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ABSTRACT 
Reflective middleware has been proposed as an effective way to 
enhance adaptability of component-oriented middleware 
architectures. To be effectively adaptable, the implementation of 
reflective middleware needs to be modular. However, some 
recently emerged applications such as mobile, pervasive, and 
embedded applications have imposed more stringent modularity 
requirements to the middleware design. They require support for 
the conception of a minimal middleware while promoting fine-
grained modularity of reflective middleware features. The key 
problem is that fundamental mechanisms for decomposing 
reflective middleware implementations, such as object-oriented 
ones, suffer from not providing the proper means to achieve the 
required level of localizing reflection-specific concerns. This 
paper presents a systematic investigation on how aspect-oriented 
programming scales up to improve modularity of typical 
reflection-specific crosscutting concerns. We have quantitatively 
compared Java and AspectJ implementations of an OpenORB-
compliant reflective middleware using separation of concerns 
metrics.

 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques - 
Object-oriented design methods; D.2.8 [Software Engineering]: 
Metrics-Product metrics; D.3.3 [Programming languages]: 
Language Constructs and Features 

Keywords 

Reflective middleware, computational reflection, aspect-oriented 
programming, modularity, design patterns, metrics. 
1. INTRODUCTION 
Middleware platforms [12] provide high-level abstraction to make 
it easier the development of distributed component-based 
applications.  Traditional middleware architecture includes a 
variety of features to satisfy distinct application domains. This 
broad range of features has increased the popularity of such 
platforms but, on the other hand, it has increased the size and 
complexity of middleware systems. In addition, the black-box 
nature of conventional middleware makes it difficult to adapt it 

for a specific purpose. The idea of reflective middleware [15,17] 
has been recognized as a promising way to overcome these 
problems. It relies on computational reflection [23] to support 
configurability and adaptability of the platform. However, 
reflective architectures are not enough to broadly satisfy 
requirements imposed by some recently emerged applications 
such as mobile, pervasive, and embedded applications. Embedded 
applications, for instance, are resource constrained and demand a 
minimal middleware [9, 27].  
In fact, several researchers [15-18,34] have tried hard to push 
reflective middleware systems a step further by allowing the 
definition of customized instances of the platform with small 
resource footprints. It has been observed that the practical 
effectiveness of such middleware adaptability is directly 
dependent on the implementation model because it specifies the 
modular structure of the middleware internal elements [9, 27]. A 
proper modular implementation is also essential to the definition 
of a minimal middleware core that satisfies the memory and 
resource requirements of nowadays applications. However, 
highly-adaptable implementations of such systems have been 
often shown as a challenge because many of the core reflective 
features typically crosscut the modular object-oriented 
decomposition of the middleware architecture. Some examples 
are the mechanisms dedicated to support causal connection, state 
recovery of objects and meta-objects, and introspection about the 
binding process. These features have a broadly-scoped effect over 
the target component model, thereby both liming the conception 
of a minimal middleware and reducing its modularity and 
adaptability.  
In this context, it is important to systematically verify the 
suitability of Aspect-Oriented Programming (AOP) [4] to improve 
the modularity of reflective middleware systems. In this direction, 
there are some efforts [5,19-21,25] that use AOP to improve 
general middleware modularity. However, the authors commonly 
“aspectize” a certain category of crosscutting concerns, such as 
logging, monitoring, and statistics, which are not part of the core 
reflection model. Even works that explicitly deal with middleware 
architecture [20, 21] they do not address reflective middleware. 
Hence, there is no systematic study that investigates the impact of 
AOP on the modularity and configurability of elementary 
crosscutting concerns in reflective middleware design. In fact, 
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little attention has been given to analyze to what extent the 
aspectization of typical implementation models of reflective 
middleware architectures can address limitations of other 
decomposition paradigms such as object-orientation. Also there is 
no investigation that quantifies the benefits and drawbacks 
involving the interplay of reflective middleware and AOP.   
This paper presents an in-depth case study in which we have 
compared the modularity of object-oriented (OO) and aspect-
oriented (AO) implementations of a typical reflective middleware 
system. The case study is structured according to the OpenORB 
architecture [16], which is a precursor model of the reflective 
middleware idea. We have implemented both Java and AspectJ 
[29] versions of OpenORB. In order to produce a well 
modularized system, in both implementations we have used 
design patterns [1]. Our investigation complements the existing 
empirical body of knowledge in the component-oriented 
middleware arena, since our evaluation has quantified through a 
metric suite the effects of aspectizing a reflective middleware on 
primary modularity attributes, such as separation of concerns. Our 
analysis encompassed a plethora of elementary middleware 
features related to the underlying component model, the 
communication infrastructure, the acceptance and connection 
infrastructure, and reflection-specific concerns, such as causal 
connection and introspection of the binding process.     
 This paper is organized as follows. Section 2 presents the 
relevant information related to the setting of our experimental 
study. Section 3 discusses the OO design of the OpenORB 
middleware and its modularity problems; it also discusses the 
aspectization strategy for each of those problems. Section 4 
presents the quantitative modularity evaluation of the Java and 
AspectJ implementations. Section 5 discusses related work, while 
Section 6 presents the concluding remarks. 

