
A Middleware Approach for Pervasive Grid Environments

Geoff Coulson1, Paul Grace1, Gordon Blair1, David Duce2, Chris Cooper2, Musbah Sagar2

1 Computing Department, Lancaster University, Lancaster, LA1 4YR
2 Dept of Computing, Oxford Brookes University, UK

geoff @comp.lancs.ac.uk, daduce@brookes.ac.uk

Abstract: Next-generation Grid applications will operate
within and across many heterogeneous network types; will
employ a wide range of device types ranging from
supercomputers to sensor motes; and will require many more
“interaction paradigms” than merely RPC and message-
passing (e.g., publish-subscribe, multicast, tuple spaces etc.).
In this paper, we propose a middleware approach to meeting
these emerging needs. Our approach is to provide a highly
flexible “overlay network framework” that underpins an
extensible set of plug-in interaction paradigms. The
middleware is structured using a lightweight run-time
component model that enables appropriate profiles to be
configured on a wide rage of device types, and facilitates run-
time reconfiguration (as required for reasons of adaptation to
dynamic environments). For proof of concept, we are
exploring a wildfire scenario which involves mobile groups of
firefighters, mobile sensors, control centres, and access to
parts of the wider fixed Grid for simulation. We are also
investigating the application of our approach more generally
in the management of the “e-Environment”.

1. Introduction

As Grid computing evolves, there is an accelerating trend
towards diversity in terms of both end-systems and networked
infrastructures. For example, with the emergence of the
“pervasive Grid” [Davies,04], we have a spectrum that ranges
from cluster systems, through high-speed LAN-based
systems, lower-speed WANs, infrastructure-based wireless
networks, ad-hoc wireless networks (themselves ranging from
relatively static to highly dynamic configurations) that employ
PDA-type devices, and specialised sensor networks that
employ miniature sensor devices.

In parallel, the range of types of “interaction paradigms” in
use at the application level has also burgeoned. Beginning
with basic point-to-point interactions (e.g. RPC and SOAP
messaging), the range of interaction paradigms is expanding
to include (e.g.): reliable and unreliable multicast; workflow;
media streaming; publish-subscribe; tuple-space/ generative
communication; and peer-to-peer based resource location or
file sharing.

In the Open Overlays project [Grace,04], we are seeking to
provide a Grid middleware infrastructure that can span and
integrate this growing diversity at both the infrastructure level
and the “interaction paradigm” level. This clearly cannot be
done using standard Grid middleware such as Globus for three
main reasons: i) current Grid middleware won’t run on
primitive devices because of its heavyweight and non-
profilable nature; ii) current middleware is not network-
centric—it assumes fixed TCP/IP support and deals only with
end-systems; and iii) current middleware supports only SOAP

messaging and not the range of other interaction paradigms
required.

To motivate our work more clearly, consider an application
scenario that is being developed by the project which involves
forest or savannah fire fighting in a remote region with poor
accessibility. In the scenario, fire fighters carry PDA-like
devices that enable communication with other fire fighters and
with on-site controllers who coordinate the work. The PDAs
support: cameras to give the controllers a view of the fire;
GPS to enable location tracking; screens on which text and
graphics-based commands from controllers are displayed; and
audio capabilities to enable group communication among fire
fighters and controllers. In addition, portable environmental
sensors are used to provide controllers with information such
as wind speed and direction. These are placed by fire fighters
and are networked wirelessly. As well as helping to directly
inform the controllers, sensor output is fed into
computationally-intensive real-time “fire evolution”
simulations running in the fixed-infrastructure Grid. These are
maintained and monitored by remotely-located experts who
video-conference among themselves and strategically advise
controllers based on longer-term projections of the progress of
the fire.

Note that not only does this scenario clearly involve highly
heterogeneous device and networking technologies—it also
calls for a wide range of interaction paradigms (e.g. reliable
ad-hoc multicast for command propagation, stream-based
multicast for group audio communication, publish-subscribe
for sensor data collection, SOAP-based messaging for
communication with objects in the fixed Grid, etc.).

