TheRoleof Reflective Middlewar e in Supporting Flexible Security
Policies

NaXu', Gordon S. Blair", Per Harad Myrvang?, Tage StabelI-Kul@®, Paul Grace'

'Computing Department, Lancaster University, Lancaster, UK
’Bodg Graduate Schodl of Business, Bodg University College, Bodg, Norway
3Department of Computer Science, University of Tromsg, Tromsg, Norway
n.xu@lancaster.ac.uk, gordon@comp.lancs.ac.uk

Abstract. Next generation middleware must support applications in the face of
increasing diversity in interaction paradigms, end system types and network styles.
Therefore, to secure applications, flexible security policies must be configured and
indeed reconfigured at runtime. In this paper, we propase an approach combining the
openness of reflective middleware with the flexibility of programmable security to
meet such demands. In particular, we build a security architecture based on the
Gridkit reflective middleware platform and the Obol security protocol programming
language. The paper then describes a case study that uses flexible policiesin order to
secure remote procedure calls and secure group communication. We also evauate
this approach in terms of its security properties, flexibility, ease of use and
extens bility.

1 Introduction

Developing middleware that can support secure distributed applicationsis an increasingly difficult task.
Computing paradigms such as the Grid, and mobile/ ubiquitous computing all add to the increasing
diversity in terms of interaction paradigms, end system types and underlying network styles; therefore,
enforcing an appropriate security mechanism in these highly heterogeneous environmental conditions
is becoming more challenging. We now ana yse how this diversity impacts on security:

— Varied interaction paradigms. The devel opment of distributed systems can invol ve awide range of
interaction styles including: RPC, multicast-based group communication, publish/subscribe, media
streaming, and many others. However, security mechanisms developed for the traditiona client-
server model do not necessarily fit the other interaction styles; experience has shown that there are
distinct differences in both the communication models and the security requirements.

— Different end systems. Devices can range from: workstations, PCs, |aptops to resource-poor and
low-speed PDAs and sensors. It is difficult for every device type to support al security policies;
for example, the cost of encryption and the processing of some security protocols may exhaust
resource-i mpoverished devices.

Hence, we believe that flexible security policies are necessary to dynamicaly adapt to the divergent
application environment. Dealing with flexible security policies will be a fundamenta challenge in the
devel opment of future middleware solutions. Unfortunately, traditional middleware platforms, e.g. EJB
[Su91] and CORBA [OMO02] typically only provide static, fixed security mechanisms. In this paper, we
propose an approach to apply configurable and dynamically reconfigurable security mechanisms in
middleware platforms. This involves the integration of two complementary technologies, namely
reflective middleware, and programmable security. That is, we devel op flexible security policies using
Obol [My05], a security protocol programming language to implement security policies. Then we
apply them within an existing reflective middleware, Gridkit [Gr05], using a meta-model supporting
behaviourd reflection (interception). To evaluate the effectiveness of our approach, we present a case
study, characterised by diversity, which demonstrates how security policies can be dynamically
configured at runtime.

The remainder of the paper is structured as follows. Section 2 and section 3 discuss the two key
underlying technologies. In particular, section 2 introduces the reflective middleware platform Gridkit,
its component mode (OpenCOM) and its interception metamodel. Section 3 then describes the
programmable security capability provided by Obol. Following this, section 4 describes the security
requirements for diverse environmentd conditions, highlights the role of Obol in expressing security
policies, and details the approach to integrate flexible security mechanisms within Gridkit. Section 5
describes the development of a case study involving an RPC application and multicast-based group
communication using two different device types, i.e. PC and PDA. Following this, we evaluate the
approach used to build the security architecture in section 6, and present our conclusions and future
work in section 7.

2 Reflective Middleware

2.1 Gridkit

Application domains including multimedia, mobile computing, autonomic computing, ubiquitous
computing, and many others, are characterised by both diversity and change. Applications can operate
on different devices, e.g. sensors, laptops, PDAs, workstations, and clusters; applications can utilise
different networks, e.g. fixed infrastructure, wireless and ad-hoc networks; and applications can have
very different middleware requirements, eg. client-server, publish-subscribe, streaming media,
resource discovery, etc. Hence, fixed middleware solutions are inappropriate; rather middleware must
be adaptable to suit the current application’s requirements in the given context, and middleware must
be able to dynamically change its behaviour at run-time to manage context changes. In this section, we
describe a middleware solution called Gridkit that can be configured, and reconfigured to support a
wide variety of application typesin highly diverse settings.

Gridkit follows the Lancaster design philosophy [BIO1] that promotes a marriage of component
technologies, component frameworks and reflection. Components are the building blocks of
middleware, where a component is “a unit of compaosition with contractually specified interfaces,
which can be deployed independently and is subject to third party creation” [Sz98]. This technique
promotes configurability, re-configurability and re-use a the middleware level. Component
frameworks manage specific domains of middleware functionality (themsel ves being composed of

other components and frameworks), in particular controlling the configuration and reconfiguration of
the elements within. Finally, reflection is then used to provide a principled mechanism to inspect and
dynamically adapt the component structure.

In prior work [Gr05], we have described the overal Gridkit approach, focusing on how different
elements of middleware functionality can be configured on-demand to meet application requirements
in different environmental conditions. Figure 1 illustrates the tailorable Gridkit framework; this is
essentiadly a component framework composed of a set of key component frameworks. At the base is
the overlays framework (which is typically used by higher-level middieware) into which per-host
implementations of overlay networks are plugged, for example, an Application Level Multicast plug-in
(ALM), an epidemic routing plug-in, or a Distributed Hash Table (DHT). Above the overlays
framework is a set of vertical frameworks providing diverse middleware behaviour. The interaction
framework supports the plug-in of multiple interaction types (eg. RPC, Pub-Sub, Group
communication, Streaming, etc.) The resource discovery framework accepts plug-in strategies to
discover resources such as CPUs and storage (e.g. peer-to-peer search), and also discover software
services, the resource management and resource monitoring frameworks are respectively responsible
for managing and monitoring resources.

