
Handling Multiple Levels of Requirements for Middleware-Supported
Adaptive Systems

Pete Sawyer, Nelly Bencomo, Paul Grace, and Gordon Blair
Technical Report (COMP 001-2007), Lancaster University

Computing Department, Lancaster University, Lancaster, UK
{sawyer, nelly, gracep, gordon}@comp.lancs.ac.uk

Abstract

Adaptability is emerging as a crucial enabling
capability for many applications, particularly those
deployed in dynamically changing environments such
as environment monitoring, disaster management, and
military systems. One of the challenges that these pose
to RE is that of complexity and how to handle the
requirements arising from different states of the
environment, and the requirements for coping when
the environment changes. One approach to handling
this complexity at the architectural level is to augment
middleware systems with adaptive capabilities. This
paper examines how adaptive middleware can be
exploited by analysts handling requirements for
adaptive systems. Here, requirements for adaptability,
and the associated requirements for identifying when
and how to adapt are allocated to the middleware. We
describe how this is achieved in the Gridkit
middleware that has been developed to support
adaptive grid applications. Gridkit exploits a set of
frameworks, each responsible for different types of
middleware behaviour. This mechanism provides the
basic capability for adaptation, while adaptability
requirements are encoded as rules that are consulted
at run-time when a change in the underlying
environment is detected.

1. Introduction

Berry et al [1] have argued that, to support dynamic
adaptive systems (henceforth called simply adaptive
systems), four levels of requirements engineering (RE)
are needed. These range from the most abstract, level
4, which is essentially the identification of
requirements for mechanisms that permit systems to
adapt, to the most concrete, level 1, which is concerned
with the requirements for a system to operate in a
particular context. Level 1 RE is essentially

‘traditional’ RE. What characterises adaptive systems
is that they are capable of adapting to different level 1
requirements imposed by a range of contexts, adapting
dynamically as the context changes. Level 2 is
performed not by human analysts but by the system
itself. It is concerned with how adaptive systems detect
changes to their context by monitoring the extent to
which the level 1 requirements are being satisfied at
run-time so that dynamic adaptation can be performed
accordingly. Level 3 is concerned with how analysts
identify the requirements for adaptation that in turn
enable the system to support a range of level 1
requirements.

In Berry’s model, levels 3 and 4 may be thought of
as dealing with meta-requirements. The extent to
which level 2 is really RE or really the monitoring and
adaptation mechanisms used to satisfy the level 3
meta-requirements is arguable. However, it is clear that
adaptive systems need to have some internal model of
their level 1 requirements in order that level 1
requirements satisfaction monitoring and system
adaptation can be performed.

Adaptive systems are inevitably complex. This
complexity requires support in the system architecture.
The use of a middleware substrate [2] is one
architectural solution that helps applications adapt at
design and deployment time by insulating developers
from the specifics of different target operating
environments and network protocols. By augmenting
middleware with reflective capabilities, run-time
adaptation is supportable too. This helps applications
cope dynamically with changes in the run-time
environment such as a resource becoming unavailable.

The development of such next-generation
middleware [3][4] is crucial for the development of
large-scale distributed, heterogeneous adaptive systems
and ultimately for the feasibility of fully autonomic
systems [5]. Without the support of middleware
capable of satisfying at least some of the crucial

requirements for adaptation, the cost and complexity of
bespoke adaptive system development will be too
great. The development of next-generation reflective,
adaptive middleware systems can therefore be seen to
be founded on level 3 RE with the middleware run-
time providing what Berry et al. identify as level 2 RE.
This inevitably involves the teams developing adaptive
middleware in level 4 RE and the development of
associated level 2 mechanisms.

In this paper we use a case study involving an
advanced middleware system called Gridkit [6][7] to
explore Berry et al.s’ ideas about levels of RE in
adaptive systems. Our case study shows that current
research in advanced middleware systems recognizes
the need for support for the explicit specification of
adaptive requirements. In particular, we show that
Gridkit uses a policy mechanism based on rules for
configuration and adaptation that maps well onto level
1 and level 3 RE, and that the Gridkit run-time
mechanisms based on event registration and
notification implement level 2. Our paper is hence part
validation of the paper by Berry at al., part case study
and part investigation of interaction between
requirements and system architecture.