The essence of our approach to addressing the requirements of
scenarios such as these is to place a flexible and configurable
set of middleware frameworks over a layer of overlay
networks, and to construct the whole architecture in terms of a
lightweight component model that can be implemented on a
wide range of device types, including very small devices such
as sensor motes. A general definition of overlay networks is
that they are virtual communication structures that are
logically “laid over” one or more underlying physical
networks (such as the Internet and/or a wireless ad-hoc
networking environment). The benefits of the overlay
approach are that i) it can mask the heterogeneity of the
underlying networked infrastructure, providing a separation of
engineering implementation from high-level functionality; ii)
it can provide needed network services (e.g. multicast) in
network environments that don’t support them; and iii) it is
inherently configurable and run-time adaptive so as to be able
to address the high degree of dynamism inherent in our target
environments.

The remainder of this paper is structured as follows. First, in
section 2, we consider the overall architecture of our

middleware. Then, in subsequent sections we consider three
key elements of the architecture: the underlying component
model in section 3; the overlay framework in section 4; and
the interaction paradigm framework in section 5. Finally, we
discuss related work in section 6 and outline areas of future
work in section 7.

2. Architecture

Our basic approach to the support of such “pervasive Grid”
scenarios is to provide a highly configurable middleware
framework the architecture of which is shown in Figure 1.

This architecture, called Gridkit [Grace,04], is built in terms
of a component model called OpenCOM v2 [Coulson,04].
This employs a minimal runtime that supports the loading and
bindings of lightweight software components at run-time. The
runtime is so minimal that it can be supported even on very
primitive devices. OpenCOM is used in the construction of all
the layers above.

The next layer up is a distributed framework for the
deployment of overlay networks as discussed in section 1.

OpenCOM v2 component model runtime

Overlays framework

Interaction Service
discovery

Resource
discovery

Resource
mgmt

Resource
monitoring Security

Web services API

Figure 1: The Gridkit Architecture

Above this is a set of “vertical” frameworks that provide
functionality in various orthogonal areas, and can optionally
be included or not included on different devices. We discuss
only one of these frameworks—the interaction framework—in
any detail in this paper. In brief, the rest are as follows: the
service discovery framework accepts plug-in strategies (e.g.
SLP, uPnP, Salutation) to discover WSDL services in the
Grid; the resource discovery framework accepts plug-in
strategies (e.g. peer-to-peer search, Globus MDS) to discover
Grid resources such as CPUs and storage; the resource
management and resource monitoring frameworks are
respectively responsible for managing and monitoring Grid
resources; and the security framework provides general
security services for the rest of the frameworks. These
frameworks are discussed in more detail in [Grace,04].

Finally, above the vertical frameworks is an XML/ SOAP/
WSDL-based API layer that provides access to the underlying
frameworks in terms that are familiar to Grid application
programmers. This layer is optional and programmers can
choose to use the framework APIs directly, and write their
code in terms of OpenCOM components, if desired. This
possibility, of course, is particularly relevant in the context of
primitive resource-poor devices such as sensor elements and
even PDAs.

3. The OpenCOM component model

An outline of the component model is illustrated in Figure 2.
Components are language-independent encapsulated units of
functionality and deployment that interact with other

components exclusively through “interfaces” and
“receptacles” (see below). Capsules are containing entities
that offer the above-mentioned runtime API. Importantly,
capsules can be implemented differently on different
devices—e.g. they might be implemented as a Unix or
Windows process on a PDA or PC; or directly on top of
physical memory on a sensor mote with no OS. Components
can be deployed at any time during run-time, and their loading
can be requested from within any component within the
capsule (this is called third-party deployment). Interfaces are
expressed in terms of sets of operation signatures and
associated datatypes; OMG IDL is used for interface
specification to give language independence (note, however,
that this does not imply the overhead of CORBA-like stubs
and skeletons.) Components can support multiple interfaces:
this is useful in embodying separations of concern (e.g.
between base functionality and component
management). Receptacles are “required” interfaces that are
used to make explicit the dependencies of a component on
other components: when deploying a component into a
capsule, one knows by looking at its receptacles precisely
which other components must be present to satisfy its
dependencies. Finally, bindings are associations between a
single interface and a single receptacle. Like deployment, the
creation of a binding is inherently third-party in nature. That
is, it can be performed by any party within the capsule, not
only by the first-party components that will themselves
participate in the binding.