2. STUDY SETTING 
This section describes the configuration of our empirical study. 
Our investigation is focused on assessing the positive and 
negative influences of AOP on the modularity of an OpenORB-
compliant reflective middleware [15]. Section 2.1 introduces the 
main concepts of reflective middleware, while Section 2.2 
describes the OpenORB model. Section 2.3 introduces the main 
comparison procedures and Section 2.4 describes our selected 
metrics suite for evaluating different modularity facets.  Finally, 
Section 2.5 discusses our measurement procedures. 

2.1 Reflective Middleware 
Reflective middleware relies on computational reflection [23] to 
define a causally connected self representation that supports 
inspection and adaptation of its behavior. Computational 
reflection is the ability of a system inspecting and manipulating 
its internal implementation. This is achieved by a two-level 
representation of the system: the base-level and the meta-level. 
The base-level is composed of base-objects. The meta-level is 
represented by meta-objects that monitor and influence the base-
level. The meta-level performs computation about the system 
itself. In reflective middleware platforms, the middleware core is 
represented by base-objects. Meta-objects are associated with 
base-objects and a causal connection allows that changes in the 
meta-level are reflected in the base-level and vice-versa.  

2.2 OpenORB Architecture 
OpenORB is a pioneer reflective middleware. Unlike the black-
box nature of traditional middleware, in the OpenORB component 
model the middleware is organized as a set of components and 
dynamic adaptation is supported by means of computational 
reflection. 
The main elements of OpenORB base-level are interfaces, local 
bindings, components and capsule. A component is a unit of 
independent deployment that provides and requires services via 
interfaces. Interactions between components are specified via 
interfaces.  Interfaces represent the access point of a component, 
the so-called ports. Each interface can export and import methods. 
Exported methods are those provided by a component while 
imported methods are those required by a component. Bindings 
between interfaces are themselves components. There are two 
types of bindings: local bindings and distributed bindings. A local 
binding associates exported interfaces with imported interfaces. 
They are used to bind interfaces that are in the same address space 
(capsule).  Distributed bindings are distributed components which 
may span capsule and machine boundaries [18]. They are 
composed of components bound by local bindings. A Capsule is a 
logical container of components that provides an API for loading 
and binding components. Connection between components of 
different capsules is through implicit and explicit bindings [18].  
An implicit binding is created between two remote interfaces with 
no interference of a programmer. This binding is used when an 
interface is imported. An explicit binding is created by a 
programmer and can be of the following types: Operational, 
Signal, Stream. An Operational binding is used to send method 
invocations and, optionally, to receive the result. A  Signal 
binding supports a set of  one-way signals. The   Stream  binding 
is similar to the signal binding except that it supports the 
transmission of continuous data such as audio and video. 
The OpenORB meta-level defines the reflective mechanisms that 
implements a causal connection with the base level. In order to 
organize the meta-level, OpenORB proposes four meta-models 
[15]: (1) Encapsulation: responsible for exposing the 
encapsulation provided by objects. It allows the inspection, 
modification and extension of the implementation of an object.  
This meta-model can be used to monitor and to control the access 
to an object, its attributes and methods; (2) Composition: 
responsible for providing the bindings graph of a component. 
Using this meta-model it is possible to insert, to remove and to 
replace components; (3) Environment: responsible for exposing 
the execution environment of each interface including method 
invocations for servers and clients.; (4) Resource: responsible for 
reifying and managing the resources used by each object. 

