
[[Note on formatting. We used Word for draft, will redo in LaTeX for final version]]

[[references in form [[XX99]] for now to make it easier to transfer into LaTeX later]]

Modelling Devices for Natural Interaction

Alan Dix
12

Computing Department, InfoLab21

Lancaster University

Lancaster, UK

 Masitah Ghazali
3
 Devina Ramduny-Ellis

4

 Information Systems Department Computing Department, InfoLab21

 Universiti Putra Malaysia, Lancaster University

 Malaysia Lancaster, UK

Abstract

We do not interact with systems without first performing some physical action on a physical device.

This paper shows how formal notations and formal models can be developed to account for the

relationship between the physical devices that we actually press, twist or pull and their effects on

systems. We use state diagrams of each but find we have to extend these in order to account for

features such as bounce-back, where buttons or other controls are sprung. Critical to all is the fact that

we are physical creatures and so formal models have to take into account that physicality.

Keywords: physicality, interaction modelling, affordance, natural interaction, physical devices

1 Introduction

For some years we have been interested in understanding what makes some

interactions with physical devices seem ‘natural’ whilst others need to be carefully

learnt. Part of this lies in the fact that interacting with ordinary objects in the physical

world is natural to us, even as babes we reach out, explored our own hands, touched

our mothers’ faces, then played with balls and toys. Many aspects of physical

interaction are informed by culture and things we have learnt about the technological

world, but much is still common and would be equally natural if a person from two

hundred or even two thousand years ago were suddenly transported to the present.

1
 Supported by AHRC/EPSRC funded project DEPtH “Designing for Physicality” www.physicality.org

2
 Email: alan@hcibook.com

3
 Email: masitah@fsktm.upm.edu.my

4
 Email: devina@comp.lancs.ac.uk

Dix et al.

2

One aspect of our studies has been to try and unpack which properties of physical

interaction are essential to make them comprehensible, and which can be relaxed

[[GD03,D03,GD05]]. This can then be used to understand how to make digital

interactions themselves more natural, and thus inform several forms of design:

• pure digital interaction on a computer screen (although even this requires physical

devices, such as the mouse)

• novel tangible interactions where physical objects are endued with digital

properties (as found in tangible interaction, and ubiquitous computing)

• more mundane devices such as mobile phones or even electric kettles

A critical method for us has been to analyse in detail ordinary commonly used

artefacts such as an electric kettle or mini-disk controller (already looking very

dated!). We assume that when such devices appear easy to learn and use the

designers have often embodied, either explicitly or implicitly, their own

understanding of what makes interaction natural. So by this detailed analysis we

gradually mine this, often tacit, experience of successful designers.

In this paper we describe how, as part of this work, we use separate but connected

models of physical devices and of their digital effects. By separately modelling these

we can discuss the physical aspects of a device and also the extent to which this

relates sensibly to the digital aspects. In some ways this is similar to architectural

models from Seeheim on [[PH85]] that separate presentation from functionality, but

in these the different levels are all principally digital, with only Arch/Slinky making

an explicit attempt to discuss physical level of interaction [[U94]]. However, even

Arch/Slinky puts physical interaction as an additional (lowest) layer whilst we shall

see that physical devices embody aspects of at least dialogue-level interaction.

In the next section we unpack the way in which physical devices relate to their

digital effects on a system’s logical state and the kinds of feedback that occur.

Section 3 then reviews some critical related work. The bulk of this paper goes step by

step through a number of example devices and systems of increasing complexity and

builds up ways of describing these in terms of state diagrams and develops a formal

model of each. Finally we reflect on the lessons learnt and further work required to

obtain a complete model of physical interactions with digital devices.

2 Physical Devices and Feedback

When we use the term physical device in this paper we are using the word slightly

differently than is common. We use it to mean the actual physical button, knob or

other controls on their own. For example, when a light switch has properties when

torn from the wall and unwired – that is the physical device is the switch whether or

not it is connected to a light. In the case of a mobile phone think of the phone with its

innards removed – you can hold it, press its buttons etc., whether or not you get any

digital feedback. Sometimes the term ‘physical device’ would be used for the phone

together with its digital functionality, but by separating the two we aim to understand

better the relationship between them.