Figure 2: The OpenCOM component model

OpenCOM also supports the notions of reflection and
component frameworks. Reflection is used to reason about
component configurations and to dynamically alter
configurations at runtime. Component frameworks are scoped
compositions of components that accept plug-in components
that are validated according to component framework specific
constraint rules. The overlays framework and the 6 vertical
frameworks discussed above are all implemented as
OpenCOM component frameworks. More details are give in
[Coulson,04].

The required heterogeneous realisation of the component
model in various types of devices is achieved by providing
different implementations of the runtime API, and by
implementing components themselves in various ways. For
example, on a PDA running a standard OS we might
implement components as sets of Java classes or as Linux
“shared objects”; whereas on a sensor mote’s microcontroller,
components might be implemented simply as segments of
machine code. This is possible because the component model
is a local model: distribution is built on top of this
foundational layer.

4. The overlay framework

The overlay framework supports the design, deployment and
management of plug-in overlay networks in support of
pervasive Grid computing. In practice, this amounts to
hosting, in a set of distributed overlay framework instances, a
set of per-overlay plug-in components, each of which
embodies i) a control element that cooperates with its peers on
other hosts to build and maintain some virtual network
topology, and ii) a forwarding element that appropriately
routes messages over its virtual topology.

In terms of deployment, the overlay framework allows one to
dynamically instantiate new overlays in a straightforward and
lightweight manner. This is supported in a recursive fashion
by using overlays to deploy overlays. For example, a
flooding-based overlay (e.g. Gnutella) can be used to
disseminate a message that (a filtered subset of) receiving
hosts act upon by deploying a node of a new overlay of some
desired type (e.g. an application-level multicast overlay). This
is achieved by employing a stack structure for overlay
implementations, and adopting an associated message
handling regime that is inspired by the Ensemble
communications framework [vanRenesse,98]. In brief, the
forwarding elements of overlays are organised such that when
an incoming message is not recognised, it is passed to the
forwarding component of the overlay above. Given this
arrangement, one can place a ‘dummy’ overlay at the top of
the overlay stack that responds to deployment request
messages.

Apart from its use in deployment, the general notion of
stacking overlays is a powerful one, and there are numerous
cases in which one overlay can usefully be employed as a
substrate for another. For example, one could layer a keyword
search overlay such as Gnutella over a DHT-based network
such as Chord (as DHT networks do not support keyword
search). Or, one could layer a content dissemination overlay
such as TBCP [Mathy,01] over a resilient overlay such as
RON [Andersen,01] to enhance dependability. All such
scenarios can be achieved very easily using the overlay
framework’s stacking structure.

As well as stacking whole overlays, the overlay framework
also supports partial stacking in which the control and
forwarding elements can be separately stacked. For example,
we have designed a variant of Gnutella that builds a more
structured network than the completely unstructured topology
constructed by standard Gnutella. This variant can be
deployed simply as a control element, and an existing
standard Gnutella forwarding component in the layer below
can be used directly. Another example of partial stacking
could be the stacking of a multicast overlay over a DHT-based
overlay. Here, the multicast overlay would only need to
provide a forwarding component, as the control element of the
underlying DHT overlay could be used directly. Partial
stacking not only saves developer effort—it also potentially
conserves resources, as functionality common to a set of
stacked overlays can be reused, thus saving end-system
resources and potentially reducing network traffic.

As well as stacking, the overlay framework also promotes
horizontal composition between different overlays. For
example, a gossip-based overlay can be used to gossip about
crashed nodes in a different overlay, and thus be used to
provide a general failure detection service for other overlays.

Similarly, an overlay that provides a dependability service for
the nodes of other overlays could exploit a third overlay to
search for suitable hosts on which overlay nodes could be
redundantly checkpointed. As a third example, separate
infrastructure-based and ad-hoc-based multicast overlays
could cooperate side-by-side to underpin a publish-subscribe
session that must simultaneously operate in both network
environments.

An example of an overlay framework configuration is shown
in Figure 3. This also illustrates that the framework can
simultaneously support multiple overlays, some of which are
related and others of which are not.