While our paper is about how adaptive middleware
impacts on the way that RE is done for applications
that use the middleware, other authors have addressed
the requirements of middleware for supporting
adaptive applications [8][9][10].

In the rest of this paper we present a brief overview
of adaptive systems, focusing on a particular class of
adaptive system that is typically distributed,
heterogeneous and subject to change in its
environment at run-time. We then examine one
application as an exemplar of such systems, a forest
fire-fighting scenario. We then examine the
architecture of Gridkit and go on to look at how
adaptive requirements are formulated from the forest
fire fighting scenario and how Gridkit supports their
implementation. We identify some key lessons for RE
in middleware-supported adaptive systems and present
a brief description of our on-going research for
specifying middleware families.

2. Adaptive systems

Adaptive systems are characterised by their ability
to adapt at run-time in response to change in the
environment or the context in which they operate.
Adaptive systems span a wide range of applications
from systems whose user interfaces are capable of
adapting to changes in user behaviour [11] to the yet-
to-be-realised vision of fully autonomic systems that

are self aware, self configuring, self optimizing, self
healing, self protecting, context aware, open and
anticipatory [5].

While fully autonomic systems remain a long-term
challenge for computer science, an emergent class of
systems that are distributed, heterogeneous and
embedded within a dynamically changing environment
is demanding some of the same adaptive requirements.
They may comprise networks of heterogeneous
devices that encompass a range of capabilities and
resource availability and which interoperate to provide
some required set of services. Such applications are
typically required to adapt by (re-) configuring
themselves in order to, for example, allow mobile
devices to exploit ad-hoc networks and cope with the
associated variability in resource availability. Self-
configurability needs to be informed by self-awareness
and, in the case of mobile applications, by context
awareness too.

A scenario for forest fire fighting illustrates this
well [12]. There are two user roles involved:
controllers and fire fighters. Controllers manage the
operation: they move fire fighters, issue commands,
decide where to deploy fire sensors, and investigate
real-time simulations that predict the spread of the fire.
Fire fighters deploy fire-fighting equipment and are
coordinated by the controllers so that they are
deployed where they can be most effectively and
safely used. Fire fighters also deploy sensors to collect
data about wind speed and direction needed by the
controllers’ simulation models and air temperature data
to indicate the extent and location of the fire.

Forests typically lack power and communications
infrastructures. These constraints impose a number of
interesting requirements for the fire-fighting problem.
Fire fighters need to be in communication with each
other and their controllers yet must be mobile.

Figure 1 illustrates the scenario. Fire fighters are
equipped with mobile wireless communication
devices. As they are deployed at the scene of the fire,
they form ad-hoc connections between themselves,
sensors and on-site controllers. By contrast, an
infrastructure network connects all controllers. In
contrast to controllers located in permanent control
centres, some controllers are deployed close to the
location of the fire in command vehicles. These on-site
controllers are connected to the infrastructure network
via, for example, satellite, GPRS, or Wireless LAN
technologies.

Figure 1. A forest fire fighting scenario.

The need for adaptability comes from several

factors but the main ones are the mobility of the fire
fighters and the sensors. Hence, the system must adapt
to maintain communications between a fire fighter and
the controllers as the fire fighter roams between parts
of the forest served by the fixed infrastructure network
and the ad-hoc network. Similarly, new sensors may be
deployed so the system must be able to permit the
dynamic addition to the set of sensors. Sensors may
also be removed from this set as their power supplies
fail or they become damaged. Finally, the quality of
service provided by the different networks and,
potentially, healthy versus failing sensors must be
handled adaptively.

Our work posits the idea that there must be
traceability from the requirements of the application
and the implementation of the adaptive behaviour in
such systems. The same might be said for any class of
system. However, given that one of the motivations for
using middleware to provide the adaptability is to
reduce complexity, the adaptive behaviour as
configured in the middleware must have a close, one-
to-one correspondence with the adaptive requirements.
This is to avoid the problem that caused early attempts
to support adaptive systems to fail: “It is unrealistic to
expect an adaptation framework using a “black box”
approach to its adaptation intelligence to perform
adequately in a generalized manner” [8].