Interaction

Service | Resource | Resource | Resource
discovery | discovery mgmt monitoring

Overlays framework

Figure 1: The Gridkit Architecture

[GrO5] aso describes how a declarative policy-based mechanism drives the configuration and
reconfiguration of the architecture. Using context information (e.g. current device type, or network
style), the correct policy is selected and applied across the framework, plugging the appropriate
functionality into each of the core frameworks. In this paper, we are investigating the approach further
by defining mechanisms to configure and reconfigure non-functional concerns (in this case security)
within this framework, and in particular within theinteraction framework.

2.2 OpenCOMJ and the I nterception M eta-model

OpenCOMJ is a lightweight Java component model that implements the OpenCOM component
runtime specification [Co04], and is used to implement every component and framework in the Gridkit
architecture. Each component implements a set of custom interfaces and receptacles. An interface
expresses a unit of service provision, whereas a receptacle describes a unit of service requirement. A
connection isthe binding between an interface and areceptacle of the same type. OpenCOMJ deploys a
standard runtime substrate that manages the creation and deletion of components, acts upon requests to
connect/disconnect components and provides service interfaces for reflective operations. The runtime
substrate dynamically maintains a system graph of the components currently in use. This explicit
mai ntenance of dynamic dependencies between components provides the support for introspection and
reconfiguration of component architectures. OpenCOMJ aso supports a component framework model
[Gr03]. Here, aframework is a single OpenCOMJ component (seen in figure 2), which then contains
its own interna sructure (a graph of components). Each framework is extended by the
ICFMetaArchitecture interface, which provides reflective operations to inspect and dynamically

reconfigure the framework’ s local component architecture.

ILifeCycle

IMetanterface T IConmections

Interfaces ICFMetaArchitec tuwe
> =

Figure 2: Components and Component Frameworks in OpenCOMJ

Crucidly, OpenCOMJ dso provides an interception metamodel. This supports the inspection,
insertion, and deletion of interceptors to individud interfaces. Interceptors can be either pre, or post,
i.e. they are invoked before or after each operation cal on that interface. In OpenCOMJ, interceptors
are implemented as individual Java methods that follow a particular syntax, as seen in figure 3. The
parameters contain the method name and the methods arguments. Hence, the interceptor can monitor
and manipulate the behaviour of the interface. Each OpenCOMJ interface is delegated using Java
dynamic proxies, essentidly the interface call is trapped, the attached pre methods are executed in
order, the origind method is called dynamically, and finally the post methods are executed. Aswill be
seen below, it isthis mechani sm that enables the dynamic insertion of security policiesinto Gridkit.

s

public Object Prel(String method, Delegated
Object[] args){ Tnterfac

1 ¥ ;
) | 7o |
Component A

Figure 3: Implementing Pre and Pogt Interceptors in OpenCOMJ

3 Programmable Security

3.1 TheCasefor Programmable Security

It is a very chalenging problem to address security requirements in dynamic and changeable
application domains. Firstly, security is usualy treated as an add-on property and is rarely properly
considered in the design and implementation of a system. This will inevitably increase the complexity
whilst decreasing the effectiveness of security i mplementation. Secondly, traditiona tools used to build
security solutions only work as expected in a very specific environment, where al assumptions are
clearly defined and supported. However, because the rea world is neither satic nor globally controlled,
change will occur and, gradualy, the security solution will become more and more mismatched to the
dynamic environment and its applications (the reason for this is often a very tight integration between
application and a security solution). In addition, the security features in both low-level cryptography
functions and high-level security mechanisms are very complex to understand and implement,
especialy in the dynamic environment. We propose programmable security as a solution to these
problems[An03]. We have limited the scope of the security problems we address to the ones related to
communication, that is, security protocols. We believe that the most interesting issues (security-wise)
revolve around communication (e.g. both message passing and invocation), such as secrecy, integrity,
authenticity, non-repudiation, and so on.

In order to maxi mize the flexibility of secure communication solutions, and at the same time separate a
solution from the application, we have designed and implemented a language and runtime for
expressing and running security protocols in a highly dynamic manner. This alows us to express
security protocols a a very high level of abstraction, with clearly defined separation of concerns,
boundaries, and interfaces to the application domain.

3.2 Obd: a Security Protocal Language

The security protocol language Obol is greatly influenced by the numerous logics used for anayzing
security protocols, e.g. [Bu90] [Sy96]. These logics ded with security issues a a very high level of
abstraction, leaving other matters to the system of deployment, i.e. the implementation. The Obol
language mirrors this by keeping the level of abstraction used to express a security protocol as high-
level as possible, while delegating low-level concerns, such as message representation and data
transfer, to its runtime. This means that security protocols can be expressed by very short textua
descriptions, called scripts, which only deal with the security problem at hand. Unlike the logics used
for analysis, and other security protocol implementations, Obol is designed for protocol endpoints, and
it is not required for Obol to be used by all protocol participants.

For security protocols, the interesting concerns are: manipulating loca state, what to encrypt and
decrypt, what to digitally sign and verify, what data to send, and what's expected to be received during
acorrect protocol run. Together with a syntactic notation, Obol provides eight fundamental operands
that address these concerns. believe and generate, for manipulating local state; encrypt and decrypt,
sign and verify, for the same-named cryptographic operations; and send and receive for expressing
what messages to send and expect to receive. There are other operands for manipulaing Obol
language objects, and interacting with the Obol runtime.