Prob.
Multicast

DHT
overlay

Reliable
Multicast

Streaming
Overlay

Keyword
Search

Overlay Framework

Figure 3. An example overlay configuration

Finally, in terms of the management of deployed overlays, the
overlay framework employs plug-in ‘component
configurators’ [Kon,00] that builds on a native reflective
capability of OpenCOM (i.e. the ‘architecture’ meta-model
[Coulson,04]). But in addition, some management functions
can be carried out by overlays themselves. Within a single
overlay, it is the responsibility of the control part of the
implementation to manage, maintain, and repair the overlay
topology. But it is also possible to use specialised overlays to
manage other overlays. Examples of this relating to failure
detection and dependability have already been given above.

5. The interaction framework

As argued in section 1, Grid middleware that offers only a
single interaction paradigm (e.g. RPC) cannot cope with the
diversity of application requirements needed by next-
generation Grid applications. To address this issue, Gridkit’s
interaction framework provides a common environment for an
extensible set of so-called plug-in interaction paradigms, or
PIPs. The overall architecture and context of the interaction
framework is illustrated in Figure 4.

Figure 4: The interaction framework

Architecturally separating the interaction framework from the
overlay framework has the effect of promoting the reuse of
overlays and thus conserving resources—i.e. different
interactions may re-use overlay configurations that are already
in place (for example, a topic-based publish-subscribe PIP and

a reliable multicast PIP might both share a multicast tree
overlay).

Because of the variety of interaction paradigms and the need
to support future extensibility, it is unrealistic to define
universal, fixed, interfaces to PIPs. Instead, we adopt an
approach to API provision that relies on the definition of an
(extensible) set of generic APIs. The expectation is that each
generic API will be exported by a potentially large family of
underlying PIPs. For example, a generic publish-subscribe
API can give access to a wide range of plug-ins that
implement variations on the publish-subscribe theme (e.g.
channel-based, content based etc.). In cases where a PIP
requires a modification of the generic API closest to its needs,
the framework recommends that interface inheritance is used
wherever possible to avoid a proliferation of top-level generic
APIs. Avoiding a proliferation of top-level APIs is crucial in
giving applications some level of stability and consistency.

The other API-oriented feature that we provide is a
lightweight means of “trading” for PIP instances. Details of
the “trading” scheme are provided in [Grace,05]. In brief,
when a user of the interaction framework wants to create and
bind to a PIP, it provides to the IConnect API a receptacle for
the type of generic API it is looking for. Attached to this
receptacle is a predicate which is matched by the framework
to a suitable PIP on the basis of a match between the predicate
and corresponding name-value pairs that are attached to
plugged in PIPs. In addition, predicates may range over
additional name-value pairs that are exported by a context
engine. This enables PIP selection and configuration to be
informed by context. For example, if the context engine
reported network_type: ad_hoc, the framework could
instantiate a requested publish-subscribe PIP over an ad-hoc
multi-hop routing overlay rather than a tree-based multicast
overlay which might be used if the context engine reported
network_type: infrastructure.

Additionally, the interaction framework (optionally) supports
dynamic monitoring of predicates and name-value pairs so
that an exception is raised if any of these change such that the
match is no longer valid. In this case either the user or the
framework itself can attempt to reconfigure to meet the new
circumstances. As an example, the context engine might
change a name-value pair to reflect the fact that a live
Ethernet MAC layer no longer exists, and the framework
might on that basis change an underlying overlay from IP-
based flooding to an ad-hoc network based flooding. Again,
see section 4 for examples and more detail.

6. Related work

In terms of the basic component-based middleware
architecture, there is a substantial body of literature on
reconfigurable middleware for pervasive and ‘minimal’
systems. For example, Gravity [Cervantes,04] is a component
model built on top of a Java framework for consumer devices;
and DPRS [Roman,04] and PCOM [Becker,04] are other
component-based designs for dynamically configurable and
reconfigurable pervasive systems. THINK [Fassino,02] is a
component-based component model that is tailored
specifically at building operating system kernels. And finally,
one.world [Grimm,00] is a system for pervasive applications
that supports dynamic service composition, migration of
applications and discovery of context. Our approach is related

to all of these. However, by being language-independent and
by separating the basic component model from the
frameworks that are built in terms of it, our approach attempts
to be more generic than the above systems (e.g. the above
systems could themselves be built using OpenCOM).