2.3 Comparison Procedures  
Our study has focused on the assessment of two versions of an 
OpenORB-compliant middleware implementation: an object-
oriented (OO) and an aspect-oriented (AO) version. First, we have 
used the Java programming language to develop the OO version. 
We have used a number of design patterns [1] in order to produce 
a well modularized design. The choice of the applied patterns was 
driven by maximizing the separation of reflection-specific 
concerns and other relevant middleware concerns in order to 
make them adaptable spots in the middleware implementation. 
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Afterwards, we have reengineered the existing Java 
implementation with AspectJ in order to produce the AO version 
of the middleware. We have tried to modularize the same 
concerns as in the Java implementation. However, the AspectJ 
version also relies on the use of aspects to modularize reflective 
middleware concerns which exhibited crosscutting behavior, and 
should not be modularly captured with the OO implementation. 
Where it was possible, we used the AspectJ solutions proposed by 
Hannemann and Kickzales [28] for implementing design patterns. 
We have compared the modularity of the Java and AspectJ 
implementations using the metrics suite described in the next 
section. Section 4 presents the evaluation results.  

2.4 The Modularity Metrics Suite 
The quantitative assessment was based on the application of a 
metrics suite [6] to the two versions of the middleware 
implementation. These metrics are useful to capture important 
modularity dimensions in the system design, namely separation of 
concerns (SoC), coupling, cohesion, and size. Due to space 
limitation, we are going to focus on discussing the SoC measures 
because they have provided the most interesting results. All the 
results for the coupling, cohesion and size measures can be found 
at [35]. 
The SoC [6] metrics capture the degree to which a single concern 
in the system maps to the design components (classes and 
aspects), operations (methods and advice), and lines of code. The 
used SoC metrics are briefly described in Table 1; an extensive 
explanation and justification about their value to assess 
modularity are out of the scope of this work and can be found at 
[6]. Table 1 presents a brief definition of each metric and 
associates them with the attributes measured by each one. These 
metrics have already been extensively used in several studies [3, 
5-7, 10], where they have been proved to be useful quality 
indicators. We have applied the chosen metrics to both Java and 
AspectJ versions.  

2.5 The Measurement Process. 
In the measurement process, the data collection of the SoC 
metrics was preceded by the shadowing of every class, interface 
and aspect in both implementations of the middleware. The 
shadowing consists of annotating elements in the code (e.g. 
attributes, operations, statements, and so on) that realize the 
implementation of relevant concerns [6]. In this case study, both 
AspectJ and Java implementations were shadowed according to 
the reflective middleware features that should be modularized in 
both solutions, and were the main subject of assessment in this 
work.  
In fact, we have treated both reflection-specific and other 
fundamental features of the middleware design as concerns of 
interest in order to investigate its crosscutting structure in both 

Java and AspectJ implementations. After the shadowing, the data 
of the SoC metrics (CDC, CDO, and CDLOC) was manually 
collected at that time (even though we have nowadays a 
measurement tool available for this purpose [30]). The other 
measurements for size, coupling, and cohesion were based on the 
use of our AJATO tool [30]. Since our selected metrics are 
oriented to fine-grained units such as CDLOC, we had an 
additional standardization task before collecting the data. This 
task aimed at ensuring that the two developed middleware 
versions implement the same functionalities. This activity also 
removed problems related to different coding styles. Section 3 
will describe some of the investigated solutions in both OO and 
AO implementations, while Section 4 presents the description of 
the measurement results and their analysis. 