A critical aspect of interaction with both digital entities and in the physical world

is feedback. Feedback plays a major role in the theory and practice of usability:

Dix et al.

3

effective feedback was one of Shneiderman’s aspects of direct manipulation [[S83]],

one of Nielsen’s heuristics [[NM94]] and a substantial issue in the early formal

modelling of interactive systems captured in various forms of observability [[D91]].

Once we think of the physical device and the digital effects separately, we can

look at different ways in which users get feedback for their actions. Consider a mouse

button: you feel the button go down, but also see an icon highlight on screen.

Figure 1. Multiple feedback loops

Figure 1 shows some of these feedback loops. Unless the user is implanted with

a brain-reading device, all interactions with the machine start with some physical

action (a). This could include making sounds, but here we will focus on bodily

actions such as turning a knob, pressing a button, dragging a mouse. In many cases

this physical action will have an effect on the device: the mouse button goes down, or

the knob rotates and this gives rise to the most direct physical feedback loop (A)

where you feel the movement (c) or see the effect on the physical device (b).

In order for there to be any digital effect on the underlying logical system the

changes effected on the device through the user’s physical actions must be sensed (i).

For example, a key press causes an electrical connection detected by the keyboard

controller. This may give rise to a very immediate feedback associated with the

device; for example, a simulated key click or an indicator light on an on/off switch

(ii). In some cases this immediate loop (B) may be indistinguishable from actual

physical feedback from the device (e.g. force feedback) in other cases, such as the

on/off indicator light, it is clearly not a physical effect, but still proximity in space and

immediacy of effect may make it feel like part of the device.

The sensed input (i) will also cause internal effects on the logical system,

changing internal state of logical objects; for a GUI interface this may be changed

Dix et al.

4

text, for a MP3 player a new track or increased volume. This change to the logical

state then often causes a virtual effect (iii) on a visual or audible display; for example

an LCD showing the track number (iii). When the user perceives these changes (d)

we get a semantic feedback loop (C). In direct manipulation systems the aim is to

make this loop so rapid that it feels just like a physical action on the virtual objects.

Finally, some systems affect the physical environment in more radical ways than

changing screen content. For example, a washing machine starts to fill with water, or

a light goes on. These physical effects (iv) may then be perceived by the user (e)

giving additional semantic feedback and so setting up a fourth feedback loop (D).

For the purposes of this paper we will not care much whether the final semantic

effect and feedback is virtual (loop (C)) or physical (loop (D)) as it is the physical

device that we are most interested in.

3 Related Work

The most obvious connection to this work is Gibson’s concept of affordances [[G86]].

For a simple physical object, such as a cup, there is no separate logical state and

simple affordances are about the physical manipulations that are possible ((a) in

Figure 1) and the level to which these are understood by the user: Norman’s ‘real’ and

perceived affordances [[N99]]. For a more complex, mediated interface the effect on

the logical state becomes critical: the speaker dial affords turning but at another level

affords changing the volume. Hartson [[H03]] introduces a rich vocabulary of

different kinds of affordances to deal with some of these mediated interactions.

Benford et al.’s SSD framework [[BS03]] deals with this relationship between the

physical device and logical state. It considers three aspects of the relationship:

sensable – the aspects of the physical device can be sensed or monitored by the

system, sensible – the actions that the user might reasonably do to the device, and

desirable – the attributes and functionality of the logical system that the user might

need to control. This is used to explore the design space and mismatches between the

sensible, sensable and desirable may suggest options for re-design. In Figure 1, the

sensable aspects correspond to (i), whilst the sensible ones refer to possible actions

(‘real’ affordances) of the device (a) that the user might reasonably perform. The

desirable part of the framework refers to the internal possibilities of the logical state.

