast, M. and Greenberg, S. (1993)
Gesturing through cursors: Implementing multiple pointersin
group support systems, Proceedings of the HICSS Hawaii
International Conference on System Sciences, Val. IV,
January 1993, Los Alamitos, Cdlif., IEEE Computer
Society, pp. 4-12.

Heath, C., Jirokta, M., Luff, P. and Hindmarsh, J. (1993)

Unpacking Collaboration: The Interactional Organisation of
Trading in a City Dedling Room, Proceedings of

225

(Hesth and Luff, 1994)

(Herskind, 1997)

(Hill, 1992)

(Hill et ., 1994)

(Hix, 1990)

(Hudson et d., 2002)

(Ingram et a., 1996)

(Johnson and Gray, 1995)

(Johnson et d., 1995)

(Johnson, 1997)

References

ECSCW93, Sept., Milan, Italy, Kluwer Academic
Publishers, Dordrecht, pp. 155-171.

Heeth, C. and Luff, P. (1994) Cris's management and
multimedia technology in London Underground line control
rooms, In Journal of CSCW, 1 (1-2), pp. 69-94.

Herskind, S. (1997) Computer support for temporal
aspects of coordination of cooperative work, ECSCW 97
Conference Supplement, Lancaster, UK, Kluwer
Academic Press, Dordrecht, pp. 67.

Hill, R. D. (1992) The Abstraction-Link-View Paradigm:
Using Congtraints to connect User Interfaces to
Applications, Proceedings of CHI'92, ACM Press, pp.
335-343.

Hill, R. D., Brinck, T., Rohdl, S. L., Patterson, J. F. and
Wilner, W. (1994) The Rendezvous Architecture and
Language for Congtructing Multiuser Applications, In ACM
Transactions on Computer-Human Interaction, 1 (2),
pp. 81-125.

Hix, D. (1990) Generations of User-Interface Management
Systems, In |[EEE Software, (Sept.), pp. 77-87.

Hudson, J. M., Christensen, J., Kellogg, W. A. and
Erickson, T. (2002) "I'd be overwhelmed, but it's just one
more thing to do": Availability and interruption in research
management, Proceedings ACM Conference on Human
Factorsin Computing Systems (CHI'02), ACM Press,
pp. 97-104.

Ingram, R. J., Benford, S. D. and Bowers, J. M. (1996)
Building Virtud Cities: Applying Urban Planning principles
to the Design of Virtud Environments, Proceedings
VRST'96, July 1-4, Hong Kong, ACM Press, pp. 83-91.

Johnson, C. and Gray, P. (Eds.) (1995) Workshop on
Temporal Aspects of Usahility, 2, Vol. 28, SIGCHI
Bulletin.

Johnson, C. W., McCarthy, J. and Wright, P. C. (1995)
Using Petri Nets to support natura language in accident
reports, In Ergonomics, 38 (6), pp. 1265-1283.

Johnson, C. W. (1997) The impact of time and place on the
operation of mobile computing devices, Proceedings of

226

(Joosten, 1994)

(Knight and Munro, 1998)

(Krasner and Pope, 1988)

(Kuhmann et dl., 1987)

(Kutar, 2001)

(Lamport, 1978)

(Lantz, 1986)

(Lauwers and Lantz, 1990)

(Leeetd., 1997)

References

HCI'97. People and Computers Xl1, Brigtol, UK, pp.
175-190.

Joosten, S. (1994) Trigger moddling for workflow anayss,
Proceedings of CON'94: Workflow Management (Ed, R.
Oldenbourg), Vienna, pp. 236-247.

Knight, C. and Munro, M. (1998) Usng an Existing Game
Engine to Facilitate Multi-User Software Visudization, In
Second Annual Workshop on System Aspects of Sharing
a Virtual Reality.

Krasner, G. E. and Pope, S. T. (1988) A Cookbook for
Using the Modd-View-Controller User Interface Paradigm
in Smaltak-80, In Journal of Object Oriented
Programming, 1 (3), pp. 26-49.

Kuhmann, W., Boucsain, W., Schagfer, F. and Alexander,
J. (1987) Experimenta investigation of Psychophysica
Stress-Reections induced by different Response Timesin
Human Computer Interaction, In Ergonomics, 30 (6), pp.
933-943.

Kutar, M. S. (2001) Specification of Tempora Properties
of Interactive Systems, PhD Thesis, Universty of
Hertfordshire, UK.

Lamport, L. (1978) Time, Clocks, and the Ordering of
Eventsin a Digributed System, In Communications of the
ACM, 21 (7), pp. 558-565.

Lantz, K. A. (1986) An Experiment in Integrated
Multimedia Conferencing, Proceedings of Conference on
Computer-Supported Cooper ative Work, December, pp.
267-275.

Lauwers, J. C. and Lantz, K. A. (1990) Collaboration
Awareness in support of Collaboration Transparency:
Requirements for the next generation of shared window
systems, CHI'90 Conference Proceedings. Human
Factors computing Systems, Apr., Segttle, Washington,
ACM Press, pp. 303-311.

Lee, A., Girgensohn, A. and Schiueter, K. (1997) NYNEX
Portholes: Initid User Reactions and Redesign Implications,
Proceedings of the International ACM SGGROUP
Conference on Supporting Group Work (GROUP'97),
Phoenix, AZ, pp. 385-394.

227

(Ldland et dl., 1988)

(Lewis, 1995)

(Linton, 1993)

(Long, 1976)

(Macedoniaet a., 1994)

(McManus, 1997)

(Microsoft, 1993)

(Microsystems, 1996)

(Miller, 1956)

(Miller, 1969)

(Miyata and Norman, 1986)

(Myers, 1985)

References

Leland, M. D. P,, Fish, R. S. and Kraut, R. E. (1988)
Collaborative document production usng quilt, Proceedings
of CSCW 88, Sept., Portland Oregon, ACM Press, pp.
206-215.

Lewis, S. (1995) The Art and Science of Smalltalk,
Hewlett- Packard, Prentice Hall.

Linton, M. A. (1993) Making User Interfaces Easy-to-
Build, In User Interface software (Eds, L. Bassand P.
Dewan), pp. 45-59.

Long, J. (1976) Effects of delayed irregular feedback on
unskilled and skilled keying performance, In Ergonomics,
19 (2), pp. 183-202.

Macedonia, M., Zyda, M., Pratt, D., Barham, P. and
Zeswitz, S. (1994) NPSNET: A Network Software
Architecture for Large-Scde Virtud Environments, In
Presence: Teleoperators and Virtual Environments 3
(4), pp. 265-287.

McManus, B. (1997) Compensatory Actionsfor Time
Delays, Time and the Web Seminar, June, Staffordshire
Universty.

Microsoft (1993) Microsoft Windows, Version 3.1.
Microsystems, S. (1996) Java: Programming for the Internet

Miller, G. A. (1956) The magical number saven, plusor
minus two: some limits on our capacity to process
information., In Psychological Review, 63 (2), pp. 81-97.

Miller, R. B. (1968) Response time in man-computer
conversationd transactions, 33, Proceedings of the AFIPS
Fdl joint Computer Conference, pp. 267-277.

Miyata, A. and Norman, D. A. (1986) Psychologica Issues
in Support of Multiple Activities, In User Centred System
Design - New Per spectives on Human Computer
Interaction (Eds, D.A. Norman and S. Draper), Lawrence
Erlbaum Associates, pp. 265-284.