3. ASPECTIZING REFLECTIVE 
MIDDLEWARE 
This section describes different situations of crosscutting that 
prevents proper modularity of the target reflective middleware 
system and also a subset of aspect-oriented solutions we have 
used to improve the modularization of such crosscutting 
middleware features. 
In this way, Figure 1 illustrates a slice of the OpenORB design, 
including some basic classes and behaviors defined by the 
reflective infrastructure to support adaptation, such as: 
Component, Port and ConcreteBind. Each component has one or 
more Ports which are implemented by Receptacles and Interfaces. 
To deal with the interaction between component ports, 
ConcreteBind is responsible for providing a mechanism to route 
the invocations to the proper target object. It also defines a 
binding state machine that allows redefining the binding flow 
during its execution. The central part of the open binding design 
is based on the Mediator pattern in order to route the invocations. 
The ConcreteBind class is in charge of coordinating the 
interaction among Ports. It also promotes loose coupling by 
avoiding that ports refer each other explicitly. This facility allows 
the designer to easily change the binding.  
To support the client invocation, Receptacle has a reference to the 
BindMediator, once this class operates on behalf of the client rule 
to invoke the functionalities defined on Interfaces. In order to 
provide the component functionalities, the Interface class has a 
reference to the object that implements the required functionality. 
Hence, Receptacle requires services and Interface provides 
services. 
In addition to the above description, it is possible to see that some 
concerns, such as the binding state machine definition and 
detection mechanism crosscut the design illustrated by Figure 1. 
Due to the limited space, many others crosscutting concerns listed 
in table 2 are not going to be described. 

Table 1. Metrics for Separation of Concerns 
Metrics Definitions 

Concern Diffusion over Components (CDC) Counts the number of classes and aspects whose main purpose is the implementation of a concern and 
the number of other classes and aspects that access them. 

Concern Diffusion over Operations (CDO) Counts the number of methods and advices whose main purpose is the implementation of a concern 
and the number of other methods and advices that access them. 

Concern Diffusions over LOC (CDLOC) Counts the number of transition points for each concern through the lines of code. Transition points 
are points in the code where there is a “concern switch”. 
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The binding state machine contains a number of state transitions 
that are related to the status of the resources, closing binding and 
aborting communication. Figure 1 depicts the design of the 
binding state machine as a gray box which defines the states of 
binding objects. The BindState interface provides a set of states 
such as connected and running which change according to the 
binding operation.  

 
Figure 2: State transitions involving open binding  

As illustrated in Figure 2, these state modifications crosscut all 
minimal core to ensure the state machine integrity. In order to 
define the current state, the attribute dbstate receives a predefined 
state within the some methods, such as makeRequest. Based on 
the defined state, a different set of operations are available or not 
to be executed. For example, if the dbstate is defined as 

connected, the application can perform more operations compared 
to the situation where the state is running. In addition to the 
different State behavior, each kind of binding has a different set 
of states and transitions points. Thus, different transitions points 
are scattered over the policies of signal, stream and operational 
bindings.  
In order to remove the scattered code produced by the state 
definition, we use AspectJ to promote a different strategy to 
manage the state transitions. Aspects are used to remove the state 
transitions from implementation of the binding policies; pointcuts 
and advice are respectively used to detect the transition points 
(join points) and to define the transition itself. This approach 
allows decoupling the states from each other and also facilitates 
the maintenance of the state transition control once the state 
transition code is located in an aspectual module. Thus, Figure 3 
describes how to separate state transactions from the core 
implementation. ChangeState defines pointcuts and advices to 
intercept all state-changing invocations. For instance, after the 
makeRequest execution, the result is used to define the new state 
of the binding. As a consequence of this modularized approach, it 
is straightforward to insert and change the state machine in order 
to adapt to new operational situations. It also promotes safer 
adaptation of the state machine, as the modular visibility of the 
transitions points helps the prediction of harmful change effects 
and the reliable insertion of new states. 
In addition to the binding state machine, reflective middleware 
allows to insert new functionalities in its internal implementation. 
This is achieved by a two-level representation of the system: the 
base-level and the meta-level. The base-level is composed of 
base-objects. The meta-level is represented by meta-objects that 