3. Requirements for the forest fire fighting
application

We will focus on one level 1 requirement arising
from the forest fire fighting scenario:

1. Fire fighters must be in communication with
controllers at all times.

Given the context, the range of solution options and

available technology, many system requirements may
be derived from this user-level requirement. One might
be:

1.1 A group communication service shall enable
controllers to send instructions to fire fighters.
Controllers need to be able to broadcast instructions
to groups of controllers.

Although it’s derived from a user requirement,

requirement 1.1 is still a level 1 requirement. It is
specific to the forest fire fighting problem and the
solution being proposed by the system requirements.
However, it leads to a requirement that the system
must be capable of adapting dynamically to cope with
mobility of fire fighters. To cope with this, the system
must be able to sense changes to its environment and
reconfigure itself dynamically.

Given the physical and technological constraints of
the forest fire fighting scenario illustrated in figure 1,
the implications of requirement 1.1 require much
further investigation. Among the results of this,
however, is the identification of associated
requirements for adaptation – level 3 requirements. For
example, account must be taken of the fact that fire
fighters may roam between the region around the
command vehicle(s) served by the fixed wireless
network and that served by the ad-hoc network.
Essentially, roaming fire fighters will stray beyond
range of the fixed network and their communications
devices will have to switch to the ad-hoc network.
Requirement 1.1.1. is partly derived from 1.1 and in
turn derives requirements 1.1.1.1 and 1.1.1.2 that
represent, in simplified form1, a key level 3
requirement for the system to adapt dynamically to
changes to the network.

1.1.1 The network connecting fire fighters and
controllers shall be transparent to both classes of user.
1.1.1.1 When a fire fighter moves beyond range of the
fixed network, they shall be automatically connected to
the ad-hoc network.
1.1.1.2 When a fire fighter moves within range of the
fixed network, they shall be automatically connected to
the fixed network.

These are generic, high-level requirements that are

common to many classes of adaptive systems. Because
of this it makes little sense to engineer in every kind of
adaptive capability on a per-application basis. Rather, a
new generation of adaptive middleware systems such
as GridKit[6][7], or the Runes middleware [13] are
being developed that allow application developers to

1 For example, we assume that in the forest fire fighting scenario,
there is only one fixed network and one ad-hoc network. We also
assume that there will be a gateway between the ad-hoc and fixed
network.

exploit their in-built adaptive capabilities. Among
other requirements on the Runes middleware, the
Runes requirement and constraint analysis document
[14] identifies the following requirements:

“Requirement 52
The middleware should support dynamic
reconfiguration.
The Runes middleware system should be able to be
reconfigured dynamically in a fine-grained way. This
allows the middleware system to adapt as a result of
context, topology, mobility or resource availability
changes. …

Requirement 54
There should be support for QoS adaptation.
The middleware system should be able to monitor the
quality of resources and adapt, depending on
application constraints….”

In terms of Berry et al. [1], these requirements are
at level 3. As expressed here, they are rather general
and the extent to which they can be satisfied will be
constrained by the mechanisms and capabilities of the
technologies used to implement the middleware.
Supporting a specific application such as that outlined
by the forest fire-fighting scenario therefore needs
these high-level requirements to be refined in terms of
the application. Just as system requirements could be
derived from the level 1 requirements of the forest fire-
fighting scenario, so the generic level 3 adaptability
requirements need to derive requirements on how the
middleware is configured.

4. Gridkit architecture

GridKit is a grid middleware technology and is built
using the OpenCOM [15]component model. One of the
key features of OpenCOM is that it uses a set of in-
built reflective meta-models. These form the basis of
the introspection capability that is a pre-requisite for
adaptive functionality in middleware systems. For
example, at run-time, Gridkit is able to use
OpenCOM’s architectural meta-model to discover the
current topology of the composition of OpenCOM
components from which the Gridkit implementation is
constructed. An interface meta-model permits
discovery of the set of interfaces defined on a
component. This enables the dynamic invocation of
methods defined on these interfaces, even those whose
types were unknown at design time.