Myers, B. A. (1985) The importance of percent-done
indicators for computer-human interfaces., Proceedings of
CHI'85: Human Facorsin Computing Systems 14-18
April, San Francisco, CA, ACM Press, pp. 11-17.

228

(Myers, 1989)

(Myers, 1990)

(Myerset al., 1990)

(Myers, 1991)

(Myers, 1995)

(Newd| and Simon, 1972)

(Newman, 1968)

(Nielsen, 1993)

(Nielsen, 1995)

(Nielsen, 1997)

(Nigay and Coutaz, 1993)

(Norman, 1984)

References

Myers, B. A. (1989) Usar-Interface Tools. Introduction
and survey, In |EEE Software, pp. 15-23.

Myers, B. A. (1990) A New Mode for Handling Input, In
ACM Transactions on Information Systems 8 (3), pp.
289-320.

Myers, B. A., Guise, D. A., Dannenburg, R. B., Vander
Zanden, B., Koshie, D. S, Pervin, E., Mickish, A. and
Marchal, P. (1990) Garnet: Comprehensive Support for
Graphicd, Highly Interactive User Interfaces, In IEEE
Computer, 28 (11), pp. 71-85.

Myers, B. A. (1991) Separating Application Code from
Toolkits: Elimineting the Spaghetti of Cdl-Backs,

S GGRAPH Symposium on User s Interface Software
and Technology (UIST'91), Hilton Head, South Carolina,
pp. 211-220.

Myers, B. A. (1995) User Interface Software Toals, In
ACM Transactions on Computer-Human Interaction, 2
(1), pp. 64-103.

Newdl, A. and Simon, H. A. (1972) Human Problem
Solving, Prentice-Hdl, Englewood Cliffs, New Jersey.

Newman, W. M. (1968) A System for Interactive Graphical
Programming, Proceedings of the Soring Joint Computer
Conference, Atlantic City, NJ, AFIPS Press, pp. 47-54.
Nielsen, J. (1993) Usability Engineering, ACM Press.

Niglsen, J. (1995) Multimedia and Hypertext: The
Internet and Beyond, AP Professiona, Boston, MA.

Nielsen, J. (1997) The need for Speed, Alert box,
http://www.usalt.com/d ertbox/9703a.html

Nigay, L. and Coutaz, J. (1993) A Design Space for
Multimoda Systems. Concurrent Processing and Data
Fusion, Proceedings of INTERCHI'93, April 1993, pp.
172-178.

Norman, D. A. (1984) Stages and Levelsin Man-Machine

Interaction, In International Journal of Man-Machine
Sudies, 21, pp. 365-375.

229

References

(Norman, 1986) Norman, D. A. (Ed.) (1986) New views of information
processing: Implications for intelligent decision support
systems, Intelligent Decision Support Process
Environments, E. H. et d. (Series Eds.), Springer-Verlag.

(Norman, 1988) Norman, D. A. (1988) The Psychology of Everyday
Things, Basic Books, New Y ork.

(Olsen Jr, 1992) Olsen Jr, D. (1992) User Interface Management
Systems: Models and Algorithms, Morgan Kaufmann.

(OSF, 1995) OSF (1995) OSF/Motif Programmer's Guide, Revison 2,
Open Software Foundation, Prentice Hall.

(Ousterhout, 1994) Ousterhout, J. K. (1994) An Introduction to Tcl and Tk,
Addison-Wedey.

(Palanque and Bastide, 1995) Palanque, P. and Bagtide, R. (1995) Forma specification
and verification of CSCW, Proceedings of the HCI'95
Conference: People and Computers X, Huddersfield,
UK, Cambridge University Press, pp. 213-231.

(Palay, 1988) Palay, A. e a (1988) The Andrew toolkit: An Overview,
Winter USENIX Technical conference, Dallas, Texas, pp.
9-12.
(Palfreyman and Rodden, 1996 Pdfreymar

(Patern6 and Faconti, 1992) Paternd, F. and Faconti, G. (1992) On the use of LOTOS
to describe graphicd interaction, Proceedings of the
HCI'92 Conference: People and Computers VII,
Cambrigde University Press, pp. 155-173.

(Peatterson et d., 1990) Patterson, J. F., Hill, R. D., Rohdl, L. and Meeks, W. S.
(1990) Rendezvous. An architecture for synchronous muilti-
user gpplication, Proceedings of CSCW90, ACM Press,
pp. 317-328.

(Patterson, 1991) Patterson, J. F. (1991) Comparing the Programming
Demands of Single-User and Multi-User Application, In
Proceedings of the ACM Symposium on User Interface
Software and Technology, pp. 87-94.

(Peatterson et d., 1996) Patterson, J. F., Day, M. and Kucan, J. (1996) Notification
Serversfor Synchronous Groupware, Proceedings of
CSCW96, Nov. 1996, Boston, Massachusetts, ACM
Press, pp. 122-129.

230

(Pausch, 1991)

(Pausch e al., 1992)

(Payne, 1993)

(Pfaff and Hagen, 1985)

(Rada, 1995)

(Ramduny, 1994)

(Ramduny, 1996)

(Ramduny and Dix, 1997a)

(Ramduny and Dix, 1997b)

(Ramduny et d., 1998)

(Ramduny, 1999)

References

Pausch, R. (1991) Virtud redity on five dollars aday,
Proceedings of Human Factors in Computing Systems,
CHI'91 (Eds, S.P. Robertson, G.M. Olson and J.S. Olson),
New Orleans, Addison Wedey, pp. 265-270.

Pausch, R., Conway, M. and DelLine, R. (1992) Lessons
learned from SUIT, the Smple User Interface Toolkit, In
ACM Transactions of Office Information Systems, 104
(4), pp. 320-344.

Payne, S. J. (1993) Understanding Calendar Usg, In
Human-Computer Interaction, 8 (2), pp. 83-100.

Pfaff, G. and Hagen, P. J. W. (Eds.) (1985) Seeheim
Workshop on User Interface Management Systems,

Berlin, Springer-Verlag.

Rada, R. (1995) Interactive Media, Springer-Verlag, New
York.

Ramduny, D. (1994) Increasing User Awarenessin UNIX,
B.Sc. Project Report, Lancaster University, UK.

Ramduny, D. (1996) Tempora Interface |ssues and
Software Architecture for Remore Cooperative Work,
CSCW96 Doctoral Colloquium.

Ramduny, D. and Dix, A. (1997) Why, What, Where,
When: Architectures for Cooperative Work on the World
Wide Web, Proceedings of HCI'97, Aug. 1997, Brigtal,
UK, Springer-Verlag, pp. 283-301.

Ramduny, D. and Dix, A. (1997) In the Right Place at the
Right Time: Placement Options for Web-based
Architectures, ECSCW 97 Conference Supplement, Sep,
1997, Lancaster, UK, pp. 37-38.

Ramduny, D., Dix, A. and Rodden, T. (1998) Exploring the
design space for notification servers., Proceedings of
CSCW98, Nov. 14-18, Seattle, Washington, ACM Press,
pp. 227-235.

Ramduny, D. (1999) Impedance Matching: Enhancing
tempora interactivity on the web, Proceedings of The
Active Web, A British HCI Group Day Conference (Eds,
Dave Clarke, Alan Dix and Fiona Dix), January,
Staffordshire University, UK, pp. 227-235.