Inits current incarnation, the Obol language is interpreted in aruntime named “Lobo” implemented in
Java. The runtime deals with al matters not addressed by the Obol language, such as loading and
controlling protocol scripts, message representation, sending and recelving messages, etc. These issues
are modularized, and can be replaced or updated at need. Figure 4 shows an overview of the Lobo
structure.

Initial API Lobo runtime
usage [

>‘ Obol Runtime Fontend API ‘
»‘ Script Instance API }-—» Symbol Table

Subsequent ‘ T
API| usage
Obol Obol
‘ [use] <
script script

Transport layer S

P
v)
send N
Match Format < Socket>
eeeeeee ~
N

* ooooog ‘//

Message pool

uoiedyddy ‘
[}

)

Figure 4: Obol Runtime (Lobo) Overview

Applications interact first with the runtime itself to load, select and start a particular script, and then the
application interacts with the script instance through a script-handle during the protocol run. The
script-handle alows the application to inspect the script instance, to provide or retrieve various

parameters and results, as wel as interacting with the protocol run, to provide/retrieve intermediate
data, error state and so on. Typical parameters provided by the application are long-term identity keys,
names, peer-addresses, and payload data. The result retrievable varies greatly depending on the
protocol; some protocols yield aresult simply by not failing [Go95]. This reflection is also available to
the scripts themsel ves, alowing one script to use ancther.

The language does not make any assumptions on how messages communicate; in particular, messages
need not be transported over the same medium during a protocol session. The runtime keeps a pool of
delivered messages, and a matching algorithm determines if a delivered message is to be received by a
script instance. Also, no assumptions are made on how messages are represented nor how they are
structured. The exact manner of message transport is handled by the Obol runtime and is modularized
so that new ways of communication can be added. The manner of communication can be configured at
runtime, either by the Obol scripts themselves, or through parameters passed from an application. This
allows an application utilizing Obol as its security protocol machinery to adapt to changing situations,
for example, an application can switch the actua protocol used, or just change some parameter of the
protocol, such as the encryption dgorithm being used, or the manner of communication.

4 Flexible Security Policiesin Gridkit
4.1 Security Requirements of Diverse Environmental Conditions

To prevent attacks in the form of masguerading, tampering, eavesdropping and denid of service, it is
necessary to guarantee key security properties such as entity authentication, data integrity,
confidentiality, non-repudiation, authorization, validation, access control etc. There are many
cryptography techniques provided to support message security. For example, shared-key or public-key
based encryption/decryption for confidentiaity, MAC and digital signatures for data integrity and non-
repudiation, access control technologies (eg. ACL or ACM) for authorization. Moreover, a series of
key establishment protocols are used in authentication, key transport and key agreement. Table 1 shows
aselection of basic two-party protocols. Additionally, some protocols provide multi-party support such
as n-Party Diffie-Hellman protocol [St96], secret sharing technique [Me96], conference protocol
[Meoef] etc.

Type Protocol (properties)
Key transport protocol based on | Point-to-point key update (no server)
symmetri c encrypti on Shamir’ sno key protocol (no server)

Kerberos authenti cati on protocol (server based)
Needham-Shroeder shared-key protocol (server based)
Otway-Rees (server based)

Key transport pro[ocol based on | Basic F(’K encr)yption (1—pa$g (no ;ntity authen;ication))
i ; X.509 (2-pass) -timestamps (mutual entity authentication
asymmetric encryption X.509 (3-pass) —random (mutual entity authentication)
Beller-Yacobi (4-pass) (mutual entity authentication)
Beller-Yacobi (2-pass) (unilateral entity authentication)

Key agreement protocol Diffie-Hellman (entity authentication)
ELGamal key agreement (key entity authentication)
STS (mutual entity authenti cation)

Table 1: Selected Protocols [Me96]

It iswell known that the definition of security mechanisms is highly dependent on the requirements of
the application you want to protect, i.e., the required security principles, the handling attack types, and
so on. Therefore, security policies must match the environmental conditions. Heterogeneous interaction

paradigms demand flexible and dynamic security policies. Consider for example RPC, group
communication and publish-subscribe interaction paradigms. In the client-server model, the system can
employ approaches such as Kerberos [St88], the Needham-Schroeder shared-key protocol [Ne78] or
public-key mutual authentication protocol [GIOQ] for entity authentication. Moreover, MAC, digita
signatures as well as encryption/decryption technology can be used to guarantee privacy and data
integrity. Group communication is a significantly more complex interaction type compared to client-
server. Its characteristics are: i) potentialy large scale groups; ii) dynamic joining and leaving of
members resulting in the update of group security parameters (group key and group view) in order to
prevent new joiners from eavesdropping previous messages, and leavers from looking a future
messages, iii) flexibility: thejoiner isalowed to be a member when dl other members agree with it. To
ensure the validity of a group member as well as the privacy, integrity and freshness of messages
delivered between group members, it is necessary to choose appropriate security mechanisms to cope
with the generation, distribution and management of group keys. Secure authenticated key agreement
protocols for dynamic peer groups [At00], key graph solution for scalable group security [Wo098], and
the Burmester-Desmedt conference protocol [Me96] are some of the optiona techniques to meet
different system requirements e.g. in terms of being lightweight, scalable, etc. Findly, in the area of
publish-subscribe, security protection focuses more on the cryptographica binding between type name
and type definition, as well asthe authenticity and integrity of messages [Ba05].