public Object makeRequest(String met, 
Object[] args){ 

               . . . 

  Class classes[] = null;    

  dbstate = new BindRunning(); 

  Class oClass = getTargetReceptacle(); 

  Method metExe = getMethod(met, args,   

                             oClass); 

  Object[] realargs = getArgs(met,args); 

  //invoke target method 

               . . . 

  dbstate = new BindConnected(); 

} 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Crosscutting Concerns in the OpenORB component infrastructure 
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monitor the base-level. The meta-level performs computation 
about the system itself. In reflective middleware platforms, the 
middleware core is represented by base-objects. Meta-objects are 
associated with base-objects and a causal connection allows that 
changes in the meta-level are reflected in the base-level and vice-
versa.  
However, the OO implementation of the reflective model imposes 
some restrictions to the ORB modularity, once the maintenance of 
the causal connection requires the intrusive introduction of 
reflection code across the component infrastructure. Reflection-
specific concerns are then superimposed to concerns specific to 
the component model. It occurs mainly because the causal 
connection needs to associate the base-objects with the meta-
objects and to guarantee that changes to the base-level are 
reflected into the meta-level and vice-versa. This inter-level state 
dependency between objects is critical for several reasons, such 
as: (i) it defines a tightly connected object model, and (ii) as the 
middleware system evolves, it tends to include more and more 
complex relationship between meta and base objects.  

 
Figure 3: Open binding state changing 

One of the main parts of the causal connection implementation is 
represented by the detection mechanism. This mechanism detects 
changes in the base-object and informs these occurrences to the 
appropriate meta-objects.  Figure 1 illustrates the design of the 
detection mechanism by dotted boxes which is centered on an 
instance of the Observer pattern [1].  It defines an one-to-many 
dependency involving a base-object and any number of meta-
objects so that, when the state of the base-object changes, all its 
meta-objects are automatically notified and updated. The goal of 
this OO decomposition is to support the reuse of base-objects 
without reusing their meta-objects, and vice versa. In addition, we 
can add a meta-object without modifying the base-object or other 
meta-objects. These features are compatible with the intention of 
causal connection. To maintain meta-objects in a consistent state, 
base-objects (Port, Component and Binding strategies) update the 
methods of its meta-objects whenever a change occurs that could 
make its meta-object state inconsistent with its own. After being 
informed of a change in the concrete base-object, a meta-object 
may query the base-object for information.  
Despite the methods that implement the causal connection are 
defined in the BaseObject class, the invocation of the update 
method is scattered within the code of many methods in the base-

objects hierarchy. The AO version of the OpenORB 
implementation defines an aspect to modularize the scattered code 
relative to the change detection mechanism. As a result, base-
level module implementations do not have to be aware of the 
meta-level elements. Figure 4 illustrates a slice of the 
DetectMechanism aspect which defines some pointcuts, one for 
each method where the causal connection should be monitored. 
For instance, subjectChange pointcut in Figure 4 monitors the 
execution of the Component.setName through the advice 
definition to update the meta-objects associated with it. Hence the 
implementation of the AO approach was able to remove all the 
dotted boxes that represent the change-detection crosscutting in 
Figure 1.  