231

References

(Ramduny and Dix, 2002) Ramduny, D. and Dix, A. (2002) Impedance Matching:
When Y ou Need to Know What, People and Computers
XVI: memorable yet invisible: proceedings of HCI 2002
(Eds, X. Faulkner, J. Finlay and F. Dé&tienne), London, UK,
Springer-Verlag, pp. pp 121 - 137.

(Randall, 1995) Randall, D. (1995) Ethnography for Systems Devel opment:
Bounding the Intersection, University of Hudderfied,
Tutorial Notes HCI'95.

(Reddy and Dourish, 2002) Reddy, M. and Dourish, P. (2002) A Finger on the Pulse:
Tempord Rythms and Information Seeking in Medicd
Work, Proceedings of Computer Supported
Collaborative Work (CSCW 2002), New Orleans, USA,
ACM Press, pp. 344-353.

(Reeves, 1996) Reeves, S. (1996) Specifying and reasoning about CSCW,
Design, Specification and Verification of Interactive
Systems '96, Namur, Belgium, Springer Verlag, Berlin, pp.
366-383.

(Reinand C., 1991) Rein, G. and C,, E. (1991) rIBIS: ared-time group
hypertext system, In International Journal of Man
Machine Sudies, 34 (3), pp. 349-368.

(Rodden and Blair, 1991) Rodden, T. and Blair, B. (1991) CSCW and Distributed
Systems. The problem of Control, Proceedings of the
second European Conference on CSCW (ECSCW91)
(Eds, L. Bannon, L. M. Robinson and K. Schmidt),
September 25-27, Amsterdam, The Netherlands, Kluwer
Academic Publishers, pp. 49-64.

(Rodden, 1996) Rodden, T. (1996) Populating the Application: A Modd of
Awareness for Cooperative Applications, Proceedings of
CSCW96, Nov. 1996, Boston, Massachusetts, ACM
Press, pp. 87-96.

(Rohall et d., 1992) Rohall, S. L., Patterson, J. F. and Hill, R. D. (1992) Go
Fishl A Multi-User Gamein the Rendezvous System,
S GGRAPH Video Review 76, ACM, NewY ork.

(Roseman and Greenberg, 1992) Roseman, 1
(Rouncefield et d., 1994) Rouncefidd, M., Hughes, J. A., Rodden, T. and Viller, S.
(1994) Working with ‘Constant Interruption' CSCW and

the Smdll Office, Proceedings of CSCW 94, Oct., Chapel
Hill, North Carolina, ACM Press, pp. 275-286.

232

(Sandor et d., 1997)

(Satyanarayanan et a., 1990)

(Sawyer and Mariani, 1995)

(Scheifler and Gettys, 1986)

(Schneiderman, 1983)

(Sdlen and Harper, 1997)

(Shen and Sun, 2002)

(Shepherd, 1995)

(Shneiderman, 1992)

(Smith, 1983)

(Smith et 4., 1989)

References

Sandor, O., Bogdan, C. and Bowers, J. (1997) Aether: an
awareness engine for CSCW, Proceedings of ECSCW 97,
Lancaster, UK, Kluwer Academic, pp. 221-236.

Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M.
E., Segd, E. H. and Steere, D. C. (1990) Coda: ahighly
availablefile system for a distributed workstation
environment, In |EEE Transactions Computers, 39 (4),
pp. 447-459.

Sawyer, P. and Mariani, J. A. (1995) Database systems:
chalenges and opportunities for grgphical HC, In
Interacting with Computers:. the Interdisciplinary
Journal of Human-Computer Interaction, 7 (3), pp. 273-
303.

Scheifler, R. and Gettys, J. (1986) The X Window System,
In ACM Transactions of Graphics, 5 (2), pp. 79-109.

Schneiderman, B. (1983) Direct Manipulation: A Step
Beyond Programming Languages, In Computer pp. 57-69.

Sdlen, A. and Harper, R. (1997) Paper as an andytic
resource for the design of new technologies, Proceedings
of the Conference on Human Factors In Computing
Systems CHI'97, ACM Press, pp. 319-326.

Shen, H. and Sun, C. (2002) Hexible Notification for
Collaborative Systems, Proceedings of Computer
Supported Collaborative Work (CSCW 2002), New
Orleans, USA, ACM Press, pp. 77-86.

Shepherd, A. (1995) Task andysis as aframework for
examining HCI tasks, In Perspectives on HCI: Diverse
Approaches (Eds, A. Monk and N. Gilbert), Academic
Press, London, pp. 145-174.

Shneiderman, B. (1992) Response time and display rate, In
Designing the user interface: Strategies for effective
human-computer interaction, 2nd ed., Addison Wedey,
Reading, Mass, pp. 278-301.

Smith, D. (1983) A business case for subsecond response
time: Fadter is better, In Computerworld, Vol. 17 (16) pp.
1-11.

Smith, R. B., O'shea, T., OMaley, C., Scanlon, E. and
Taylor, J. (1989) Prdiminary experiments with a distributed,

233

(Smith and Mosier, 1986)

(Stefik et ., 19872)

(Stefik et ., 1987h)

(Suchman, 1987)

(Szekely, 1987)

(Tang, 1991)

(Teal and Rudnicky, 1992)

(Thau, 1996)

(Thomas, 1998)

(Trevor et d., 1994)

References

multi-media, problem solving environment, Proceedings of
ECSCW89, pp. 19-34.

Smith, S. L. and Mosier, J. N. (1986) Guiddines for
designing user interface software, Mitre Corporation
Report, Mitre Corporation, MTR-9420.

Stefik, M., Bobrow, D. G,, Foster, G, S,, L. and Tatar, D.
(1987) "WY SIWISrevisted" early experiences with
multiuser interfaces, In ACM Transactions on Office
Information System, 5 (2), pp. 147-167.

Stefik, M., Fogter, G., Bobrow, D., Kahn, K., Lanning, S.
and Suchman, L. (1987) Beyond the chakboard: computer
support for collaboration and problem solving in meetings,
In Communications of the ACM, 30 (1), pp. 32-47.

Suchman, L. A. (1987) Plans and Stuated Actions: The
Problem of Human-Machine Communication,
Cambridge Univerdty Press.

Szekely, P. (1987) Modular Implementation of
Presentations, Proc SGCHI & Gl 87, ACM Press, New
York, pp. 235-240.

Tang, J. (1991) Findings from observationd studies of
collaborative work, In International Journal of Man-
Machine Sudies, 34, pp. 143-160.

Ted, S. L. and Rudnicky, A. I. (1992) A performance
model of system delay and user Strategy selection,
Proceedings of CHI'92, pp. 295-305.

Thau, R. (1996) Design Consderations for the Apache
Server API, Computer Networks and ISDN Systems 28:
Proceedings of the 5th International World Wide Web
Conference, 6-11 May, Paris, pp. 1113-1122.

Thomas, R. C. (1998) Long Term Human-Computer
Interaction: An Exploratory Perspective, Springer
Verlag.

Trevor, J,, Mariani, J. and T., R. (1994) The use of
adaptors to support cooperative work, Proceedings of
CSCW 94, Oct. 1994, Chapd Hill, North Carolina, ACM
Press, pp. 22-26.