In addition, developers need to consider the trade-offs involved in the security techniques. Public key
encryption is dower than symmetric encryption algorithms due to the level of computation involved, so
public key cryptography may be unusable for resource-poor devices; furthermore, according to [Di03],
long-term key based encryption slows performance even using today’s high-power processors.
Therefore, developers need to weigh the need for strong encryption versus system performance;
moreover, even if we neglect the cost of encryption technology (e.g. RSA, DES, AES etc.), because
encryption or any security-enabling technique will add overhead to communication, this aso leads to
increased memory and processing costs. In the fina analysis, security mechanismswill vary depending
on the end-system types they can execute on.

4.2 Implementing Security Pdliciesin Obd

To support the different security requirements we adopt Obol to program flexible security policies
according to its fundamental characteristics; namely it is “high-level”, i.e. easy to implement because
the simple syntax is close to the standard description of the security protocol; and it is“programmable’,
i.e. security policies can be configured and reconfigured at runtime.

Security policies in our architecture are classified into severa parts depending on which security
properties it achieves, e.g. entity authentication, data integrity, message privacy as well as securing the
private key and so on. The implementation of every security policy is an Obol program. Figure 5
represents a simple Obol program to perform message encryption and transmission (using the believe

(beliewve & "localhost: 2000 hast)

(beliewve B_id "B™

(beliewe message "12345")

(believe FH ey shared-lcey Q123150
(send & B 1d (encrvpt Few messagel)

Figure 5: An Obol Program

primitive to bind names to values and the send primitive to actually send the encrypted message).

As mentioned in section 3.2, Obol defines how to express a given security protocol. These Obol
programs must be interpreted and executed in the runtime L obo. Figure 6 shows how to initiate a Lobo
instance and load an Obol program.

API _lobo = Runtime.getInstance();

File f = new File("c:/script.text");

LoadedScriptinfo _s = _lobo.loadScript("script”.).
ScriptHandle _script = _lobo.getScriptInstance(_s);
_script.startExecution();

Figure 6: Load and Execute an Obol Program

Due to the clean decoupling between protocol implementation and protocol execution, security
protocols can be programmed before or after an application is designed and i mplemented. Moreover,
the loading of Obol programs occurs at runtime so the fluctuation of security policies will not affect
other parts of the system. This simplifies the update of security policies and aso achieves dynamic
configuration and runtime reconfiguration of security policies.

4.3 Integration of Flexible Security Mechanismsinto Gridkit

Section 2.2 described the interception meta-model of OpenCOM; this forms the basis of our reflective
security architecture. An Obol program (the i mplementation of the security protocol) must be loaded in
the Lobo runtime before it can execute; the reflective mechanism of Gridkit iswell-suited to this task,
i.e. the interceptor provides an environment to install the runtime Lobo and execute a given security
protocol at a particular point in the “middlieware path”. In this way, the update and replacement of the
security protocol used is separated from the logic of the core middleware functionality.

In detail, we designed our security architecture based on the principle of a clear “separaion of
concerns’ between the application logic and the security service. We employ interceptors to execute al
security related operations so that end-users can focus on the application development rather than
security implementation. As a result, in a given application, interceptors are responsible for
intercepting the application logic chain and triggering the appropriate security mechanisms. In addition,
we adopt interaction/role based configuration in order to adapt the security mechanism to the current
requirements and environmental conditions. In other words, “interaction/role” is viewed as a path to the
security architecture configuration, e.g. RMI/Client, RMI/Server, Group/SL or Pub-Sub/Publisher and
so on. Here, the “interaction/role” decides the interception points while the “role’ (potentially together
with some other context information at runtime) decides the pre- and post- method-call and the loaded
Obol program. The APl SecurityConfigurator: InterceptorConfigure() used to configure security
architecture is presented in figure 7.
public class SecurityConfigurator{
public SecurityConfigurator(OpenCOM runtime, |0penCOM plOCM, String configurelnfoPath){}
public void InterceptorConfigure(){ }

Figure 7: API for Configuring Security Architecture

The stepsinvolved in the process of configuration are as followed:

1. Read the configuration file (see the exampl e in section 5) according to the “interaction” type and
the“role”

2. Lookup the required components from the system graph of components; this is supported by
architecture meta-model of OpenCOM [BI01]

3. Attach the interceptors to the interfaces according to the “role”, or execute other security related
operations, such asinitiating the authentication server.

The configuration aimsto dynamically set the interception pointsat runtime. After this, theorigina call
invocation will be intercepted, and the pre- and post- methods will be triggered before and after the
cal. The runtime Lobo will be ingtalled and the appropriate security mechanism (an Obol program)
matching the current context information will be loaded dynamicdly. In summary, the security
architecture applied to Gridkit is configurable, orthogona and crosscuts core middleware functionality
to guarantee a series of security objectives including authentication, data integrity, privacy, non-
repudiation and others.

5 Case Study

In this section, we present one scenario (shown in figure 8) featuring both RPC and multicast-based
group communication. In the scenario, node A, node B and the server are | ocated in different domains.
Client A and client B invoke services from the server located in domain;. A only supports a shared-key
system, while B supports both shared-key and public-key based systems but no support for the
Needham-Schroeder shared-key protocol. Additionaly, B joins a chat group and talks to other group
members. We configure the security architecture for the two different interaction paradigms on two
types of devices (PC and PDA); this demonstrates how programmable security is integrated into our
reflective middleware platform, and shows how flexible security policies can be dynamicaly
configured to adapt to the heterogeneous environmenta conditions. We adopt the approach mentioned
in section 4.3 to build secure distributed applications and illugtrate the concrete details behind each

step.

N-S protocol

\

\

v
. Certificate

\
A Domainl
\
S

P - 7"‘\)
=S
— \
Client B/Member 4

Chat Group

Member \

Member 2

Figure 8: Application Scenario Featuring Client—Server and Group Communication

The configuration of the security architecture is based on the APl method:
SecurityConfigerator: Configurel nteceptor (). The operations it performs are to discover which pointsin
the middleware need to be intercepted, and then attach the correct interceptors at this point, i.e. adding
pre- and post- methods to the call chain. The configuration information based on two different
interaction types (RMI and group communication) is tabulated in Table 2.