Note what is sensible to do with a device depends partly on perceived affordances and

partly on the user’s mental model of the device and its associated logical state.

The concept of fluidity, introduced in Dix et al. [[DF04]] and expanded in the

work leading to this paper, is focused on the way in which this mapping is naturally

related to the physical properties of the device. Whereas the SSD framework is

primarily concerned with what it is possible to achieve, fluidity is focused on what is

natural to achieve.

The work that is closest in concept to our own is Interaction Frogger [[WD04]].

This discusses three kinds of feedback functional feedback, augmented feedback and

inherent feedback, which correspond almost exactly to the loops (A), (B) and (C)

respectively. Physical feedback in the environment (loop (D)) is not explicitly

described in their work, but would presumably fall under functional feedback. As

well as feedback, the Frogger work looks at feedforward against each loop, where

Dix et al.

5

feedforward is, rather like Norman’s perceived affordance, about the different ways a

device/system can expose its action potential. Critically too, this work, like our own,

is interested in what makes interaction natural and brings out particular qualities that

impact this: time, location, direction, dynamics, modality and expression.

4 Exposed States and Physical–Logical Mapping

4.1 Example – up/down light switch

One of the simplest examples of a physical device is a simple on/off light switch. In

this case the switch has exactly two states up and down and pressing the switch

changes the state (Figure 2.i).

Actually even this is not that simple as the kind of press you give the switch

depends on whether it is up and you want to press it down or down and you want to

press it up. For most switches you will not even be aware of this difference because it

is obvious which way to press the switch … it is obvious which way to press it

because the current state of the switch is immediately visible.

Note that the switch has a perceivable up/down state whether or not it is actually

connected to a light and whether or not the light works.

The logical system being controlled by the device also has states and figure 2.ii

shows these in the case of the light bulb simply on or off. (in fact the light bulb may

also be broken, but we are ignoring faults for this discussion).

 (i) (ii)

Figure 2. Light switch (i) physical device (ii) logical states

Of course in the case of a simple light switch the states of the physical device are

in a one-to-one mapping with those of the logical system being controlled. In previous

work we have used the term exposed state [[GD03]] to refer to the way that

perceivable state of the device becomes surrogate for the logical state and makes it

also immediately perceivable. In the case of turning on an incandescent light bulb in

the same room as the light switch, this is a moot point as the semantic feedback itself

is immediate and direct. However, in some cases there may be a delay in the semantic

response (e.g. neon lights starting up, kettle when first tuned on) or it may be hidden

Dix et al.

6

(e.g. external security lighting); in these case the feedback inherent in the device is not

just very obvious, but may be the only immediate feedback.

4.2 Formal Model

We can model this kind of behaviour more generically. We denote by UA the set

of potential user actions such as ‘push up’; these may be particular to a specific device

‘push button A’ as our environment affects our action possibilities. We use PA to

denote the set of perceivable attributes of the world “light is shining”, “switch is up”.

The full perceivable state of the world is composed of the different perceivable effects

and there may be masking effects if light 1 is on we may not be able to tell that light 2

is on also. However, for simplification we will just assume these are individually

identifiable – at least potentially perceivable.

The physical device we model as a simple state transition network:

DS – physical states of device

DT DS DS – possible device transitions

In the light switch every transition (only two!) is possible, but in some situations

this may not be the case. Hence the physically possible transitions are a subset of all

conceivable from–to pairs. Some of these transitions are controlled by user actions:

action: UA DT – n–m partial relation

Note that this relation is n-to-m, that is the same user action may have an effect in

several states (with different effect) and a single transition may be caused by several

possible user actions (e.g. pressing light switch with left or right hand). In addition

neither side is surjective, some physically possible transitions may not be directly

controllable by the user (e.g. lifting large weight, pulling out a push-in switch) and

some user actions may have no effect in the device in any state (e.g. blowing your

nose). However, for exposed-state devices we will normally expect that the states are

completely controllable by the user within the physical constraints of the device:

controllable-state action is surjective

Aspects of the user’s state may be perceivable by the user:

ddisp: DS PA

And in the case of exposed state each device state is uniquely identifiable by its

visible or other perceivable attributes:

exposed-device-state ddisp is injective

Finally the logical system also has states which themselves may be perceivable

via the feedback loops C or D.