234

(Trevor et d., 1997)

(Vaghi, 2002)

(Warboys, 1994)

(Welie and Eliéns, 1996)

(Whitehead, 1997)

(Whitehead and Y ., 1999)

(Winograd and Flores, 1986)

(Zdezny and Langley, 1999)

(Zerubavel, 1985)

References

Trevor, J., Koch, T. and Woetzd, G. (1997) MetaWeb:
Bringing synchronous groupware to the World Wide Web,
Proceedings of the Fifth European Conference on
Computer Supported Cooperative Work (ECSCW97),
September 7-11, Lancaster, UK, pp. 65-80.

Vaghi, I. R. (2002) Augmenting the Virtua: Modd,
Architecture and Techniques for the Representation of
Déelay- Induced Phenomenain CVEs, PhD thesis,
Universty of Nottingham, UK.

Warboys, B. (1994) Reflections on the relationship between
BPR and software process modelling, Proceedings of
ER94, Berlin, Springer Verlag, pp. 1-9.

Widie, V. M. and Eliéns, A. (1996) Chatting on the Web, In
Proceedings of the 5th ERCIM/WAG wor kshop on
CSCW and the Web, GMD/FT, Sankt Augustin,

Germany.

Whiteheed, J. E. J. (1997) World Wide Web Distributed
Authoring and Versoning (WEBDAYV) -- An Introduction,
In ACM Sandard View, 5 (1), pp. 3 - 8.

Whitehead, J. E. J. and Y., G. Y. (1999) WebDAV: A
network protocol for remote collaborative authoring on the
Web, Proceedings of the sixth European Conference on
Computer Supported Cooperative Work (ECSCW99)
(Eds, S. Badker, M. Kyng and K. Schmidt), Copenhagen,
Denmark, Kluwer Academic Publishers, Netherlands, pp.
291-310.

Winograd, T. and Flores, F. (1986) Understanding
computers and cognition : a new foundation for design,
Addison-Wed ey Publishing Company, Inc, New Y ork.

Zdezny, P. and Langley, A. (1999) XChat 1.2
http://xchat.linuxpower.org/doc/xchat.html

Zerubave, E. (1985) Hidden rhythms: schedules and
cdendarsin socid life, Berkdey: Univeraty of Cdifornia
Press.

235

Appendix Case Study of Long-term Interaction

Long-term interaction poses even more problems than fagt pace interaction, as the
communication is more likely to be interrupted at different intervals through the process and
short-term memory is volatile. This appendix describes an empirical case study that was
carried out to analyse the tempora problems that users face during long-term collaborative
interaction, where the tight cycle between action and feedback is broken.

Severa problems may arise when the expected responses do not occur during long-term
interaction. Userswill for ingtance have to remember that they have things to do, that others
should do things and dso they need to infer why things happen when they do. In order to
provide an ingght into the ways in which team-based interactions operate on both a co-
located and a remote basis, a case study was carried out based on the long-term
cooperétive processes associated with the running of a past HCI conference. This scenario
was especidly interesting as it involved many procedures that crossed organisationa
boundaries.

The theoreticd foundation of the case study lies in the study of pace of interaction (Dix,
1992a), (Dix, 1994a), (Dix, 19954q). Although the main focuswas on triggers- eventsthat
initiate the occurrence of activities, a recurrent pattern of activities and triggers was
discovered and it was named the 4Rs. |ssues discussed here have been reported in (Dix et
a., 1995), (Dix et d., 1996), (Dix et ., 1998), (Dix et d., 2003).

Section 1 identifies the problems faced during long-term interaction. Section 2 describes
the gpproach adopted for analysing triggers and the method used to represent the flow of
work through processes and activities. Section 3 gives a detailed account of the case study.
The emerging classes of triggers for activities and in particular the 4Rs — arecurrent pattern
of long-term work, are then analysed in Section 4. Section 5 compares the method used in
this analysis with other approaches like ethnography, business process re-engineering and
work flow. Findly, Section 6 proposes some generd results based on potentia design
heurigtics. It aso shows how the trigger andlysis and 4Rs pattern have been vadidated
through a practica gpplication.

1 Problems of long-term interaction

Long-term interaction takes place at a much dower pace. The lack of short-term memory
and sequenced communication can make long-term interaction even more complex than a
fast pace interaction. Stretching the pace of interaction poses many problems as compared
to those studied by traditional researchersin HCI.

The pace of interaction (see Section 2.4.2) is defined asthe rate at which usersinteract with

computer systems, the physical world and with one another. In many collaborative
Stuations, the pace of communication takes place over a longer time scae. This may be

236

Appendix Case Study of Long-term Interaction

partly due to the nature of the communication medium, such as normd postd delays, or
partly due to the nature of the task, for example a doctor waiting for X-ray results.

The criticd point is that standard models of interaction, astypified by Norman'sinteraction
cycle (figure 18) concentrate on a tight cycle between action and feedback (Section 2.2).
But when interaction is consdered over a long-term scale, such models eventuadly bresk
down.

goal
stimulus

execution evaluation @

system response

Figurel. (a) Norman'sinteraction cycle (b) stimulus—response model

Another modd of interaction often applied in industrid settings is to treet the worker in a
gimulus—esponse manner (figure 1b). Commands and darms act as simuli and workers
respond to these in the appropriate manner. However, in its pure form, this model does not
dlow workers to formulate any long-term plans or goas. The worker is treated in a
mechanistic manner, merdy a cog in the machine.

In order to incorporate both of these perspectives, the user interaction with the environment
should be examined over a protracted timescde. The term environment here includes
interactions with other users, computer sysems or the physica environment. Such
interaction is typicdly of a turn-taking fashion: the user acts on the environment, the
environment ‘responds, the user sees the effects then acts again and so on.

NN N

AN N\
PSS X

Figure2. Problemsof long-term interaction

This process is illudrated in figure 2. The Norman loop concentrates on the user—
environment—user part of the interaction wheress the stimulus—response model centres on
the environment—user—environment part. Long-term interaction will affect this diagram in
vaiousways.

237

Appendix Case Study of Long-term Interaction

O oction-effect ggp — The user performs an action, but the effects of that action only
becomes gpparent after a long delay. The main problem here is loss of context. For
instance, someone sends you an email and you respond to it but you do not receive areply
back from the sender until some days later. How do you recal the context of the message
when the feedback eventudly arrives? Y ou should not only remember the reason why the
original message was sent but also what sort of reply was expected. Email systems tend to
address this problem by incuding the sender’'s message in the reply. In paper
communications, the use of ‘my ref./your ref.” fulfilsasmilar purpose.

® dimulusresponse gap — The user must respond to some event, but for some reason
cannot do so immediately. For example, at a chance mesting in the corridor, someone asks
you to do something. The problem here is that you may forget, hence the need for to-do
ligs or other forms of reminders. In the psychologica literature this has been cadled

prospective memory (Payne, 1993).

©® missng gimulus — The user performs an action, but something goes wrong and there is
never aresponse. For example, you send a letter to someone, but never get areply. For
short-term interactions this is immediately obvious — if you are waiting for a response and
nothing happens then you know that something is wrong. However, for long-term
interactions you camnot afford to do nothing for severa days waiting for a reply to a letter!
Therefore you need areminder that someone el se needs to do something — a to-be-done-to
list!

All the above problems have a negative effect on long-term interaction and they can cause
potentid falures in the work process. A previous work (Dix, 19924) focussed on the
problem of missng stimuli and proposed some potentid design solutions. Although it was
clear from that work that some of the problems could theoreticaly occur, it was difficult to
asess how prevaent they were without any empirica evidence.