Interaction 7 Intercepted Trigger
Role Component Interface Interceptor gg
Tyvpe Method point
0 e 3 3 C_Intercept :
Client JavaRMI IClientRemoteProcedureCall| Invoke() e | Invoke()
RMI1 {prel prel.pre?. postll)
- . J : : o =) 3 2 inlercepio o
Server |Endpoint-+interfaceName IService N/A “”‘_ e el INSA
(prel, prel,posiiy
GroupManagement [GroupManagement JuinGroup() | join_interceptor (sl_post0) | JoinGroup()
y = , o ; i send intercept
SL GroupC ommunication IGroupCommunication SendGroup() ke:‘:,—;‘t: ;:jg]or SendMessage()
GiroupManagement IGrouphanagement LeaveGroup()| leave_interceptor {sl_post() | LeaveGroup()
Group i AnieTeetor
Joiner GroupManagement IGroupManagement JoinGroup(y (::'\ I;“}I[[]"fr“':: :‘II“] JoinGroupd)
; 5 T T ; send_intercept 5
GroupCommunication IGroupCommunication SendGroup() = i Sendhessage()
Member E (pred, post()
GroupManagement [GroupManagement LeaveGroup()| leave_interceptor (m_post0) | LeaveGroup()

Table 2: Configuration I nformation in Heterogeneous Interaction Types

The configuration information is defined in a plain text file (in the future, we will define it using
XML). At the application start-up, the SecurityConfigurator is initiated and obtai ns the contextlnfoPath
(see API in figure 7). Following the data from Table 2 for RPC, the SecurityConfigurator associated
with client A and client B will redize the context information “RMI/Client”, will check the
configuraion file, look up the component called “JavaRMI”, attach the “rmi_c_interceptor” to the
interface caled “IClientRemoteProcedureCall” and then add the pre0, prel, pre2 and postO methods
written in the rmi_c_interceptor to the invocation chain. However, if A joins a chat group, the
SecurityConfigurator associated with it will redize it as“Group/Joiner”, look up the component called
“GroupManagement”, attach the “join_interceptors’ to the interface named as “1GroupM anagement”
and add m_pre0 and m_postO methods written in the join_interceptor.

The interception meta-model alows programmers to define security behaviours (pre-/post- methods) in
advance. The pre-defined actions are triggered a runtime when the invocation happens. In order to
make the security mechanisms modular, we separate every security policy into different pre- or post-
method calls. We then adopt a“ context-based selection” mechanism to dynamically select which pre-
/post- methods will be performed. Figure 9 illustrates that pre methods can be executed in order as
shown in path 1, or selectively executed asin path 2 (which uses context information to select a path
through the interceptors). The dynamic composition of pre-defined actions not only increases the
flexibility of interception behaviours, it aso facilitates dynamic configuration and more genera
extensi bility of security mechanisms at runtime.

Path 2

Dre2: Rchﬂvin

Figure 9: Interception Behaviours in the ‘ context-based selection’ Mechanism

More details follow in terms of the concrete description of how RPC and group security are depl oyed.

10

51 RPC Security

The first example focuses on the provision of a security architecture for Gridkit’'s RPC interaction type.
Figure 10 depicts the workflow of this architecture in detail. In this example, the server provides a
simple patient record service alowing doctors to read a patient’s medical record. If the client is
authorized, it will be returned the corresponding record to the passed parameter (patientID). In this
scenario, there aretwo clients: A (aPDA client being used by a doctor in ahospital) and B (a PC client
being used by a generd practitioner) supporting different security mechanisms; hence, it is essential to
negotiate the security mechanism they will use for message exchange. In detail, at the beginning of the
application, the server configures the appropriate Gridkit interaction type [Gr0O5] and hosts the patient
record service, it aso invokes the SecurityConfigurator: Configurelnterceptor(). After thisis done, an
authentication server is generated and pre- and post- methods are attached. The client configures itself
in the same way and invokes the record service with the contextinfo (“PDA” or “PC” in this case) and
value (patientI D) as the parameter called InputParameters.

Client Side Server side

P e e iia e

_______ J_l_________ __ﬁ____ ______ﬂ_______

Authentication
Server

,a-" m’ Gridkit r
Service Service |

7 Tustll

‘ Gridkit

Fgure 10: Workflow Overview in RMI Application

As shown in figure 10, pre0 in the client side is triggered first when the client invokes the service. It
contacts the authentication server and negotiates the authentication protocol to be used. The
authentication server then creates a new thread for every incoming client for authentication. The pre-
and post- method, as well as the authentication server will install Lobo and alow the runtime to |oad
and execute an associated Obol program according to the context information.

Needham-Schroeder (N-S) | Public-key Mutua Authentication Group Communication Protocol
1A->B: A 1A->CA: A, Kp™ Join protocol:
2B->A: {Rg}Kg 2 CA->A: A, Ka*, CA, {H(A, Ka", CA)} Kca™ | 1Joiner->SL: A, Ra
3 A->KDC: Ry, A, B, {Rg} Kz 3B->CA: B, Kg* 2SL->KDC: SL, A, Rs.
4 KDC->A: {Kag, Ra, B, {A,Rs, | 4CA->B: B, Kg", CA, {H(B, Kg", CA)} Kca™ | 3KDC->SL: [ms = { A} K. XOR
Kag} Kg} Ka 5A->B: A, Ka*, CA, {H(A, Ka*, CA)} Kca’ {SL}Ka] {Rst}Kst
5A->B: {Ri}Kag, {A, Rg, 6 B->A: Rg 4 SL->Joiner: SL, {Ra, g, {0,
Kag} Ks 7 A->B: {H(Rg)} Ka A} SK}os a*
6 B->A: {Ri-1, R} Kas 8 B->A: B, Kg*, CA, {H(B, Kg*, CA)} Kca’ 5 Joiner->group: A, {g, A} SK,q
7 A->B: {Rxr1}Kap 9 A->B: Ry 6 SL->group: g, (A,{g+1, SKg1}osLa),
10 B->A: {H(Ra)} Kg’ (B{9+1, Ky} os).
L eave protoocl:
SL->group: g, (A {g+1, SKg:1}os.4),
[*: A public/ private key pair (Ka*, Ka))] (B{g+1, SKgi1}05.8)...
[*: osa={SL}Ka]