 
Figure 4: Aspect to modularize change detections 

4. QUANTITATIVE EVALUATION 
This section describes the quantitative comparison of the Java and 
AspectJ implementations for the OpenORB-compliant reflective 
middleware, based on a suite of concern-oriented modularity 
metrics. The idea is to assess to what extent the AO and OO 
design elements (Section 3) and other ones defined in both 
OpenORB implementations support the middleware modularity. 
We present the results by means of tables that put side-by side the 
values of the metrics for the OO and AO versions of each target 
middleware system. We present the results of our analysis in 
terms of modularity measures with respect to separation of the 
reflective middleware concerns. Table 2 shows the obtained 
results for the three separations of concerns (SoC) metrics. 
The measures are presented according to elementary 
features of the reflective middleware, namely the 
underlying component model, the communication 
infrastructure, and reflection-specific concerns, such as 
causal connection and the meta-model. Table 2 also 
indicates the main OO design pattern used to implement 
each of the middleware elements. Due to space constraints, 
we have concentrated on the most important features and 
subfeatures of the reflective middleware. We have selected 
those features in which their modularity, according to our 
observation, has been suffered no impact (Section 4.1) and 
positive influences (Section 4.2) on the application of 
AOP. 

public aspect DetectionMechanism { 

 

protected pointcut subjectChange(Object obj): 
  call(public void Component.setName(String)) 
   && target(obj); 

. . . 

after(Object obj): subjectChange(obj) { 
    Object[] argss = thisJoinPoint.getArgs(); 
    Signature sig=(Signature)thisJoinPoint. 
                              getSignature(); 
    String operation = sig.getName(); 
    updateMetaObjects(obj, operation, argss); 
   } 
} 

pointcut changeState( 
 SignalBind bind) : execution( 
 public Object SignalBind.makeRequest(..)) 
                          && target(bind); 
   before(SignalBind bind)  : 
      changeState(bind) 
 {  bind.bdstate =  
                   new BindRunning();  
 } 
   after(SignalBind bind)  : 
 changeState(bind) 
 { 
           bind.bdstate =  
                new BindConnected();  
 } 
   . . . 
} 
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4.1 No Effect of AOP 
Table 2 omits the data relative to other elements in the component 
model, such as (i) the structure responsible for storing the list of 
components, interfaces and methods (implemented as Iterator 
pattern [1]), (ii) the alternative behaviors for binding (Template 
Method pattern), (iii) the unit representing the capsule (Singleton 
pattern) that controls the components made available by the 
OpenORB, and (iv) the main interface of OpenORB (Façade 
pattern). These elements are example parts of the core behavior of 
the OpenORB system that have been similarly implemented in 
Java and AspectJ. Similarly, we have not included other elements, 
such as the subfeatures of the acceptance/connection 
infrastructure and complementary mechanisms in the 
communication infrastructure. 

4.2 Increased Separation with AOP 
An analysis of Table 2 shows that the AO version of the 
middleware system performed better than the OO version for 
most the measures. In particular, the AspectJ version is superior 
for all the crosscutting concerns discussed in Section 3, such as 
the binding state, and the causal connection mechanisms. There 
was only one exception relative to the implementation of the 
message assembling mechanism, where it was clear that such a 
middleware feature has already been nicely realized through the 
OO implementation of the Builder pattern. There were some 
isolate points were the AO solution achieved a slightly worse 
result, namely: (i) the number of operations (CDO metric) to 
implement the functionality responsible for recovery states of 
objects and meta-objects, and (ii) the tally of modular units (CDC 
metric) to implement the causal connection feature. However, the 
other SoC metrics for the same features have compensated these 
punctual breakdowns. For example, although there are more 
operations dedicated to implement state recovery, they are 
localized in fewer components and with reduced amount of 
tangling or transition points (CDLOC metric). 