A cae study was therefore carried out to vaidate the andyss in a red dtuation. The
problems due to missng simuli and long-term interaction are closely linked to issues of
interruptions on the work process as both cases cause disruptions in the flow of activities
within atask. Hence, the techniques used in the case sudy were designed to expose these
problems aswell.

2 Analytic method

A long-term cooperative process is fird divided into activities performed by either
individuas or groups and the interdependencies between these activities are recorded. The
activities and their interdependencies are then catalogued in a traditiona workflow fashion
but this only acts as the superstructure of the andyss. The focus is on when activities are
performed and whether they hgppen a dl. The main disinguishing aspect of thiswork is
the emphasi's placed on triggers that initiate activities.

Triggers

238

Appendix Case Study of Long-term Interaction

A trigger is essentidly an event, which makes the activity happen when it does. The method
used for andysing triggers is influenced by the status and event phenomena (Section 2.4.1).
Events am a informing, but more often initiaing actions, which in turn may generate further
events. The actions of agents may change the status of the agent or the world, but changes
in gatus are themselves events that may trigger further actions.

Triggers ensure the trangtion between activities. The dependencies between activitiesimply
that one activity is a pre-condition for another. Thisis precisely the sort of dependency that
is captured in aworkflow or process model (Warboys, 1994).

However, there will typicaly be a gap between the completion of one activity and the start
of the next — an event is therefore required to trigger each activity. Depending on the nature
of the trigger, one can determine the posshility or likdihood that an activity will be missed
or if the activity fails to occur, whether those falures will be noticed. For indance, if
someone has to remember to perform an activity, this involves sort-term memory and it
can be regarded as a fragile part of the process, especidly if it is performed in a complex
and busy environment.

The crucid aspect of this analysisis not to capture the events that enable an activity to carry
on — these are the preconditions. Instead, the focus is on the trigger — the event that made
the activity hgppen when it did.

Processes and activities
Processes are recorded as a series of circles or bubbles, each one representing an activity.
The bubble is labdled with the agent(s) who perform(s) the activity and the nature of the

activity. Lines between the bubbles record dependencies and arrows at the beginning of
each bubble record the trigger for the activity (figure 3).

trigger

preceeding - subsequent

activity the activity: activity(ies)
what isdone

dependency
Figure3. Recording processes

The case study adopted a minimalist approach for recording processes. Instead of
recording al the complexities of real processes in a sngle diagram, a number of separate
diagrams are used, often concentrating on a specific scenario. The crucid point is that for
esch activity we look for the corresponding trigger.

239

Appendix Case Study of Long-term Interaction

In generd, activity boundaries are placed wherever there isthe likelihood of adelay or gap.
The most obvious Stuation that shows such a bresk is when subsequent activities in a
process are performed by people a different Stes. However, there are often distinct
activities performed sequentidly by an individud. In principle, such an exercise could go
down to the full detall found in Hierarchicd Task Andyss (HTA) (Shepherd, 1995). This
would be reasonable if, say, interruptions were possible in the middle of typing aletter. But
for the purpose of this anadlyss, such fine-grained tasks are ignored in order to retain atight
focus on long-term interaction.

The term activity rather than action is deliberately used to indicate that the lowest level of
this andygs is far from atomic. Activities may be shared between individuds, for example
having a meeting or dictating a letter would gtill be regarded as a sngle activity involving
severd people. Again, one could dissect such an interaction further, but this would be the
remit of conversationa andyss. Furthermore, if an activity is of no intere or if thereis not
enough knowledge about it, its detalls are ignored. For ingtance, if a firm issues an order to
an externa organisation and then waits for the goods to arrive, the internal processes of the
externd organisation may not be of any interest to us.

Findly, certain activities that are normaly omitted in atraditiona process modd are included
here. In particular, the receipt of a message is treated as a distinct activity to emphasise the
gap that may occur between receipt and response.

3 Details of the study

The case study was based on a thorough investigation of the flow of work during the
adminigtration and organisation of a past HCI conference. A number of activities had to be
carried out prior to the actual conference and most of them required the coordination of
information among severd people a various Sites. Ann, the conference organiser acted as
the centrd coordinator in many of these activities. She was the first point of contact in any
enquiry, but this was only part of her work for the duration of the conference. Although the
sudy covered an extensive range of activities that Ann had to coordinate, the activities
relating to the flow of work during the life cycle of a paper were examined in detail (for a
longer report see (Dix et d., 1995)).

Most of the processes encountered in this case study were in lock-step and only made up a
gmdl part of Ann's overdl work. Data collection methods generdly used for traditiond

task andysis or requirement elicitation such as direct observation and documentation were
impractica for this sudy due to the long-term, ecologicaly rich and cross-organisationd
nature of the processes. Although documentation of long-term processes is likely to be
relatively accurate, it may omit the activities beyond organisationa boundaries, and above
al, most of the triggers. However documentation can be used as an initia framework and
later supplemented by observation or subsequent interviews.

Given that the processes of interest were geographically dispersed, direct observation was

inappropriate. The necessary protracted field studies would not be acceptable as a part of
norma commercia design practice. However, the lock-step nature of a conference is not

240

Appendix Case Study of Long-term Interaction

typica of office processes. In many office Stuations, there are severd instances of the same
process at different stages of completion, for instance, in an insurance office many dams are
processed, each at a different stage. In these cases, a day-in-the-life observation may be
aufficient as long as each activity seen during the study period can be pieced together

afterwards, even if the process in question is never seen to run from end to end.

The most effective way to gather information for the purpose of this case study was through
in-depth interviews. Interviewing is often regarded as problematic since the accounts
people give of their actions are frequently at odds with what they actudly do. However, the
interviewing exercise adopted here was governed by the andytic focus - the Structure
imposed by the process flow and the specific interest in triggers. This dlowed omissions
and inconsstencies to be traced back to produce reliable results from the interviews.
Studies of this nature should normadly be sustained by some additiond direct observation
but it is important that practical design should rely principaly on more directed and less
intrusive techniques.

Findly, the importance of environmenta cues gives a vitd source of information — the work
environment itsdf. Typical items found in an office include papers, files on the desk, podt-it
notes, contents of an in-tray, annotated wall calendar. So by just looking at those items one
can ask severd quedtions. For ingtance, why is that file Stting on the desk? What will
happen to it? What would happen if it were not there? Each item in the environment fulfils
a specific role and by its very presence one can determine the activity it triggers. At the
very least, apiece of paper |eft on the desk is saying, “file me pleasg’.

Example 1-paper submissions

The rest of this section will how consider some of the processes during the life cycle of a
paper and they are typica of any scientific conference.

The paper submission sub-process starts when the author sends the paper to the conference
office (figure 4). Ann receives the paper through the pogt, records its details in a database
and then files a copy of the paper, ready for subsequent review.

receive
acknowled-

receive file copy of
paper paper

record

Figure4. Paper submissions

241

Appendix Case Study of Long-term Interaction

Each activity above istriggered by a certain event.

Trigger @ is smply when the packet containing the paper resches Ann via a
communication channel, in this case it was by post. The posta system could be investigated
in detall but dnce it is an external organisation, it isignored. However, the possihility of a
failure due to the unreiability and timeliness of the medium of interaction is recorded, as this
will affect the whole system's operation. A possible solution to guard againgt such afailure
is to augment the exigting communication channel with a more reliable protocol. For
ingtance, eectronic mail could be used in pardld with postal mail, but this might result in a
gtuation where humans, unlike software, may find the additiona protocol too time
consuming to maintain. Moreover, the religbility of eectronic mail could be questioned as
well.