Gridkit can be configured to present a set of grid
services which exploit four underlying orthogonal

domains that provide generic middleware support
(figure 2). These are interaction services, resource
discovery, resource management and grid security.
Underlying these is an open overlays layer that
abstracts over the underlying communications support
mechanisms.

Figure 2. Gridkit architecture

Each of the middleware services and the open
overlays substrate are implemented as component
frameworks. We focus here on the interaction services
framework and it’s dependence on the open overlays
framework to provide the adaptability required by the
forest fire-fighting scenario.

The interaction services framework provides
extensible communication services. These include
support for pluggable interaction types such as
publish-subscribe, multicast and streaming, as well as
for QoS management. The open overlays framework
provides plug-in network service capabilities. This is
important for the adaptability of mobile applications
which need to remain unaware of the underlying
communications infrastructure. Consider the roaming
of a fire fighter from a part of the forest covered by the
infrastructure network, to a part served by the ad-hoc
network. Here, an ad-hoc network component has to
be substituted to maintain connection so they can
continue to send, receive and relay information to/from
controllers and sensors. However, the middleware
needs to be adaptive in order to maintain connection
by plugging and unplugging the network components.

Frameworks effectively serve as the domains of
adaptation in Gridkit. Their adaptive behaviour is
policy-driven and defined by sets of rules. Adaptation
rules are scoped to individual frameworks so an
instance of the interaction framework will have one set
of rules, while an instance of the overlay framework
will use a different set of rules. These rules define how
Gridkit satisfies a requirement in a given
environmental context, and also how Gridkit adapts to
changed environmental context. Hence, a set of rules
define how the interaction services framework delivers
communications to a fire-fighter when close enough to

the command vehicle to connect to its fixed wireless
network, while another set of rules define how
communications are delivered when out of range and
relying on the ad-hoc network. A further set of rules
defines how the transition is made between these two
modes of communication as the fire fighter roams
beyond range of the fixed network. In RE terms, the
rules that specify behaviour in different contexts
satisfy level 1 requirements. The rules that specify how
the Gridkit middleware adapts when the context
changes satisfy level 3 requirements.

5. Three levels of RE supported by Gridkit

The basic mechanisms needed to satisfy
requirement 1.1 are provided by the interaction and
open overlays frameworks, but we need to define the
rules that specify precisely the level 1 requirements
that group communication service that will be
provided. We need to do the same for requirement
1.1.1 and it’s implied requirement that the system will
adapt dynamically to ensure that these services survive
changes to fire fighters’ physical contexts.

The interaction framework has to be configured to
satisfy the level 1 requirements according to context.
In the case of requirement 1.1, these contexts may be
defined in terms of the capabilities of the device type
and the communications network. This can be
specified using the following rules which we have
paraphrased from their machine-readable XML
representations:

R1 Provide an Internet scale Application level
Multicast (ALM) service for immobile
devices connected to a fixed network
connection.
Intended for controllers using PCs located
in command vehicles.

R2 Provide a P2P multicast overlay for mobile
nodes connected to fixed wireless networks
(e.g. 802.11b) to handle in and out of range
disconnection.
Intended for fire fighters who are within
range of the fixed wireless network located
at the command vehicle but, because of
their potential to roam beyond range, the
ALM service used in R1 cannot be used.

R3 For devices connected to an ad-hoc
network, provide an epidemic style
multicast service based upon a standard
flooding approach using the broadcast
channel e.g. In 802.11 in ad-hoc mode.
Intended for fire fighters deployed beyond

range of the command vehicle fixed
network.

These rules represent the specification of policies.

Keeney and Cahill [8] note that “Policy specifications
maintain a very clean separation of concerns between
adaptations available, the decision process that
determines when these adaptations are performed and
the adaptation mechanism itself”. The decision process
used in Gridkit is discussed below. The adaptation
mechanism is discussed in greater depth in [6].

Figure 3 shows how rules R1 to R3 are applied.
Here, Controller C1 uses their PC to communicate with
fire fighters F1 to F4. C1’s PC is fixed and connected
to the command vehicle’s fixed network so the Gridkit
interaction framework running on their PC is
configured using rule R1.