LS – logical states of system

ldisp: LS PA

For any system we can define a map describing which device states and logical

states can occur together:

state-mapping: DS LS

The precise nature of this mapping depends on the operation of the system. In

some cases like the light switch this is a one-to-one mapping between the physical

device and logical states and this is precisely what we mean by exposed state.

exposed-state state-mapping is one-to-one

Dix et al.

7

Note also that user actions such as pressing a button are not simply ‘events’, but

are protracted over time and vary in force. An additional way in which the user gets

feedback on the state of the device and appropriate actions is by ‘trying out’ an action,

often unconsciously, and if there is a small give in the device continuing the action

and increasing pressure until the user action causes a change in state of the device.

The importance of this kind of effects are hinted at by Gaver in 1991, when he

introduced sequential affordances [[G91]], and are clearly part of design practice, but

not discussed more explicitly to our knowledge in the HCI literature. We do not

explore this fully in this paper, but some aspects that are critical to the argument.

5 Bounce Back Buttons

5.1 Example – push on/off switch

A more complex behaviour occurs with bounce-back buttons or other devices where

there is some form of unstable state (pressed in, twisted) where you need to maintain

constant pressure to maintain the state. Figure 3.i shows a typical example of a

computer on/off switch. One press and release turns it on, a second turns it off.

 (i) (ii)

Figure 3. (i) On/Off control with bounce back – is it on or off now?

(ii) On/Off button with indicator light

Note, following the discussion at the end of the last section, that the user action

here, – pressing the button – is not discrete, but involves pressing until it ‘gives’ then

releasing. While you maintain pressure the button stays in, it is when you release that

it comes out again. However, the button comes out not because you pull it out with

your release of pressure, but because it is internally sprung – the bounce-back.

Bounce-back buttons are found everywhere, from keyboards, to mice to

television sets. They typically do not expose the state of the underlying system as

there is just one stable state of the physical device and it is the history of dynamic

interactions with it that is important (on or off, what channel). The temporary

unstable states of the device are maintained by the continued pressure so are

distinguishable, while they are maintained, but the physical device itself does not

maintain a record of its interaction in the way a rocker switch does.

Because the device does not itself expose the state of the underlying system

(there is no feedback loop A for the state) we get potential problems of hidden state

[[GD03]]. Sometimes this is not an issue because the semantic feedback (loop C or

Dix et al.

8

D) is sufficient – for example, switching channels on a television set. However, even

where there is semantic feedback this may be ambiguous (switching channels during

advertisement break) or delayed (the period while a computer starts to boot, but is not

yet showing things on screen). In such cases supplemental feedback (loop B) close to

the device is often used, such as a power light on or near the switch (Fig 3.ii).

Where the device does not have an intrinsic obvious tactile or audible feedback

(e.g., click of the switch or feeing of ‘give’ as it goes in) then supplemental loop (B)

feedback may be given for the transitions as well as the states. Simulated key clicks

or other sounds are common, but also, more occasionally, simulated tactile feedback

can be used, as in the BMW iDrive.

From a design consideration indirect feedback, whilst less effective, is useful in

situations where the complexity of the underlying system exceeds the potential states

of the device. In particular, bounce-back controls are used precisely (but not only)

when we wish to transform user’s continuous actions into discrete events.

5.2 Formal Model

We can inherit much of the same machinery from simple exposed-state devices.

However, in addition to transitions controlled by the user we have bounce-back

transitions. We label them Z (after Zebedee and the fact that Z and S are used for left-

and right-handed helices). In the example here there is only one action leading to the

states and thus it is clear what kind of user tension needs to be released in order for

the bounce-back to happen. Sometimes (and we will see an example later) there is

more than one tension simultaneously for a state, so we need to label the bounce-

backs by the kind of release of tension (in terms of user action) that is being released.