Ann did not immediately enter the paper’s details in the database. Instead, she waited until
asmall pile had accumulated before entering al the details together. Trigger @ istherefore
the pile of papers on the desk. Thistrigger is an environmenta cue that dlows Ann to pick
up the threads of her activities. Environmenta cues are important triggers that serve as
reminders. As soon as the paper detalls were recorded, Ann sent an acknowledgement to
the authors and filed a copy of the papers.

Both triggers @ and @ are such that in an interruption-free environment, the end of the
previous activity acts a trigger for the next activity. However, Ann may be interrupted for
some length of time while she is in the midst of sending an acknowledgement and filing a
copy of the paper. In case of an interruption, the secondary or fal-back trigger is
examined. The fall-back triggers for @ and @ are the same as @, in other words, the
unfiled papers on the desk.

Because the activities have the same trigger, an activity will potentidly ether be repesated
after an interruption or omitted entirdy (if Ann mistakenly thought an interruption had
previoudy occurred). Clearly, it is a mental strain to keep track of al the tasks one is
engaged in. If someone fals to complete or close tasks held in short-term memory, or is
prevented from doing so by interference, the subject is liable to lose track of what she is
doing and can consequently make errors. Luckily, Ann’s memory was good enough and
these problems were not encountered in this case. However, interruptions can have mgjor
consequences on the flow of work within a collaborative sysem (Rouncefield et d., 1994)
and itslikelihood should not be discarded.

Example 2-referee allocation

The next stage after the paper submission process was the referee alocation exercise (figure
5). The process starts with Ann sending the authors papers to the conference committee.
The committee holds a meeting to decide which paper is assigned to which referee. The
papers are afterwards sent back to Ann together with the decisons reached. Ann then
updates the database and dispatches the paper copies to the relevant referees.

242

Appendix Case Study of Long-term Interaction

receive
paper

Figure5. Refereeallocation

This is an interesting scenario as it highlights some new types of triggers. Trigger @ isthe
deadline that prompted Ann to forward the papers to the conference committee. As there
was only one deadline for dl the papers, it was not too difficult to remember the date.

Triggers @ and ® represent the communication channel through which Ann send the
papers to the committee and receives them back. In this caseit was viainternd mail, which
was ardatively rdiable medium.

Trigger ® is an externd event — here a meeting sesson, which dlowed decisions to be
made regarding referee alocation to papers.

Trigger @ directly follows from the previous activity, so as soon as the referees were
nominated, the conference committee sent the papers back to Ann.

Trigger ®, the papers on the desk, reminded Ann to update the database and allowed pick
up the thread of her activities.

Trigger @ directly follows from the previous activity and when faced with such a trigger,
interruption can disrupt the flow of the activities as highlighted in Example 1. For ingtance, if
Ann was interrupted in between updating the records and sending the papers and if the
paper was left lying on the desk she could enter the record twice; or eseif she did not see
the paper, she could assume that the paper was aready sent and omit sending it atogether,
athough the paper could have been midaid.

Example 3 -refereeing process

Asafind example, let us condder the refereeing process, which involves referees annotating
the papers they have received and sending the reviewed papers back to Ann (figure 6).

243

Appendix Case Study of Long-term Interaction

referee referee

receive annotate
paper paper

referee
“send T
refereed
paper

referee

receive
reminder

reminder

Figure6. Part of refereeing process

In this case, the agentsinvolved no longer reside within asingle organisation. Organisationd
boundaries have been crossed and the success of the whole process is entirely dependent
on the referees based at different locations. So how does Ann coordinate the referees
activities when there is a tempora gap between the dispatch of the papers and the return to
the referees’ reviews?

Trigger @, the deadline, enables Ann to regain control. If Ann does not kceive the
refereed papers by the date set for return, she sends reminders to the referees. As there
was only one deadline in this case, the date was easy to remember. However, if each paper
were dlowed a different date for submisson, Ann would have to keep track of deadline
dates periodicaly. When faced with a periodic action, one can ask how does the person
remember to perform the action at the appropriate time?

This scenario therefore shows that in along-term collaborative Stuation, especidly when the
control resides among different agents and when there is a gap between an event and its
subsequent action, it is vita to prevent activities getting out of synchronisation otherwise a
range of failures can occur.

244

Appendix Case Study of Long-term Interaction

4 Findings of the study

Although the initid am of this empiricd dudy was to verify the andyds of pace (Dix,
1994a), the techniques employed generated a range of interesting issues. Firdly, the
moddling of activities during the work process became clearer. Secondly, based on
previous theoreticd analyss and refined by the results of the study, different classes of
triggers emerged. Findly, a pattern of activities was discovered which might be regarded as
afundamenta unit of long-term work.

Types of triggers

From the examples dscussed in Section 3, trigger types recurred in various scenarios and
some generd classes of triggers emerged as follows.

(& Completion of previous activity — This is when one activity begins immediately after
the previous activity has reached completion. But we may treat this with suspicion -
does the second activity dways proceeds immediately? |If there is any chance of a gap
or interruption, we must look for secondary triggers.

(b) Memory (sporadic actions) — Very often, people have to remember that they need to
do something. For ingtance, when a request is made verbdly, the recipient has to
remember that the request is outstanding until ether it can be performed or some record
of the commitment is made. In the latter case, the recording of the commitment isitsdlf
an important activity.

(c) Periodic actions — These are actions that occur at regular intervas, for example,
reading email every morning. But when faced with a periodic action, how does one
remember to perform a certain task at the relevant period? It may be due to aroutine
behaviour one has acquired, such as conaulting a diary every morning. However, if it is
an hourly activity then one may ask how does the person know when it is the hour?
Perhaps the clock strikes or the watch beeps on the hour, but this is an externd sgnd
trigger (see below).

(d) Temporal gaps — Unlike periodic activities, tempora gaps are characterised by asingle
sggnificant moment or delay. For instance, we may need to perform a generic task by a
deadline or expect a response by a certain date. Again we must ask what makes a
person notice the actua event has occurred.

(e) External events— Very often, periodic actions and temporad events are sgndled by a
wristwatch or an automatic caendar set to pop up a reminder a a specific time. Also,
non-time based events may occur to prompt actions, for instance the completion of an
automatic activity, an event in the world or even the (electronic) receipt of amessage.

(f) Receipt of a message — This is a specid kind of externd event, which includes a
telephone call, aface-to-face request or the receipt of aletter or afax. Such events can

245

Appendix Case Study of Long-term Interaction

only be conddered to be the trigger for an action if that action occurs immediately after
the request is received. If the request is dedlt with later (as is more often the case) the
receipt of the request and the response to the request are treated as separate activities.
Furthermore, we have to record the rdiability of the communication media, the
possihility of communication delays and the consegquences of any failure in the channds.

(99 Environmental cues — These are thingsin our environment that remind us thet activities
ought to be done. Sometimes this may be explicit, like a diary entry or sometimes
implicit, such as a partly written letter in the typewriter. Environmenta cues may
manifest themsalves in paper form, for ingance, to-do-ligts, diaries, or in eectronic
form, such asan emal waiting in the in-box.

Triggers of type () and (b) are insecure as they are lidble to interruptions and poor memory
respectively. In each case, we look for a secondary or back-up trigger or where this is
absent, we look at the process as a whole and assess the consequences should the activity
fal totrigger & dll.