Despite being connected to the command vehicle’s
fixed wireless network, the mobile devices of F1 and
F4 are configured with R2 to provide a peer-to-peer
multicast overlay network. Hence, if (say) F4 was to
roam beyond range of the command vehicle’s fixed
network into the zone served by the ad-hoc network
formed by F2 and F3’s devices, peer-to-peer multicast
would still be available even though the underlying
network had changed.

Fire fighters F2 and F3 are deployed beyond range
of the command vehicle’s fixed network so their
devices form an ad-hoc network. Like F1 and F2, they
use a peer-to-peer multicast overlay network.
However, because of the ad-hoc network has different
characteristics to the fixed network exploited by F1
and F4, they have to use a different multicast
mechanism to propagate messages. Hence they use R3
rather than R2.

Figure 3. Deployment of configuration rules in
fire fighting scenario

Rules R1 to R3 are essentially static in that they
specify how level 1 requirements are met under
different contextual circumstances. These need to be
complemented by rules that satisfy the level 3
requirement for the system to adapt dynamically as the
network changes. In terms specific to the application,
the system must adapt as the fire fighter roams
between zones served by the two network
technologies. This is expressed by the rules R4 and R5:

R4 When the network changes from fixed to ad-
hoc, replace R2 with R3.

R5 When the network changes from ad-hoc to
fixed, replace R3 with R2.

Notice that R4 and R5 express only a subset of the

adaptive behaviour necessary to satisfy requirement
1.1.1. insofar as they ensure that the appropriate
application-level protocols needed to provide group
communications (as expressed by rules R2 and R3) are
used depending on the network type to which a device
is connected. However, requirements 1.1.1.1 and
1.1.1.2 that specify automatic switching between
network types aren’t addressed by R4 and R5.

The mechanism that enables satisfaction of 1.1.1.1
and 1.1.1.2 exploits the fact that network change is one
of a set of generic events that the Gridkit middleware
is able to detect at run time. A Gridkit framework
registers with the Gridkit context engine to receive
notification of event types. In the forest fire-fighting
scenario, the open overlays framework registers to
receive notification of network changes and when a
change is detected, the run-time system enacts what
Berry et al. characterise as level 2 RE by invoking R4
or R5.

The rules are encoded as XML and consulted
whenever either an event is triggered by a change in
the environment or an application level request (such
as to collect data from a sensor) is received. This
separation of policy rules and event mechanism
conforms to the fundamental requirements for support
for adaptive mobile applications identified by
Efstratiou et al. that “future systems should adopt an
architecture in which mechanisms and polices are
decoupled” [9].

The OpenCOM architectural meta-model is used by
Gridkit’s context engine to maintain a model of the
system configuration needed by a framework to guide
the dynamic reconfiguration. This dynamic
reconfiguration is achieved by instantiating and
connecting/disconnecting OpenCOM components. The
OpenCOM interface meta-model permits the run-time
discovery of component interfaces. Because bindings
to discovered interfaces is done at run-time, a Meta-

Object Protocol (MOP) is used to express contracts
that must hold for a legal binding between the two
parties to an interface. A run-time interception
mechanism enforces these contracts which are also
expressed as rules in XML.

6. Key lessons

In table 1 we summarise each of the 4 levels with
examples of how they map onto the forest fire fighting
scenario.

Table 1. The 4 levels of RE in terms of the
forest fire fighting scenario
RE Level Example
1. RE performed by
analysts for each context-
dependent state of the
adaptive system. Berry et
al. consider this as sets of
requirements, each
specifying a program for
one of the contexts.

User requirement that
controllers be able to
communicate with fire
fighters, and derived
requirements for which
application-level protocols
should be used in which
contexts. These are used
to formulate rules R1 to
R3.

2. Adaptation performed
at run-time by the system
to context changes.

Events notified via the
context engine driving
selection of different
application-level protocols
as the underlying network
changes. The Gridkit
runtime consulting,
selecting and applying
rules R4 and R5 to select
between rules R1 to R3
and applying the
necessary reconfiguration
of components.