Z: UA DT

The states that are the subject of bounce-back transitions are transitory states for

that user action:

 a UA transitory-states(a) { d DS, st. (d,d’) Z(a) }

Furthermore a transitory state for a user action cannot be the source of the same

user-controlled transition and must have been reached by that user action:

 a UA

 transitory-states(a) dom(action(a)) = {}

 transitory-states(a) range(action(a))

Figure 4 shows the example of the computer switch with the bounce-back

transition shown as a zig-zag line (spring) and the transitory state (IN) dotted.

While exposed state devices can have a one-to-one mapping between logical

sates and physical states, here the relationship is based on the events. Formally we

define this first by associating events from a set Ev with physical state transitions:

trigger: DT Ev

This mapping may be partial as not every transition will cause an event and the μ

‘no event’ has been added to explicitly mark this. Also it is typically the case that

only user-controlled transitions cause events (dom trigger range action), because

once you have pressed a switch you are committed. However, there are exceptions

such as the ‘drop’ (release the button) when you drag and drop with a mouse.

Dix et al.

9

Figure 4. States of bounce-back button

These events then cause transitions in the logical system:

doit: Ev LS LS

Figure 5 shows the physical device STN annotated with an event (a) and the

effect of the event on the logical state (computer power). Note that in this example

(and it is common!) there is no reason why the system could not have been designed

with exposed state, for example a button that stays depressed an requires an extra

push to release it. This design choice is often motivated by the aim to have a smooth

surface although in the example in Figure 3.ii the switch is part of an embellishment

anyway, so even this aesthetic reason seems to be absent.

 (i) (ii)

Figure 5. (i) physical states changes trigger event (a)

(ii) logical state changes based on events

5.3 Recapitulation – the exposed state switch

Using this expression of push-back we could in principle use this to model the

exposed state switch capturing the fact that pressure has to be initially exerted and

some slight give is felt until the switch eventually yields and flips to the new state.

Figure 6.i shows this with transitory states for when the switch is up and just being

Dix et al.

10

pushed down. If you release before putting sufficient pressure on it snaps back to UP,

but if the pressure is sufficient the switch yields and goes to the new state.

This yielding is rather like bounce back in that once the critical point is reached

the device just goes of its own accord. However, we have drawn it slightly different

(less off a spring and more of lightening bolt in order to emphasise that this is going

‘with’ the user’s action and it is the point at which the ‘commitment’ occurs.

 (i) (ii)

Figure 6. Capturing initial pressure on exposed state switch

(i) detailed model using bounce-back

(ii) more convenient shorthand

Note that in figure 6.i a transition is included for “press up” in the Up state which

simply leaves the switch in the UP state. This distinguishes ‘press down’, for which

there is a little give with a small pressure, from ‘press up’, for which there is no give.

Thus we can begin to capture some of the nature of Gaver’s sequential affordances.

In fact to model this completely we would need to include degrees of pressure

and the fact that there is no just one half pressed-down state, but a whole series

requiring increasing pressure. This is not captured by a finite state diagram or

description and would require a full status–event description as we are talking here

about interstitial behaviour (the interaction between events) and status–status

mapping (more pressed = more down) [[DA96]]. This is also reminiscent of Buxton’s

three-state model for pointing devices, where the degree of finger pressure is one of

the critical distinctions between abstract states [[B90]].

Figure 6.i is rather complicated and whilst useful in order to clarify detailed

behaviour, would be a little noisy for real design use. Figure 6.ii shows a shorthand

that emphasises the slight give of the press down action in the UP state by the comic-

book-style movement arcs. In fact, we will omit even this as in all the cases in this

paper every action we examine has this slight give property. This form of shorthand

would be useful in cases where some controls are operated on the slightest pressure –

Dix et al.

11

typically fully electronic ones. Formally we can capture this by a simple ‘has-give’

predicate over user actions in particular states.