Other triggers dso lead to follow-on questions. For ingtance, if a tempora event (d) is
triggered because it isin adiary, what makes one look in the diary? It may possibly be due
to a periodic activity (c) in which case, how does one know when the period occurs?
Environmentd cues (g) are fundamenta but even here one must ask what makes a subject
notice a particular cue?

We can carry on asking such follow-up questions indefinitely, but & some point we must
stop and either assume that a trigger does dways occur as specified, or if not, assess the
reliability of the trigger and perhaps any delays associated with noticing it.

The 4Rs

Although the initia focus of this case sudy was on individud triggers, a pattern in the
processes emerged as they were recorded. This pattern was cdled the 4Rs Request,
Receipt, Response, Release. Figure 7 shows a amplified verson of figure 4, which
exemplifiesthe 4Rs.

author

receive
paper

request receipt response release

Figure7. The4Rs

The pattern of activities shows a generd sructure: request — someone sends a message (or
implicitly passes an object) requiring a certain action; receipt — the receiver receives the

246

Appendix Case Study of Long-term Interaction

message through a communication channd; response — the receiver performs the necessary
action; and release — the recaiver files or disposes of the things used during the process. At
this point, if the functiona goa has been achieved, the process can be consdered to have
reached completion.

Not only is the pattern of activities common between different processes, but a smilar
pattern can aso be seen in the types of triggers. Trigger @ is dways some form of
communication mode (trigger type (f)), and can be assessed for rdiability and timeliness.
Trigger @ is most likely to be the presence of a document or another object (trigger type
(g)), which activates the response activity. Trigger @ is the completion of the previous
activity (trigger type (a)), and it usualy removes the presence of the environmenta cue but
aso relies on its existence as a secondary trigger.

The aove pattern has saverd refinements, for example when a note is made of a verba
requedt, this adds an extra stage to the receipt activity. Another interesting variation is
linked to the response activity, which may involve more than one action. For instance, in
figure 4 the response conssted of two activities ‘enter record and ‘send
acknowledgement’. When faced with such a Situation, we need to look very carefully at the
triggers for the two parts of the response, as they may in fact be the same trigger. Thiswas
the case in figure 4 as both response activities were triggered by the presence of the pile of
papers on the dek. On the other hand, in some dStuations, for example receiving
information for filing, there may be no separate response as the response and release
activities are merged.

Figure 8 aso demondtrates a frequent aspect of the 4Rs - the response of one 4Rs pattern
forms the request activity initiating a new 4Rs pattern. For example, the response activity
‘send acknowledgement’ in figure 4 is itsdf a message to the author and may generate
another 4R sub-process. A chain of such iterative 4Rs patterns can creste a format for
long-term conversation. However, this generic pattern is a a much lower level than those
identified in speech-act theory (Winograd and Flores, 1986) and may thus be considered to
be the long-term interaction equivaent of adjacency pairs found in conversationa andyss.

Figure8. The4Rschain
5 Related approaches
The nature of the study discussed bears some smilarity with other approaches in the generd

field of the ‘socid andysis of work’, particularly workflow, speech-act theory, ethnography,

247

Appendix Case Study of Long-term Interaction

ethnomethodology and formd techniques including Petri Nets. The following poaints,
however, summarise the critica differences between the approach adopted here and the
above-mentioned disciplines.

Workflow

Workflow8 implies technologica solutions to improve the nature of work and usudly hints
a culturd changes. However, the case study was neither targeted at introducing any
technologicad solutions nor a dictating any culturd changess Mogt of the processes
considered crossed organisational boundaries and consequently they were unpredictable.

Unless some formd collaboration was established beforehand, workflow would have been
unsuccessful at ensuring that the links of communication and activity do not bresk down in
such an open environment.

Although the initid am of the study was not to automate the processes of work or even to
faclitate them through computerisation, as is the case with workflow, some design
implications were reached (see Section 6). So, to avoid confusion or disagreement over the
use of the term ‘workflow’, the gpproach adopted here is referred to as an investigation of
the 'flow of work', with its principa focus being on evertstriggering activities.

Speech-act theory

The basc sructure of speechract theory (SAT) consgts of dl possble stages in
conversationd interaction (Winograd and Flores, 1986) but the approach used in the case
sudy is more abstract. For example, the arrival of an emall message may be a potentia
trigger whereas SAT would analyse the contents of the emall itself. In contradt, the 4Rs
pattern is a alower level of granularity than SAT patterns such as conversation for action
(CfA) - each action pair in a SAT diagram expands to acomplete 4R.

Ethnography

Ethnography is committed to inquiring into patterns of interaction and collaboration, based
on the assumption that human activities are socidly organised (Hammerdey and Atkinson,
1995). The method used here is dso enquiring about a particular pattern but with a
difference. Ethnography has an open-ended gpproach of gathering information and is based
on the belief that one cannot know in advance of inquiry which eements of organisationd
life will prove to be of interest, vaue and importance for work (Randall, 1995). In contrast,
the case study started with a precise focus on triggers that initiate activities. Thisimpliesthat
certain aspects that an ethnographer would normaly record are ignored. However, a more
restricted approach is better suited to inform systems design unlike ethnographers open

18 One of the main centres within the workflow community - the Workflow Management Coalition, 1994
- hasdefined all the terms relating to workflow in organisations. Details available at
<http://www.aiai .ed.ac.uk/WfM C>

248

Appendix Case Study of Long-term Interaction

endedness, which is seen as a weskness when it is used for requirements capture
(Anderson, 1994).

Ethnomethodology

Ethnomethodology has aso been used within HCI (Suchman, 1987) as a particular form of
sociologicd andyds (Garfinkd, 1967). 1t involves obsarving, collecting and andysing data
and deciding what is rdevant about work activity as it redly is, rather than an idedised
conception of work as can be the case with process-moddling and workflow.
Ethnomethodology differs from other modes of sociology in thet it seeks to describe from
within the ways in which people actudly order ther work activities through mutud
attentiveness to what has to be done (Anderson, 1994). This case study aso ams to
describe peoples work activities, but again, its a priori focus on specific aspects of work
makes it distinct. Armed with the knowledge of what work had to be done, the am here
was to discover ‘breskdowns which could affect the completion of that work process.

Severd gudies (Bentley et a., 1992a), (Bentley et a., 1992b), (Heath et d., 1993), (Hesth
and Luff, 1994) have consdered the importance of the environment for how work is
executed. Traditiondly, such studies emphasise the socid actors and the close teamwork
within that environment. However, more recent sudies of office work (Herskind, 1997),
(Rouncefidd et d., 1994) have brought the surroundings in which people work and the
artefacts into the limdight, in particular recognising the importance of paper (Sdlen and
Harper, 1997). Thistrend is dso followed in this empiricd work but with a more specific
formulation of the purpose of artefacts astriggers for activity.

Formal techniques

Formad techniques have been gpplied to the study of time and collaboration including Petri
Nets (Johnson et al., 1995), (Paanque and Bastide, 1995), various forms of tempord and
modd logic (Dix, 1995b), (Johnson, 1997), (Reeves, 1996) and process agebras such as
LOTOS (Paterné and Faconti, 1992). Any of these methods could be used to capture
precedence relationship between the activities, but not the nature of triggers. However, a
sudy (Joosten, 1994) gpplied Petri Nets to model workflow and used the word trigger in
the same context, that is an event which initiates an activity. But this is where the smilarity
ended as the ecology of triggers was not investigated at the leve of detail found in this study.