3. RE performed by the
analysts to determine the
adaptive behaviour that
needs to be performed
and when.

Formulation of rules R4
and R5 specifying which
application level protocol
to use according to which
networking context. Also
selecting the network
change event type used to
trigger application of R4
and R5.

4. Research into
adaptation mechanisms.

The research undertaken
at Lancaster and
elsewhere into reflective
adaptive middleware.

Perhaps the most interesting thing to emerge from
our case study is that level 3 RE is really part of level 1
in that the requirements for adaptation are derived
from the user requirements. In particular, the user
requirement 1.1 is common to all states of the
environment. Level 1 RE only identifies requirements
specific to each environmental context once analysis of
1.1 has considered the constraints arising from the
available networking technologies and device
capabilities. Only once these have been identified can
the level 3 requirements for change be identified. At
this point an attempt needs to be made to match those
requirements to the adaptive capabilities of the
middleware.

Of course, our case study has focused on only one
user requirement in one scenario, so the
generalisability of this lesson can’t be demonstrated.
However, the fact that middleware systems are
inevitably concerned with mitigating low-level
variabilities suggests that this lesson is generalisable
for a wide range of adaptive systems that are
middleware–dependent, if not for other kinds of
adaptive systems.

In our case study, we haven’t addressed the impact
of non-functional requirements (NFRs) which are often
cited as the motivation for adaptation. However, a
subset of NFRs at least can be addressed in the same
was as the level 1 functional requirements. For
example, achieving an acceptable level of safety for
the fire fighters is, i* [16] terms, a softgoal that is part
of the motivation for requirement 1 that fire fighters
must be in communication with controllers at all times.
The ability to satisfice this softgoal is impacted by the
ability of the underlying network to guarantee delivery
of messages. Once the requirement has been
decomposed to the level that the networking
technologies and communications protocols have been
specified, it can be addressed by specifying another
rule to complement R3 (which provides only
probabilistic multicast) that a gossip communication
service be used to propagate messages among fire
fighters when connected to the ad-hoc network.

A general lesson from handling requirements for
adaptive systems is that adaptation adds an extra
dimension to RE. In particular, if level 1 RE yields
intersecting sets of requirements according to
environmental context, these sets do not map cleanly
onto the accepted mechanisms for separating concerns
in RE such as viewpoints or use cases, etc.
Adaptability can be modeled as a softgoal [17],
however. However, as shown with the fire-fighting
scenario, adaptation is not necessarily closely related
to stakeholder intentionality. Instead, it may emerge as

a system requirement derived from a combination of
user requirements and technological constraints.

Aspect-oriented techniques are being explored at
the component level in reflective middleware systems
[18] and aspectual views of requirements [19] may
provide an alternative mechanism for identifying and
managing requirements for adaptability. However,
there is only a weak relationship between these so-
called early aspects [20] and aspects used to partition
and compose software components.

7. Future work: towards specifying
middleware families

Gridkit is one of a family of middleware systems
that has been developed from OpenCOM, and the
Runes middleware is another example. Gridkit and
Runes reflect the modern view of middleware [3][4],
that a set of middleware capabilities needs to be
tailored to classes of problem domains that are
increasingly demanding advanced functionality such as
the ability to adapt dynamically. Gridkit and the set of
frameworks it provides (figure 1) is tailored to
applications with characteristics like the forest fire-
fighting scenario. A different set of capabilities would
be needed for middleware to support other domains of
application, such as environmental monitoring or
pervasive computing systems.

The disadvantage of this approach is the overhead
in producing different middleware systems. The
OpenCOM component model greatly eases this but
still entails substantial work to instantiate and
configure. An important strand of our current research
is to investigate how this can be made more systematic
by the generation of configurations of OpenCOM
components as middleware systems tailored to
different domains.

We are taking a model-driven engineering (MDE)
[21] approach to help with this. Using UML, we have
specified a set of meta-models. These meta-models
allow us to model both the core middleware
functionality and the reflective functionality that is
common to all middleware family members regardless
of their domain [22][23]. The domain addressed by
these meta-models is that of reflective, adaptive
middleware and represents the fundamental
component-based concepts.