Table 3: Protocol Description [NB: the number like “1” stands for Messagel]

11

In our scenario, the authentication between A and the server is based on the Needham-Schroeder
protocol, while a public key based mutua authentication protocol is used between B and the server
(please refer to Table 3 which lists the protocol description and Table 4 which presents the Obol
programs for each participant in the protocol). Once the authentication finishes successfully, A will get
ashared key with the server while B will obtain the certificate of the server. At the same time, both A
and B get the connection_ID for accessing the service. The server aso writes messages into the
database (DB), including connection_ID as well as security mechanisms rel ated to this connection_ID.
After authentication, prel or pre2 performs the message encryption operation presented in figure 11,
and dso attaches the connection ID to the encrypted messages. The server at the other side
authenticates the connection_ID and queries security mechanisms related to this call. It tells Lobo
which Obol program is loaded for decrypting the message. The record will be delivered in the same

way from server to client.

Protocol | Implementation
N-S Client side[A] Server side[B] Key Distribution Certer
[self “local host:60007] [self “local host: 7000"] [self “local host:8000"]
(believe B “localhost:7000" host) (believe Kg (load "c:/Kg.key") shared- (believe Ka (10ad
(believe KDC “localhost:8000" host) key ((alg AES)(size 128))) "c:/Ka.key") shared-key
(believe Ka (l0ad “c:/K a.key") shared- ((alg AES) (sze 128)))
key ((alg AES)(size 128))) 1 (receive*a*A_ID) (believe Kg (load
1(send B “A") 2 (generate Rg nonce 16) "c:/Kg.key") shared-key
2 (receive B *1) (send *a (encrypt Kg Rg)) ((alg AES)(size 128)))
3 (generate R nonce 16) 5 (receive*a*1*2)
(send KDC Ry “A” “B” *1) (decrypt (Kg *2) *A_ID Rg *Kag) 3 (receive*a*Ra *A_ID
4 (receive KDC (decrypt Ka *Kag Ra (believe Kag *Kap shared-key ((alg *B_ID *1)
“B” *2)) AES) (size 128))) (decrypt (Kg *1) *Rg)
(believe Kag *Kap shared-key ((alg (believef "c:/kab_b.key" file.out)
AES)(size 128))) (send f Kag) 4 (generate Kap shared-
5 (generate R, nonce 16) (decrypt (Kag *1) *Ry) key AES 128)
(send B (encrypt Kag R1) *2) 6 (believe Ry *Ry ((type number))) (believe *2 (encrypt Kg
6 (believe *R Ry ((type number))) (generate *Ryqeval ligp “(- *R11)” *Ry) | *A_ID *Rg Kag))
(generate*Ry ; eva lisp “ (- *R 1)” *R) (believe Ry1 *Ry.1 ((type binary))) (send *a (encrypt Ka Kag
(believe Ry 1 *Ry 1 ((type binary))) (generate R, nonce 16) *Ra *B_ID *2))
(receive B (decrypt Kag R11*R2)) (send *a (encrypt Kag R1.1Ry))
7 (believe *R *R; ((type number))) 7 (believe *R; R; ((type number)))
(generate*R; ; eval lisp “ (- *R 1)” *R) (believe*R; 1 eval lip“(- *R; 1)” *Ry)
(send B (encrypt Kag *Rz 1)) (receive *a (decrypt Kas Rz 1))
PK Client side[A] Server side[B] Certificate Authority
Mutual [input A_ID string] [input B_ID string] [self "localhost:6111"]
Authen- | [self "localhost:6700"] [self “local host: 7000"] (believe Kca™ (load
tication | (believe B “localhost:7000” host) (believe CA "localhost:6111" host) "CICA_Kprivackey")
(believe CA "localhost:6111" host) (believe Kg™ (load "c:/B_Kprivae key") private-key)
(believe Ky~ (load “C:/A_ Kprivae-Key") private-key)
private-key) (believe Kg* (load "c:/B_Kpunickey") 1 (receive*a*A_ID
(believe Ka* (load "c:/A_Kpwiic-Key") public-key) *Ka")
public-key) (believe Kea™ (load "c:/CA_Kpwiickey") 2 (believe*s a(sign Kca’
(believe Kea™ (load "c:/CA_Kpwic-key") | public-key) *A_ID *K," "CA")
public-key) 3(send CA B_ID Kg") (send *a*A_ID *Kp*
1 (send CA A_ID Kx") 4 (receive CA B_ID Kg" *CA_ID *s b) 'CA" *s a)
2 (receéive CA A_ID Kp* *CA_ID *s a) 5 (receive*a*A_ID *K," *CA_ID *s a)
5(send BA_IDK,* *CA_ID *s a) (verify (Kca® *s @) *A_ID *Kp* 3 (receive*b *B_ID
6 (receive B *Rg) *CA_ID) *Kg")
7 (send B (3gnKa™ *Rg)) 6 (generate Rg nonce 128) 4 (believe*s b (sign Kca®
8 (receive B*B_ID *Kg" *CA_ID (send *a Rg) *B_ID *Kg" "CA"))
(verify Kca® *B_ID *Kg" *CA_ID) 7 (receive *a (verify *Kn" Rg) (send *b *B_ID *Kg"
9 (generate Ra nonce 128) 8 (send *aB_ID Kg" *CA_ID *s b) "CA" *s h)
(send B Ra) 9 (receive *a*Ra)
10 (receive B (verify Kg* Ra)) 10 (send *a (Sgn Kg *Ra))
Table 4: Protocol Implementation in Obol [NB: the number like “1” means the implementation for Messagel]