The SoC metrics indicate significant modularity improvements in 
a number of features and subfeatures of the aspectized reflective 
middleware, including binding, binding state, management of 
involved interfaces, remote invocation mechanism, and so forth. 
More importantly, the separation of all the reflection subfeatures 
relative to causal connection and metamodel has been clearly 
enhanced by the aspect-oriented mechanisms. The AspectJ 
superiority exceeds 50% in some cases, such as the level of 
tangling (CDLOC) in the implementation of the composite 
structure of components, causal connection, change notification of 
meta-objects, and metamodel composite. 

4.3 Study Constraints 
Our study focuses on the comparison of a single AO language - 
namely AspectJ – and an OO language. Although many ideas 
presented here also apply to other AO languages, some surely do 
not. Arguably, the employed metrics suite does not cover all the 
possible modularity dimensions. There are a number of other 
existing metrics and other modularity dimensions that we could 
be exploited in our study. We have decided to focus on the 
metrics described in Section 2.4 because they have already been 
proved to be effective quality indicators in several case studies 
(e.g. [3, 5-7, 10]). In fact, despite the well-known limitations of 
these metrics, they complement each other and are very useful 
when analyzed together. In addition, there is no way in a single 
study to explore all the possible measures. For every possible 
metrics suite there will be some dimensions that will remain 
uncovered. In addition, future case studies can use additional 
metrics and assess the aspectization of reflection-specific features 
using different modularity dimensions.  

5.  RELATED WORK 
There are a number of works that address adaptability of 
middleware platforms. The most representative work in this 
context are reflection-based middleware platforms 

Table 2. Quantifying Separation of Concerns 

 CDC CDO CDLOC Superior 
CONCERNS (Pattern) OO AO OO AO OO AO  Solution 

Component Model 10 4 18 17 30 2 AO+ 
. composite structure of components (Composite)  3 3 11 11 10 2 AO 
. binding 42 30 109 93 22 4 AO+ 
  .. binding state (State) 4 4 12 12 14 2 AO 
  .. managing required/provided interfaces (Mediator) 5 5 18 18 22 2 AO 
  .. remote invocation mechanism (Proxy) 24 19 69 59 2 2 AO 
  .. family of binding strategies (Strategy) 4 3 9 5 8 8 AO 
Communication Infrastructure 21 20 77 75 20 18 AO 
. message assembling (Builder)  8 8 28 28 10 10 = 
. isolation of API details (Adapter)  5 5 25 24 2 2 AO 
. efficient storage of connections (Flyweight)  11 10 29 27 20 18 AO 
Reflection Infrastructure   
. causal connection 9 11 21 19 38 18 AO 
  .. detection mechanism (Observer) 8 8 14 7 28 12 AO 
  .. capture mechanism (Memento) 4 2 8 12 12 8 AO 
. metamodel 8 6 22 18 16 8 AO+ 
  .. metamodel composite (Composite/Visitor) 4 3 7 7 6 2 AO 
  .. encapsulation (Decorator) 4 3 15 11 10 8 AO 
Success Total  1  vs. 10 1  vs. 11 0  vs. 13 0 vs. 16 
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[13,15,16,17,24] that exploit the power of adaptability provided 
by the reflective features. In this work we goes a step further by  
using AOP to modularize the scattered code of the reflective 
features and, as a consequence, to improve adaptability of 
reflective-based middleware since the reflective code can be 
removed and inserted according to the target application. This is 
an important differentiator of our work comparing to other non-
AOP and AOP middleware implementations.  
The idea of refactoring middleware implementation using AOP 
has been explored by certain authors [19-22]. The principles of 
Horizontal Decomposition (HD) were proposed in [20] in order to 
address the so-called “feature convolution” problem – the lack of 
modularity in the implementation of middleware features. This 
work focuses on defining horizontal decomposition guidelines 
and it applies the HD principles to implement ORBacus using 
AspectJ. It defines the functionalities that compose the 
middleware core and classifies them in three layers (IDL layer, 
messaging layer that defines synchronous invocations, and 
transport and protocol layer that implements IIOP) and the 
functionalities that can be represented by aspects: oneway 
invocation that supports asynchronous invocation, dynamic typing 
that implements reflective composition of remote invocations, the 
encoding conversion mechanism, and the local invocation 
supports. In [5] the HD principles are also applied to the 
Prevayler database system in order to validate the HD principles.  
Our research differs from HD-specific studies in the sense our 
main goal of our refactoring process is to improve middleware 
modularity while the other work aims to address performance. 
Second, we apply a number of modularity measures that evaluate 
the impact of AOP on the isolation of reflective features by 
comparing the AO and OO versions for the middleware system. 
In [21] a set of software metrics are also applied to the 
middleware implementation. However, reflective features are not 
exploited in this experimentation. The third difference is that the 
refactorization of the legacy middleware is incomplete. It does not 
provide a complete AO middleware. Our Open-Orb compliant 
implementation provides all the features of the reflective Open-
Orb model.  
Hannemann and Kiczales (HK) [28] have undertaken a qualitative 
study in which they have developed and compared Java and 
AspectJ [29] implementations of the 23 GoF patterns [1]. The 
basic idea was the identification of the common part of several 
patterns and the isolation of their implementations in aspectual 
modules. Nevertheless, for each of the 23 patterns they used a 
very simple example that made use of the pattern. In our work, we 
used design patterns in the Java and AspectJ versions of the 
middleware in order to guarantee we have good designs in both 
solutions. In the AspectJ version we used HK solutions for the 
patterns. However, since we use them in a real system, we have to 
make a number of changes in their solutions in order to use 
patterns in composition with others [8]. Our work aims at 
studying how these pattern implementations support the 
improvement of adaptability in the context of reflective 
middleware systems. In their study, HK undertook other types of 
analysis. 
Alice [26] exploits the container concept available in middleware 
for component-based software development and proposes a 
combination of a minimal container with AOP and Java 1.5 
Annotations. It uses the annotation facility to provide meta-