The syntax and semantics offered by UML were
enough to model the OpenCOM concepts. However,
when specifying concepts related to higher level
abstractions related to domains of application, more
specific modeling concepts are needed. For example, a
modeling language for developing and assembling

Publish/Subscriber applications should contain
concepts like publisher, subscriber, topic, and content;
concepts proper of this kind of applications. We
envisage developing different DSLs for different
Domains: Publish/Subscribe, Mobile Computing,
GRID, Multimedia, etc. The DSLs will rely on
OpenCOM concepts through the meta-models. They
would be used to automate or semi automate
generation of code related to the configuration and
deployment of the different middleware platforms.

One obvious consequence of all this is that the
requirements for domains of application should
directly influence the generation of domain-specific
middleware through the DSLs and meta-models. In the
next phase of our research we will investigate how this
is impacted by the lessons learned from the case study
presented above.

8. Conclusions

Reflective, adaptive middleware has been
conceived to support domains of application in which
systems are typically distributed, heterogeneous and
subject to change to their environment at run-time. The
ability to adapt to these changes is a fundamental
requirement of such systems. Their complexity
demands that the role of middleware is now not only
the traditional one [2] of insulating developers from
the specifics of different operating environments, but
now includes responsibility for providing systems’
adaptive behaviour.

The approach taken by Gridkit and other members
of the OpenCOM family of middleware systems, is to
construct middleware systems tailored to domains of
application. Here, the middleware needs to be
configured to the requirements of individual
applications that fall within the scope of the
middleware’s domain of application.

Taking the 4-level model of RE for and of dynamic
adaptive systems proposed by Berry et al. [1], we have
applied a case study of a forest fire-fighting application
and shown how the user requirements derive
requirements for adaptability. We have used this to
validate the 4-level model, showing the relationship
between level 1 and level 3 RE. Gridkit has a focus on
insulating applications from networking technologies
and the capabilities of heterogeneous devices. This
means that formulation of the requirements for
adaptation requires that system requirements are first
derived from the user requirements to the point where
the constraints arising from the underpinning
technologies conceived for the solution become
known.

However, once this has been done, these
requirements can be directly encoded as policy rules
and event types which the middleware can use at run-
time to enact adaptation in the way that Berry et al.
conceived level 2 RE being applied. An advantage of
this is that there is a clear trace from user requirements
to adaptation requirements and their implementation.

A more general finding from our case study is that
RE for adaptive systems poses problems for the
handling of requirements. Conventional ways to
separate concerns according to use cases of
stakeholder types don’t map well onto the
requirements for different states of the environment,
which appears to be a fundamental step in identifying
systems’ adaptability requirements.

9. References

[1] D.M. Berry, B.H.C. Cheng, J. Zhang, “The Four Levels
of Requirements Engineering for and in Dynamic Adaptive
Systems”, Proc. 11th International Workshop on
Requirements Engineering: Foundation for Software Quality
(REFSQ’05), 2005, Porto, Portugal.

[2] P.A. Bernstein, “Middleware: a Model for Distributed
System Services”, Communications of the ACM, 38 (2),
1996, 86-98.

[3] F. Eliassen, A. Andersen, G.S. Blair, F. Costa, G.
Coulson, V. Goebel, Ø. Hansen, T. Kristensen, T.
Plagemann, H.O. Rafaelsen, K.B. Saikoski, W. Yu, “Next
Generation Middleware: Requirements, Architecture, and
Prototypes”, Proc. 7th IEEE Workshop on Future Trends of
Distributed Computing Systems (FTDCS’99), Cape Town,
South Africa, 1999.

[4] D.C. Schmidt, R.E. Schantz, M.W. Masters, J.K. Cross,
D.C. Sharp, L.P. DiPalma, “Towards Adaptive and
Reflective Middleware for Network-Centric Combat
Systems”, Crosstalk The Journal of Defense Software
Engineering, November 2001, 10-16.

[5] M. Parashar, S.Hariri, “Autonomic Computing: an
Overview”, Proc. Unconventional Programming Paradigms,
Mont St Michel, France, 2004, 247-259.