6. Time-dependent devices

6.1 Example – Track/Volume Selector

Our next level of complexity are devices such as keyboards with auto-repeat or,

tuning controls on car radios where things happen depending on how long you have

been in a state. Figure 7.i shows a mini-disk controller. The knob at the end can be

pulled in or out turned to the left or right. Figure 7.ii shows this physical state

transition diagram of the device. This would probably be better described using two

STNs one for in-out and one for left-right, but as they are coupled in a single control

we are showing all the transitions to give an idea of the total complexity of even such

a simple thing as one knob!

 (i) (ii)

Figure 7. (i) minidisk controller (ii) device states

Whether the knob is pulled in or out determines whether it is affecting the volume

or track selection and the amount of time it is pushed to the left or right moves the

volume/track selection up or down. The former is a simple mode effect … and a

tension mode carries its own feedback, so is a god design feature. However, we shall

focus on the left-right twists and their time behaviour.

To do this figure 8.i shows just the left-right part of the diagram (actually in the

‘out’ condition) for when it is controlling track selection and figure 8.ii shows the

state diagram for the logical system, the selected track. Like figure 5 we use event

labels to match the two. However, for this device we have had to augment the device

transitions with additional timed transitions. Figure 8.i is thus not the raw device

states, but something slightly different as it also includes implicit events. From a

usability point of view these have a different status as the user is not performing clear

actions. For example, a very easy ‘undo’ is more critical than for more deliberate

user’s actions. However we have still treated these timed events in the device as the

Dix et al.

12

user is aware that they are holding the device in tension – while the exact times when

events are triggered is not totally under the user’s control (unless they have a

millisecond clock in their heads!), still the fact that it is being held is readily apparent.

 (i) (ii)

Figure 8. minidisk (i) time augmented device (ii) logical states

6.2 Formal Model

Notice that everything in figure 7.ii, with the exception of CENTRE-IN, is a tension

state. However, there are actually two kinds of tension demonstrating why we needed

to label transitory states and bounce-backs by user actions in section 4.2.

In Figure 8.i we draw the timed events as if they were transitions, however we

model them simply as an aspect of the state. This is because for the user the system

does not make little transitions to the same state, it simply stays in the tension state.

There may also be real timed transitions, but these are more often in response to

things happening in the logical state, which we discuss in the next section. So all we

need to do is say in which state and how often and frequently the timed events occur.

time-trigger: DS x Time x Kind Ev

Here Time is as in gap between moments rather than time on the clock, and Kind

is either PERIODIC or SINGLE

Note that this is another example of interstitial behaviour and shows again that a

more fine-grained model would need to use a full status–event description. Also to

express precisely the semantics of time-trigger we need to use a real-time model.

Timed events regarded as part of the device would typically be in a tension state.

Note that this is an example of the design principle from status–event analysis that

normally trajectory dependent effects (those where the path of movement matters, not

just its end point) should take place in tension states [[D91]].

Dix et al.

13

7. Controlled state and compliant interaction

7.1 Example – Washing Machine and Electric Kettle

Finally we come to devices where the state of the physical device is affected by the

underlying logical system as well as vice versa. Consider a washing machine control

knob that sets the programme (Figure 9.i) or an electric kettle switch (Figure 9.ii). In

each case the user can control the device: twisting the knob to set the programme or

pushing up or down the kettle switch to turn on an off the kettle. However, in

addition the underlying logical system can also effect the physical device. In the case

of the washing machine as the clothes are washed the dial usually moves round to act

as a display of the current state of the programme. In the case of the kettle, when the

water boil many kettles both switch themselves off and at the same time release the

switch. We say that this kind of device has controlled state.

In fact both systems also exhibit compliant interaction [[GD03]] where the

system control of the physical device operates in a compatible way to the user control:

with the kettle the user can turn the switch off or the system can. Of course there are

usually limits to compliant interaction: the kettle does not turn itself on and the user

turning the knob to the end of the wash cycle does not magically wash the clothes!