In terms of overlay networks, there is, of course, considerable
research in this field; but our work is largely orthogonal to
this: we are primarily interesting in wrapping and composing
overlays rather than in developing new ones. Researchers in
Toronto have developed a generic platform called iOverlays
[Li,04] that supports the implementation of overlays.
However, it can support only one overlay at a time. The JXTA
project [JXTA,05] from Sun is addressing interoperability
across different peer-to-peer systems but not the dynamic
composition of overlays in a general sense. It is also focused
on one particular type of overlay: unstructured peer-to-peer
overlays. In a more mainstream Grid context, researchers at
Indiana [Pallickara,03] have developed a peer-to-peer
messaging service for the Grid that incorporates both JXTA
and the Java Messaging Service, but unlike our work this does
not address the provision of a lightweight framework for
overlay types that can transparently mediate between the
range of interaction paradigms needed by applications and the
range of network types that are increasingly being used.

7. Status and future work

To date we have implemented the overlay and interaction
frameworks and have populated them with a substantial set of
plug-ins. In the interaction framework, we have implemented
publish-subscribe and group PIPs in C++ and Java
respectively (this multi-language integration is straightforward
thanks to OpenCOM). We have also implemented IIOP and
SOAP-based RPC PIPs (in C++), and a streaming PIP (in
Java). In terms of overlay plug-ins, Chord, Scribe and
Application Level Multicast (i.e. TBCP [Mathy,01]) have
been implemented in Java, and Gossip and Probabilistic
Multicast have been implemented in C++. The two
frameworks themselves, plus the context engine, are
implemented in Java. Mostly, we have used the multi-
language integration feature for practical reasons to
accommodate more easily into the frameworks software
already written.

We already have all the above software running on both PCs
and PDAs, and we have just started work on porting
OpenCOM to the microcontrollers that are used by Berkeley
sensor motes. This builds on the Contiki mote operating
system from SICS [Dunkels,04]. This work will be an
interesting evaluation of our claim the OpenCOM is
sufficiently lightweight to run on the full range of devices in
the pervasive Grid.

We have also designed, on top of Gridkit, a collaborative
workspace application (see Figure 5) which enables graphical
communication in our fire fighting scenario between fire
fighters and controllers. In more detail, we have designed an
architecture involving multiple disjoint groups (e.g. all fire
fighters; fire fighters in a given locality; fire fighters to
controllers etc.), each of which is underpinned by a distinct
PIP/overlay stack. Graphical communication is used to
present map information which is overlaid with visualizations
of sensor information (including positions of the relevant
human actors). Controllers and field workers can sketch on
the drawing surface, for example to give an estimate of the

local fire boundary, or to highlight particular features. The
application is implemented using web technologies, and
Scalable Vector Graphics (SVG) is used for graphical
presentation. Information displayed on each display surface is
considered to be an annotation of the surface which is
represented using the Resource Description Framework
(RDF).

Figure 5: The collaborative workspace application

Although we have made considerable progress, a lot remains
to be done. For example, there is a lot more territory to
explore in the area of distributed reconfiguration of both
overlays and PIPs. In particular, there are interesting issues in
cross-layer distributed reconfiguration that involves
intelligent cross-coordinated reconfiguration of both
frameworks. For example, a publish-subscribe PIP might be
adequately underpinned by an TBCP overlay while most or all
of its users are situated in the fixed network; but if the
situation evolves so that at some point a significant number of
users are situated in ad-hoc network environments, then the
optimal underpinning of the PIP needs to be reconsidered and
could perhaps be better supported by a coordinated federation
of horizontally-composed overlays.

Additional areas of challenge that we are addressing are the
use of Model Driven Architecture concepts to configure our
frameworks and also to provide formally-specified constraints
on their reconfiguration; and the use of autonomic techniques
so that the frameworks can not only adapt to changing
environmental conditions but can also learn from prior
adaptations and make better decisions on that basis.

Finally, we are looking at extending our applications work
beyond the fire fighting scenario to a more general focus on
managing the “e-Environment”. To this end, we are forming a
collaboration of leading Environmental Scientists from the
Lancaster Environment Centre (LEC), the Centre for Ecology
and Hydrology, and the Proudman Oceanographic Laboratory,
along with leading technology providers from InfoLab21
(Lancaster University), the University of Manchester, and
CCLRC Daresbury, to study the use of pervasive Grid
technology in the specific area of water management. This
particularly features the linkage of sensor networks and large
scale environmental modelling components to provide
comprehensive support for concerns such as flood forecasting
and water quality control.