249

Appendix Case Study of Long-term Interaction

6 Designimplications

The andyss employed in this empiricd study was initidly targeted a increesng the
understanding of long-term interaction, but in use, it has some direct desgn implications. It
can be used to determine whether a process is robust to interruptions and forgetfulness, and
if not, identify where potentia problems may occur.

Robustness of work process

The reliability of the work process can be assessed by asking specific questions about the
triggers for activiies However, it is inevitable that triggers will fal for some reason,
activities may be missed or perhaps the whole process may fall to continue because
something goes wrong somewhere. The combination of a process moded together with a
wel-founded assessment of the reliability of each activity can dlow us to assess the
robustness of the whole process.

If someone fals to complete an activity and consequently, the next activity is never
triggered, what happens? Does the whole process seize up, or will the falure be eventudly
noticed. The gpproach adopted in this case study is not Smply an ad hoc procedure, on the
contrary, one can systematicaly go to each trigger and ask: what happens to the entire
processif the trigger fals?

Furthermore, by looking a the process as a whole we can improve our assessment of the
religbility of any trigger. For indance, if the trigger for an activity is a report lying in
someone' s in-tray, we can examine the wider context and assess the likdihood of whether
the report will indeed be there when required.

Importance of environmental cues

As expected, the case study confirmed the importance of environmenta cues as one of the
principad and most robust triggering mechanisms. As mentioned above (Section 5) various
dudies have recognised the importance of the ecology of the workplace, including
whiteboards, cdendars, individud papers and piles on desks (Herskind, 1997),
(Rouncefield et d., 1994), (Sdlen and Harper, 1997). Indeed, in many cooperative
processes there may be little direct communication, instead activities are coordinated by
implicit communication through the artefact (Dix, 1994b).

This case study focussed on a particular role of these environmenta aes, namely their
ability to remind and trigger future actions. An understanding of the importance of papersis
essentid if there are plans to automate parts of an office procedure. One can assess
whether automation will bresk the existing work patterns and if so whether dternative cues
could be implemented in the new system.

Whereas many studies have concluded that papers are important, the analys's discussed
here takes this a step further by developing an understanding of why paper isimportant.

250

Appendix Case Study of Long-term Interaction

Applying triggers and the 4Rs

The 4Rs framework was applied in the MaPPIT Projectl® to andyse the exising work
processes and inform design decisions in developing a Lotus Notes?© implementation of the
student placement activity. The example scenarios are dscussed in detall in (Dix & 4.,
1998). Thisevauation process was particularly interesting in thet it raised some new issues
and confirmed some exigting bdliefs and these are summarised below.

Severd variations of the 4Rs process were encountered; some with multi-stage responses.
The posshilities of breskdowns in the work process as a result of interruptions,
forgetfulness and long ddays were clearly visble when the andyss was gpplied to the
different scenarios. Different levels of automation were suggested by the 4Rs andyss. At
one levd this involved the complete bypassng of the human process, but in others only part
of the procedures required automation. More importantly, the 4Rs analys's has ensured that
the automated solution does not hide exigsting triggers, as is often the case with eectronic
filing, but is ingead explicitly designed to enhance the triggers through the use of automatic
reminders and eectronic environmental cues.

Some of the solutions adopted included building navigators or agents into the automated
system to act as automatic reminders for triggering activities. Also, automatic submission of
data through Web browser forms was opted for to avoid losing data by handling it
physcdly. Another interesting implementation was the introduction of new environmenta
cues by creating Notes forms to record the receipts of data and monitor the flow of
processes.

The 4Rs framework was remarkably successful in describing petterns of activity and
prompting gppropriate questions to drive the Notes implementation. However the study
aso highlighted the fact that the sdlience of certain kinds of triggers could change over time.
As a result, environmenta cues could fail for exactly the same reasons that our memory
finds to-be-done-to items difficult. We camot therefore assume that the detailed triggers
are homogeneous over time. Ingead, we should establish by enquiry or observation
whether triggers vary in kind or sdience.

From the findings of the case study and its vaidation through the MaPR T Project, it isclear
that the broad techniques would be applicable to any process-oriented task andyd's, such
as Hierarchicd Task Andysis (Shepherd, 1995). Consequently, atrigger analys's technique
has been proposed (Dix et d., 2003) as a means for task decomposition, which can be
goplied in combination with many task anadysis and workflow methods. The novelty of this
gpproach lies in uncovering triggers that cause each subtask to occur at each step dong the
task decomposition process.

19 MaPPIT — Mapping the Placement Process with Information Technology, a HEFCE project. Details
available at: http://www.hud.ac.uk/scom/mappit/home2.htm

20 http://www.l otusnotes.com/home.nsf

251

Appendix Case Study of Long-term Interaction

7 Summary

This case study has focussed on the problems that arise during long-term interaction. In
particular, people may have difficulty in recdling the context of a ddayed response (action—
effect ggp), in resuming activities after an interruption (stimulus—response gap) and in
remembering the non-occurrence of anticipated events (missng stimulus). The problem of
gimulus-response gap cdls for to-do-ligts and aide mémoires while missing simulus requires
to-be-done-to ligts or Smilar reminders.

The above condderations led to an in-depth andyss of the importance of triggers in
initiging activities. Very often, it is assumed that an activity istriggered by the completion of
the previous activity. But this is unlikely to be the case in an office-based Situation due to
the competing demands and frequent interruptions. Triggers not only determine when a
particular activity occurs, but more importantly they also show whether that activity happens
aadl.

The investigation of the flow of work during the HCI conference was used as a case sudy
to vdidate the theoreticd andysis of temporad problems linked with prolonged interaction
such as interruptions and delays. It dso provided a deeper understanding of the issues and
problems surrounding long-term interaction. The findings were later vaidated by a second
case study, the MaPRIT project. Both studies have highlighted the collaborative aspects of
organisationd modelling and the importance of reminders as an enabling mechaniam for
resuming activities following delays and interruptions.

During the andysis of the first case sudy, a recurrent pattern of activities emerged and it
was named the 4Rs — Request, Receipt, Response, Release. This pattern is believed to be
a fundamenta unit of long-term work. The existence of generic patterns makes it easier to
uncover problems stuations quickly and to adapt solutions found in one Stuation to another.
Both studies have shown that the same sequence repeets itsdf with smilar triggers and
amilar falure modes. Any deviation in the 4Rs pattern indicated possible breakdown
points.

Problems are most likdly to occur when implementing changes in the work process by
automating exiding paper-based systems. This often leads to the loss of important
environmental cues. The 4Rs andysis adlows one to ask pertinent questions about the
triggers for activities and aso assess the rdiability of individud parts of a work process.
Furthermore, as confirmed by the second case study, the use of the 4Rs enabled the design
of semi-automated processes where physical environmenta cues were replaced and in
some cases, enhanced with eectronic cues.

The 4Rs framework can be applied to any process-oriented task andysis as it has some
very powerful desgn implications. Although the nature of the study gpplied here may at first
show some smilarity to other gpproaches in the generd fidd of the ‘socid andyss of
work’, there are however some crucid factors that distinguish thiswork. Its strength liesin
uncovering triggers that cause each process to occur. Triggers enable us to determine

252

Appendix Case Study of Long-term Interaction

whether a process is robugt to interruptions or forgetfulness and if not, identify the cause of
the failure and the indance where any problem islikely to arise.

253