[6] P.Grace, G. Coulson, G. Blair, L. Mathy, W.K. Yeung,
W. Cai, D. Duce, C. Cooper, “GRIDKIT: Pluggable Overlay
Networks for Grid Computing”, Proc. International
Symposium on Distributed Objects and Applications
(DOA’04), Larnaca, Cyprus, 2004, 25 – 29.

[7] W. Cai, P.Grace, G. Coulson, G. Blair, L. Mathy, W.K.
Yeung, “The Gridkit Distributed Resource Management
Framework”, Proc. European Grid Conference, Science Park
Amsterdam, The Netherlands, 2005.

[8] J, Keeney, V, Cahill, “Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Environment”, Proc. Fourth
IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY'03), Lake Como, Italy,
2003.

[9] C. Efstratiou, K. Cheverst, N. Davies, A. Friday,
“Architectural Requirements for the Effective Support of
Adaptive Mobile Applications”, Proc. Middleware 2000,
New York, USE, 2000.

[10] C. Efstratiou, “Coordinated Adaptation for
Adaptive Context-aware Applications”, Ph.D. Thesis,
Lancaster University, Computing Department, 2004

[11] P. Langley, “Machine learning for adaptive user
interfaces”, Proc. 21st German Annual Conference on
Artificial Intelligence, Freiburg, Germany, 1997, 53-62.

[12] C. Cooper, D. Duce, M. Younas, W. Li, M. Sagar,
G. Blair, G. Coulson, P. Grace, "The Open Overlays
Collaborative Workspace", Proceedings of the UK E-Science
All Hands Meeting, Nottingham, UK, August 2005

[13] P. Costa, G. Coulson, C. Mascolo, G.P. Picco, S.
Zachariadis, “The RUNES Middleware: A Reconfigurable
Component-based Approach to Networked Embedded
Systems”, Proc. 16th Annual International Symposium on
Personal Indoor and Mobile Radio Communications
(PIMRC05), Berlin, Germany, 2005.

[14] Fp6 IP “RUNES” – D1.2 Requirements and
constraints analysis. http://www.ist-runes/org

[15] G. Coulson, G.S. Blair, P. Grace, A. Joolia, K. Lee,
J. Ueyama, "OpenCOM v2: A Component Model for
Building Systems Software", Proc. IASTED Software
Engineering and Applications (SEA'04), Cambridge, MA,
2004.

[16] E. Yu, “Towards Modelling and Reasoning
Support for Early-Phase Requirements Engineering”, Proc.
Third IEEE International Symposium on Requirements
Engineering (RE’97), Annapolis, MD. USA, 1997.

[17] J. Castro, M. Kolp, J. Mylopoulos, “Towards
requirements-driven information systems engineering: the
Tropos project”, Information Systems, 27, 2002, 365-389.

[18] L. Bergmans, M. Aksit, “Aspects and Crosscutting
in Layered Middleware Systems”, RM2000 Workshop in
Reflective Middleware, New York, USA, 2000.

[19] J. Grundy, "Aspect-Oriented Requirements
Engineering for Component-based Software Systems”, Proc.
4th IEEE International Symposium on Requirements
Engineering (RE’99), Limerick, Ireland, 1999,.84-91.

[20] A. Rashid, P. Sawyer, A. Moreira, J. Araujo,
"Early Aspects: A Model for Aspect-Oriented Requirements
Engineering”, Proc. IEEE Joint International Conference on
Requirements Engineering (RE 2002), Essen, Germany,
2002.

[21] S. Kent, “Model Driven Engineering”, IFM 2002,
volume 2335 of LNCS. Springer-Verlag, 2002.

[22] N. Bencomo, G.S. Blair, G. Coulson, T. Batista,
"Towards a Meta-Modelling Approach to Configurable
Middleware", Proc. 2nd ECOOP'2005 Workshop on
Reflection, AOP and Meta-Data for Software Evolution,
Glasgow, Scotland, 2005.

[23] N. Bencomo, G. Blair, "Raising a Reflective
Family", Proc. Models and Aspects Handling Crosscutting
Concerns in MDSD, Glasgow, Scotland, 2005.