 (i) (ii)

Figure 9. compliant interaction (i) washing machine knob (ii) kettle switch

Figure 10 shows the state diagram for the kettle switch and also the state of the

power and water. Strictly thee are two sub-systems in the kettle the power (ON/OFF)

influencing the water temperature (continuous scale), but for simplicity we have

shown the water state as simply boiling vs. not boiling and only as sub-states of the

POWER-ON state. The arrows between the device and logical state show that there is

an exposed state for the electrical power system. The little lightening arrow from the

water’s BOILING state shows that simply being in the state triggers the system action

‘system down’. Like user actions in the physical world this is protracted and lasts as

long as the kettle is boiling, it is not simply an event at the moment boiling is first

sensed. This possibility of an autonomous action is shown by the dashed transition on

the state diagram for the physical switch.

Note how the system action and the user action to switch off the kettle are both

operating in exactly the same way on the physical device. Note also that if the user is

pushing up when the system is trying to switch the kettle off there is a conflict and

whether the switch goes off or not depends on who is stronger! For most electric

kettles the automatic switching off is usually weaker than the user’s ability to hold the

Dix et al.

14

switch up (usually simply releasing a catch) so it is possible to boil the kettle when

dry. You could imagine a kettle design where the power was switch off by the system

when the water was boiling irrespective of whether the user allows the switch to go

down, in this case we would have similar device states, but a different logical state

transitions and no exposed state mapping.

 (i) (ii)

Figure 10. electric kettle (i) kettle switch (ii) power and water

7.2 Formal Model

To deal with these kinds of devices we need to add a set of system actions SA and

have a mapping that says which systems actions are triggered by which logical stats:

sys-trigger: LS set(SA)

These system actions will then have their effect on device state transitions just

like user actions:

sys-action: SA DT – n–m partial relation

Just like user actions it is possible that a single system action may gave different

effects in different device states and that several system actions might be possible in a

single device state. However, when it is an exposed state system, like the kettle, it is

likely that the system actions are very specific for a particular state. Indeed if there is

a state-mapping, then there should be some consistency between the system state(s)

that correspond to a device state and the system actions pertaining to each:

 a SA, s LS

 a sys-trigger(s) d DS st. (d,s) state_mapping

 a SA, d DS

 d dom(sys-action(s)) s LS st. (d,s) state_mapping

The first of these says that is a logical state can trigger a system action then at

least one of the device states consistent with that logical state must take account of

that system action. The second says the converse that if a device state can be affected

by a system action then it must be possible for one of the logical states consistent with

that device states to generate the action.

Either of these conditions may be broken, but would suggest that some aspect of

he physical device is not being fully utilised, or some signal from the logical device is

Dix et al.

15

being ignored. This may be an intended effect of the combination, but certainly

merits checking.

Finally for this example, the logical system state itself was more complex. We

had two subsystems power and water, which we represent by abstraction functions:

power: LS PowerState

water: LS WaterState

When the two sub-systems are orthogonal (any combination of sub-system states

is possible) and between them completely define the logical state, then LS is simply

the Cartesian product of the sub-system states and the abstraction functions simply the

component mappings.

Given such sub-system mappings we can define what it means for the system to

exhibit exposed state relative to a sub-system:

exposed-state wrt. power (power state-mapping) is one-to-one

Discussion

We have used a number of examples to show different ways in which the physical

states of a device can interact with the logical states of the system. These have

reinforced the importance of distinguishing the two and being able to talk about the

sometimes quite subtle differences between what might appear to be similar controls.

Each example has dealt with a different property that we have introduced in

previous work: exposed state, hidden state, bounce-back, controlled state and

compliant interaction. For each of these we have (i) discussed examples informally,

then (ii) expressed the examples using parallel state transition networks for the

physical and logical states and (iii) given these semantics using a formal model. We

have introduced the formal model piecewise as each property requires additional

elements in the model.