information about components and services.  It focuses on the 
improvement of container-based middleware, via AOP and 
Annotations. Our research differs from this one by focusing on 
the aspectization of reflective middleware. The evaluation of our 
implementation by a suite of software metrics is also an important 
difference from this work.   
The paper [31] proposes a Modelware methodology that combines 
the MDA (Model Driven Architecture) approach and AOP in 
order to address middleware customization and improve 
perfomance. However, this paper also does not assess the 
interplay of AOP and reflective middleware modularization. 
Finally, combining AOP and reflection is not a new idea. 
However, most of the existing works in the literature applies 
reflection to support AOP (e.g. [32]). In this work we apply AOP 
to modularize reflective features of a middleware platform in 
order to modularize them and to leverage the adaptability support 
provided by reflective middleware.  

5. FINAL REMARKS AND FUTURE 
WORK 
In this paper we have applied AOP to improve the modularity of 
reflective middleware by aspectizing reflection-specific 
crosscutting concerns. We have discussed how the reflective 
middleware features of a middleware crosscut the middleware 
architecture. We have quantitatively compared two OpenORB-
compliant reflective middleware implementations: an OO 
implementation in Java and an AO in AspectJ.  The quantitative 
evaluation showed that the AO version of the middleware is 
superior to the OO version in most of the crosscutting concerns. 
The SoC metrics showed significant modularity improvements 
mainly in the reflective features.  
As future work, we are planning to investigate to that extent the 
AO solution impacts positively and negatively on performance 
issues. We have made some initial performance measurements 
[35]. We have already found some preliminary limitations in the 
AspectJ version, such as the need to implement the binding 
manager as a singleton aspect [8], leading to serious performance 
bottlenecks [35]. In addition, we plan to directly compare AO 
solutions and reflective ones (e.g. [33]) for each of the 
middleware concerns (such as the binding state) analyzed in this 
first case study. Hence, we would be able to go a step forward on 
our empirical understanding about the comparison of AOP with 
other programming techniques (such as reflection) to implement 
modular reflective middleware. 
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