References

[Andersen,01] Andersen, A., Blair, G., Goebel, V., Karlsen,
R., Stabell-Kulø, T., Yu, W., “Arctic Beans: Configurable and
Reconfigurable Enterprise Component Architectures”, IEEE
Distributed Systems Online, Vol. 2, No. 7, 01.
[Becker,04] Becker, C., Handte, M., Schiele, G., Rothermel,
K., “PCOM – A Component System for Pervasive
Computing,” Proc 2nd International Conference on Pervasive
Computing and Communications, Orlando, Florida, March 04.
[Cervantes,04] Cervantes, H., Hall, R., “Autonomous
Adaptation to Dynamic Availability Using a Service-Oriented
Component Model,” Proc. 26th International Conference of
Software Engineering (ICSE 2004), Edinburgh, Scotland:
ACM Press, pp 614–623, May 04.
[Coulson, 04] Coulson, G., Blair, G.S., Grace, P., Joolia, A.,
Lee, K., Ueyama, J., “A Component Model for Building
Systems Software”, Proc. IASTED Software Engineering and
Applications (SEA’04), Cambridge, MA, USA, Nov 04.
[Davies,04] Davies, N., Friday, A., Oliver Storz, O.,
“Exploring the Grid’s Potential for Ubiquitous Computing”,
IEEE Pervasive Computing, Vol 3, No 2, 2004.
[Dunkels,04] Dunkels, A., Grönvall, B., Voigt, T., “Contiki -
a Lightweight and Flexible Operating System for Tiny
Networked Sensors. Proc. 1st IEEE Workshop on Embedded
Networked Sensors 2004 (IEEE EmNetS-I), Tampa, Nov 04.
[Fassino,02] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller,
G., “THINK: a software framework for component-based
operating system kernels,” 2002 USENIX Annual Technical
Conference. Monterey, CA: USENIX, pp 73–86, June 02.
[Grace,04] Grace, P., Coulson, G., Blair, G., Mathy, L.,
Yeung, W.K., Cai, W, Duce, D., Cooper, C., “GRIDKIT:
Pluggable Overlay Networks for Grid Computing”, In
Proceedings of Distributed Objects and Applications
(DOA’04), Cyprus, Oct 04.
[Grace,05] Grace, P., Coulson, G., Blair, G.S., Porter, B.,
“Deep Middleware for the Divergent Grid”, submitted to
IFIP/ACM/USENIX Middleware 2005, April 3rd 2005.
[Grimm,00] Grimm, R., Anderson, T., Bershad, B.,
Wetherall, D., “A system architecture for pervasive
computing,” Proc 9th ACM SIGOPS European workshop,
ACM Press, pp. 177–182, 2000.
[JXTA,05] http://www.jxta.org/, 2005.
[Kon,00] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T.,
Magalhaes, L., Campbell, R., “Monitoring, Security, and
Dynamic Configuration with the dynamicTAO Reflective
ORB”, Proc. of Middleware 2000, ACM/IFIP, April 00.
[Li,04] Li, B., Guo, J., Wang, M., “iOverlays: A Lightweight
Middleware Infrastructure for Overlay Application
Implementations”, Proc. IFIP/ACM/USENIX Middleware
2004, Toronto, Canada, 2004.
[Mathy,01] Mathy, L., Canonico, R., Hutchinson, D., “An
Overlay Tree Building Control Protocol,” Proc. 3rd
International COST264 Workshop on Networked Group
Communication, London, UK, 2001.
[Pallickara,03] Pallickara, S., Fox, G., “NaradaBrokering: A
Distributed Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids”, Proc
IFIP/ACL/USENIX Middleware 03, Rio, Brazil, 2003.
[Roman,04] Roman, M., Islam, N., “Dynamically
Programmable and Reconfigurable Middleware Services,”
Proc. Middleware ’04, Toronto, Oct 04.
[van Renesse,98] van Renesse, R., Birman, K., Hayden, M.,
Vaysburd, A., Karr, D., “Building Adaptive Systems Using
Ensemble”, Software Practice and Experience. Vol 28, No 9,
pp 963-979, Aug 98.