12

Client A:
Message (Message) K5 + MAC
—————————"Prel/2 (Lobo) =

Client B:

Message {E BT+ {Message, digital_signature}K,
——————="Prel/2 (Lobo) «

Fgure 11: Message Encryption

5.2 Multicast-based Group Communication Security

In this example, to secure group communication, we utilise a lightwel ght authentication protocol based
on Lethton-Micali key distribution algorithm [Mc98] (as described in Table 3). The founder of the
group, or the earliest joiner based on the current group view (if the founder left) is viewed as the
session leader (hereafter SL). Every joiner must contact the SL before joining. We use the same
approach described in section 5.1 to configure the pre- and post- methods according to Table 2. The
JoinGroup() cal will trigger the authentication protocol executed in the m_pre0 method. After the
authentication is done, the SL generates anew group key for the new group view and multicastsit to al
membersin the group. Member joins and leaves lead to the fluctuation of the group key, soweingtdl a
runtime Lobo in the post method join_interceptor:m_post() of JoinGroup() cal to listen to the new
group key (as presented in figure 12). Moreover, the SendMessage() call will trigger the message
encryption before it is transported. The message exchanged among group members is encrypted with
the fresh group key, so people outside the group will not understand it. In addition, when one of the
members leaves the group, the post method of LeaveGroup() cal will trigger the generation and
distribution of a new group key. Especialy when the SL leaves the group, the earliest joiner in the
current group view will receive a natification and reconfigure itself as a SL, including generaing an
authentication server (the part distinct from usua membership, seen in figure 12) and loading the
authentication protocol. The interceptors that implement this security mechanism are applied in the
same manner as for RPC; however, due to space limitations, more details of this implementation are
not given here.

Member 4
Lobo

install
JoinGroup()

Pre Romt 0

Session Leader

Authentication
Server

Chat Group

Member 2 Member 3

Lobo Lobo

Figure 12: Member 4 Joins a Chat Group

13

6 Evaluation

In this section, we andyze our approach to building security architectures in Gridkit. We focus on four
core aspects as follows:

i) Security. We adopted Obal to define security mechanisms. Currently, we have implemented arich
set of security palicies, including authentication protocols, secret key based encryption/decryption,
public-key based encryption/decryption, MAC, digital sgnatures, and private key management. These
security mechanisms protect a given application by enforcing properties such as authentication,
integrity, privacy and non-repudiation.

i) Flexibility. The interception meta-model in our reflective middleware platform provides the
possibility to modify the behaviour defined by the business logic of a given application. The
combination of this reflective feature within the Gridkit middleware platform and programmable
security supported in Obol makes it possible to dynamicaly configure and re-configure flexible
security mechanisms a runtime to meet application requirementsin the environmental context.

i11) Ease of use. Firgly, Obol alows the security developer to escape the distractions of low-level
implementation efforts. For example, issues such as message representation, cryptographic
transformation, etc. are handled in Lobo, so the security developer can focus on designing effective
security mechanisms without consideration of low-level cryptographic functions. Additionaly, the use
of Obol also avoids errorsintroduced by the implementation of security protocols. Finally, Oboal is easy
to use because the syntax is similar to the traditiona notation of the protocol. In our experience, new
protocols can be introduced into the framework with considerable ease; once the overall framework
was established, we were abl e to introduce new security mechani sms by programming security policies
in Obol, then updating the interceptors and configuration files (for example, the time to develop a
public key mutual protocol was approximately six hours).

iv) Extensibility. We adopted the interception meta-model of the Gridkit reflective middleware
platform to construct interceptor based security. This allowed us for example to implement a security
architecture to support existing RPC and group communication interaction types, we can now follow
this approach to freely extend other available interaction styles such as publish-subscribe, media
streaming etc, based on the well-defined interface and the programmable features of the security
mechanisms. To some extent, we believe there is the potential to extend other traditional middleware
platforms (eg. CORBA and EJB, which support similar interception capabilities) with our flexible
security policies.

7 Conclusonsand Future Work

In this paper, we have discussed an approach to integrate our programmable security architecture into
the Gridkit middleware platform to support flexible security policies that adapt to heterogeneous
environmental conditions. We adopt two complementary technologies. the interception meta-model of
the OpenCOM component model and the programmable security capabilities of Obol to build a
security architecture in the Gridkit reflective middleware platform. This combination is capable of
supporting configurable, reconfigurable, and flexible security policies.

14

To date, we have designed and implemented a set of security mechanisms to support the RPC and
multi cast-based group interaction models. Currently we have a mature i mplementation of the prototype
to support dynamic configuration of flexible security policies to adapt to varied device types in the
RPC model and we are now extending the security architecture for the group communication model for
robustness, and to include a wider range of sd ectabl e security services.