For practical design the variants of STNs would seem more appropriate than the

model, although the later gives the former a more precise semantics. The simpler

examples and the relationship between the physical and logical STNs could be dealt

with using standard notations and certainly could be translated into state-charts or

similar notations. However, as we looked at more complex properties such as bounce-

back we had to extend standard state-transition networks to represent the additional

effects. This exposes design issues such then appropriate use of tension states.

One of the reasons for these extensions is that human action and physical device

interaction is not simply a matter of ‘events’ occurring and their discrete effects on

state. In real life we interact continuously and experience continuous responses; we

exert force and feel pressure. However, when we also experience discontinuous

effects, both with physical devices (when the light switch snaps to a new position) and

in more so in digital interactions. This suggests that a deeper semantics based on

status–event analysis is still needed in order to map the still discrete formal modelling

of this paper into something approaching the physics of real life.

Dix et al.

16

References

[1} [[BS03]] Benford, S., Schnadelbach, H., Koleva B., Gaver, B., Schmidt, A., Boucher, A., Steed,

A., Anastasi, R., Greenhalgh, C., Rodden, T., and Gellersen, H. Sensible, Sensable and Desirable:

A Framework for Designing Physical Interfaces. Technical Report Equator-03-003, Equator, 2003

(www.equator.ac.uk)

[2} [[B90]] Buxton, W. A Three-State Model of Graphical Input. In D. Diaper et al. (Eds), Human-

Computer Interaction - INTERACT '90. Amsterdam: Elsevier Science Publishers B.V. (North-

Holland), (1990), 449-456.

[3} [[D91]] Dix, A. Formal Methods for Interactive Systems. Academic Press, 1991.

[4} [[DA96]] Dix, A. and Abowd, G. Modelling status and event behaviour of interactive systems.

Software Engineering Journal, 11:6 (1996), 334-346.

[5} [[D03]] Dix, A. Getting Physical. keynote at OZCHI 2003, Brisbane, Australia, 26-28 Nov 2003

[6} [[DF04]] Dix, A., Finlay J. Abowd, G. and Beale R. Human-Computer Interaction. Third Edition.

Prentice Hall, 2004.

[7} [[G91]] Gaver, W. Technology affordances. In Proc. of CHI '91. ACM Press, (1991),79-84.

[8} [[GD03]] Ghazali, M. and Dix, A. Aladdin's lamp: understanding new from old. In 1st UK-

UbiNet Workshop, 25-26th September 2003, Imperial College London

[9} [[GD05]] Ghazali, M. and Dix, A. Visceral Interaction Proceedings of the 10th British HCI

conference, Vol 2, September 5-9, Edinburgh. (2005), 68-72

[10} [[G86]] Gibson, J. The Ecological Approach to Visual Perception. Houghton Mifflin Company.

USA, 1986.

[11} [[H03]] Hartson, H. R.. Cognitive, physical, sensory, and functional affordances in interaction

design. Behaviour & Information Technology 22:5 (2003) , 315–338.

[12} [[NM94]] Nielsen, J.; Mack, R.L. Usability Inspection Methods. John Wiley & Sons, New York,

NY, 1994.

[13} [[N99]] Norman, D. Affordance, conventions, and design. Interactions 6(3): ACM Press: NY,

(1999), 38-43

[14} [[PH85]] Pfaff, G., and Hagen. P., (Eds.). Seeheim Workshop on User Interface Management

Systems, Springer-Verlag, Berlin, 1985.

[15} [[S83]] Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages.

IEEE Computer 16(8) (August 1983), 57-69.

[16} [[WD04]] Wensveen, S. A. G., Djajadiningrat, J. P., and Overbeeke, C. J. 2004. Interaction

Frogger: A Design Framework to Couple Action and Function. In: Proceedings of the DIS’04

Cambridge, USA.

[17} [[U92]] UIMS (1992). The UIMS tool developers workshop: A metamodel for the runtime

architecture of an interactive system, SIGCHI Bulletin, 24(1), pp 32-37,