Although we have made considerable progress in achieving configuration and reconfiguration of
security policies in a reflective middleware platform, this is just a start and a lot remains to be
investigated. We have focused on security policies to support secure RPC and group communication
addressing security properties such as authentication, integrity, privacy and non-repudiation. Future
work is planned to complement these security mechanisms to guarantee more security principles such
as authorization and access control. We also aim to investigate security in aternative paradigms like
publish/subscribe, tuple-space and media streaming. Additionally, we have addressed dynamic
configuration of two interaction paradigms upon two types of devices. M ore ambitious explorationsin
the future will focus on implementing runtime reconfiguration of flexible security policies (cf. self-
organising security policies). Furthermore, Gridkit is characterized by the two layered component
framework [Gr05] featuring an interaction framework layer supported by an overlay framework. It is
also interesting to investigate security policies at the overlay level of Gridkit and how these might
relate to more end-to-end policies as studied in this paper.

The interception meta-model in the reflective middleware is a cornerstone of our approach to achieve
configuration and reconfiguration of flexible security policies. Future work is planned to explore and
extend the current interception meta-model to support more flexible interception behavi ours. However,
the reflection feature also hides some dangers such as arbitrarily loading and deleting interceptors or
freely interposing the interceptors without authorization. Therefore, securing interception is also
crucia for our approach. We are examining special components called ‘ security mediators' to control
access to the component runtime to protect ‘dangerous APIs such as interception. In the future, the
TCB (Trusted Computing Base) concept will be the base of our security mechanism, authorizing
operations on the potentially open interception mechanism.

In addition, a separate project a Lancaster is addressing how to apply aspect-oriented programming
(AOP) techniques to the component-oriented approach as used in OpenCOM to enhance how
devel opers dea with crosscutting concerns. There is considerable potentia in considering the role of
aspect-oriented techniques to identify aspects and join points and investigate how this would be
supported through interception (effectively providing a higher level view of statement of cross-cutting
concerns such as security). Moreover, future work is aso planed to investigate the possibility to apply
Model Driven Development (MDD) to our programmable security architecture.

References

[An03] Andersen, A., Blair, G.S,, Myrvang, PH., Stabell-Kulo, T., “Security and Middleware”, WORDS 2003,
Guadal gjara, Mexico, January 2003.

[At00] Ateniese, G., Steiner, M., Tsudik, G., “New Multi-party Authentication Services and Key Agreement
Protocols’, |EEE Journal of Selected Areasin Communication, vol. 18, March 2000.

15

[Ba05] J. Bacon, D. M. Eyers, K. Moody, and L. I. Pesonen, “Securing publish/subscribe for multi-domain
systems’, In Proc. of the 6th International Middleware Conference (MW'05), Grenoble, France, Nov. 2005.

[BIO1] Blair, G. et a.; The design and implementation of Open ORB 2", |EEE Distributed Systems Online, 2(6),
Sept 2001.

[Bu90] Burrows, M. and Abadi, M., and Needham R., “A logic of Authentication’, ACM Transactions on
Computer Systems, Vol. 8, No 1, 1990.

[Co04] Coulson, G. et a.; OpenCOM v2: A Component Model for Building Systems Software. In Proc. of
IASTED Software Engineering and Applications (SEA'04), Cambridge, MA, ESA, Nov 2004

[Di03] Diana, A, “Benchmarking Encryption Technology”, part of the
http://www.macnewsworld.convstory/31311.html

[GI00] “Overview of the Globus Security Infrastructure”, http://www.globus.org/security/overview.html

[Go95] Gong, L., Syverson, P., “Fail-Stop Protocols: An Approach to Designing Secure Protocols’, in
Proceedings of the 5" IFIP Working Conference on Dependable Computing for Critical Applications, Urbana-
Champaign, lllinois, USA, 1995.

[Gr03] Grace, P.; Blar, G.; Samuel, S; ReMMoC: A Reflective Middleware to Solve Mobile Client
Interoperability, In Proc. International Symposium of Distributed Objects and Applications (DOA’03), Catania,
Sicily, November 2003.

[Gr05] Grace, P., Coulson, G., Blair, G., Porter, B., “Deep Middleware for the Divergent Grid”, Proceedings of
the 6™ IFIPPACM/USENIX International Middleware Cort erence 2005, Grenoble, France, November 2005.

[M c98] McDaniel, P., Honeyman, P., Prakash, A., “Lightweight Security Group Communication”, CITI Technical
Report 98.

[M e96] Menezes, A., Oorschat, P., Vanstone, S., “Handbook of Applied Cryptography”, CRC Press, ISBN: O-
8493-8523-7, October 1996.

[MyO05] Myrvang, P.H., Skogan, T.S., “The Obol Protocol Language”’, Department of Computer Science,
University of Tromso, 2005

[Ne78] Needham, R., Schroeder, M., “Using encryption for authertication in large networks of computers’,
Communications of ACM, 21(12): 993-999, December 1978.

[OMO02] Object Management Group, “Security service specification”, technical report, Object Management
Group, Mar. 2002.

[Su91] Sun Microsystems, “Simplified guide to the Java 2 platform, enterprise edition”, technical report, Sun
Microsystems, Inc., 1991.

[St88] Steiner, J., Neuman, C., and Schiller, J., “Keberos: an authentication service for open network systems’, in
proceeding Usenix Winter Conference, Berkeley: Calif., 1988.

[St96] Steiner, M., Tsudik, G., Waidner, M., “DiffieeHellman Key Distribution Extended to Group
Communication”, in Proc. 3% ACM Conference on Computer and Communications System (CCS' 96).

[Sy96] Syverson, P. and van Oorschot, P. C., “A unified cryptographic protocol logic’, Naval Research
Laboratory, CHACS Report 5540-227, Washington, USA, 1996.

[Sz98] Szyperski, C., Component Software, Beyond Object-Oriented Programming. ACM Press/Addison-Wesley,
1998.

[W098] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” in Proc. ACM
SIGCOMM’ 98, Vancouver, B.C., 1998, pp. 68—79.

16

