
A Marriage of Web Services and Reflective Middleware to Solve the
Problem of Mobile Client Interoperability

Paul Grace1, Gordon Blair1 and Sam Samuel2

1Computing Department, Lancaster University, Lancaster, LA1 4YR, UK.
{p.grace@lancaster.ac.uk, gordon@comp.lancs.ac.uk}

2 Bell Laboratories, Lucent Technologies, Westlea, Swindon, SN5 7DJ, UK.
{lsamuel@lucent.com}

Abstract

Mobile client applications must discover and interoperate with application services available
to them at their present location. However, these services will be developed upon a range of
middleware types (e.g. RMI and publish-subscribe) and advertised using different service
discovery protocols (e.g. UPnP and SLP) unknown to the application developer. Therefore, a
middleware platform supporting mobile client applications should ideally adapt its behaviour
to interoperate with any type of discovered service. Furthermore, these applications should be
developed independently from particular middleware implementations, as the interaction type
is unknown until run-time. This paper presents ReMMoC, a reflective middleware platform
that dynamically adapts both its binding and discovery protocol to allow interoperation with
heterogeneous services. Furthermore, we present the ReMMoC programming model, which is
based upon the Web Services concept of abstract services.

1. Introduction

Mobile computing is characterised by mobile hosts physically changing location. As they
move location, they are likely to encounter application services that have been developed
upon a range of middleware paradigms (e.g. Remote Method Invocation (RMI), Publish-
Subscribe, Tuple Spaces). Furthermore, the varieties of implementations of individual
middleware paradigms e.g. SOAP and CORBA for RMI extenuate the problem of middleware
heterogeneity within this domain. Hence, a client application implemented upon a particular
middleware platform (e.g. SOAP) will not interoperate with the discovered services
implemented upon different platforms (e.g. Internet Inter-ORB Protocol (IIOP) or Publish-
Subscribe), as the user moves from location to location. Similarly, available services can be
advertised using one of the contrasting service discovery protocols available, such as Jini,
Service Location Protocol (SLP) and Universal Plug and Play (UPnP); if a mobile application
discovers services using only one protocol then services advertised by others will be missed.

We argue that an adaptive middleware platform is required to support the interoperation
of mobile clients. This platform should alter its behaviour dynamically to: i) find the required
mobile services irrespective of the service discovery protocol and ii) interoperate with
services implemented by different middleware types. We utilise reflection and component
technology to develop a middleware with these capabilities, named ReMMoC (Reflective
Middleware for Mobile Computing). Reflection is a principled method that supports
introspection and adaptation to produce configurable and reconfigurable middleware. Given
these properties, mobile applications can then be developed independently of the underlying
middleware technology, allowing them to continue interoperation across different locations.

For an application to dynamically operate across different middleware implementations it
must be programmed independently from them. An abstract definition of the application
service’s functionality is required. The mobile client application, which requests the service,
can then be developed against this “interface” in the style of IDL programming. A request of
the abstract service is mapped at run-time to the corresponding concrete request of the

middleware implementation. The emerging Web Services Architecture (described in section
2) includes a Web Services Description Language (WSDL) that provides this format of
abstract and concrete service definition. ReMMoC bases its programming model on WSDL.

In this paper, we demonstrate the combination of a reflective middleware and the WSDL
programming model to provide a solution to the problem of interoperation from mobile
clients. The client is programmed independently from any specific middleware
implementation using WSDL and the reflective middleware dynamically adapts between
middleware implementations based upon the environment. Abstract requests are then mapped
to this middleware. The paper is structured as follows. Section 2 describes the web services
programming model and section 3 discusses the mapping of abstract definitions to concrete
paradigms. Section 4 then introduces the reflective middleware platform (ReMMoC) and
finally, section 5 draws concluding remarks and discusses future work.

2. Overview of Web Services

A web service is defined as: “a software system identified by a URI, whose public interfaces
and bindings are defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the web service in a manner
prescribed by its definition using XML based messages conveyed by Internet protocols” [1].
The web services architecture consists of three key roles: a service provider, a service
requestor and the discovery agency, which the requestor uses to find the service description.
Each service is described in WSDL [2], which is an XML format for documenting the
exchange of messages (containing typed data items) between the service requestor and service
provider. The exchange of messages is termed an operation, and a collection of operations is
called a port type (interface). Finally, a service is a group of ports. The key property of WSDL
is that it separates the abstract description of service functionality from the concrete details of
the service implementation.

The aim of Web Services is to allow different service providers to implement this abstract
service description upon their chosen concrete middleware binding. For example, a news
service may be implemented using SOAP by one vendor while another may use publish-
subscribe. Client applications, programmed against the abstract WSDL definition, can
interoperate with both concrete implementations.

WSDL offers the ability to develop mobile clients, based upon agreed abstract service
descriptions. Hiding the developer from the problem of middleware heterogeneity
encountered across different locations. Furthermore, by utilising an existing standard the
probability of interoperability is increased; rather than propose a new abstract service
definition language (“new standard”) that must be accepted. However, what is missing from
Web Services is the capability to dynamically adapt the binding at runtime to allow continued
interoperation with abstract services implemented across contrasting concrete bindings. We
discuss a reflective middleware, providing this capability, in section 4. Firstly however, we
illustrate in the next section the mapping of abstract WSDL descriptions to different bindings
e.g. RMI and publish-subscribe. This shows that WSDL can be mapped to the diverse
paradigms that are encountered within mobile environments.

3. Mapping Abstract Services to Concrete Binding Types

In this section we demonstrate how the abstract operations of WSDL can be mapped to two
contrasting binding types exposed by a reflective middleware (RMI and publish-subscribe).
The following four abstract operations can be described in WSDL. (1) Request-Response
(input, output), a service receives a request of its functionality and responds to it. (2) Solicit-
Response (output, input), a service provider acts as a service requestor. (3) One-Way (input), a

service receives a notification message. (4) Notification (output), a service outputs a
notification message.

Figure 1. Mapping WSDL operations to different middleware paradigms

Figure 1 illustrates how abstract messages (input and output) that constitute each WSDL
operation map to the RMI and publish-subscribe communication paradigms. The service
requestor is the mobile client. We assume that each paradigm understands the set of types
used by the abstract definition. In RMI, the input/output messages of Request-Response and
Solicit-Response operations can be mapped directly to the corresponding synchronous RMI
messages of SOAP and IIOP. The operation name maps to the method name, the input
message to the input parameter list and the output message to the output parameter list.
Similarly, Notification and One-Way operations can be mapped as one-way messages e.g.
one-way IIOP invocations and asynchronous SOAP messages.

Publish-Subscribe however is an alternative communication paradigm whereby there is no
direct message exchange between service requestor and provider. The service provider
publishes events and a service requestor must filter to receive appropriate events. Therefore
unlike RMI, the mapping of WSDL to publish-subscribe is not a direct correlation. The
request-response operation is a request of a service based upon the input message. The input
message can be used to filter published messages and receive the correct event, whose content
maps to the output message. The operation name maps to the event subject, while the input
message maps to the content filter attributes. Similarly, for Solicit-response the service filters
to receive events from other services. For One-way operations and Notifications, services
subscribe and publish events based upon subject filtering only, with the content of the
concrete message mapping to the abstract message.

4. ReMMoC: A Reflective Middleware for Mobile Computing

4.1 Overview of ReMMoC

In order to support interoperation, the underlying middleware must dynamically adapt to
communicate with different middleware implementations. This section briefly describes the
ReMMoC platform, a configurable and reconfigurable reflective middleware that overcomes
the heterogeneous properties of the mobile environment. ReMMoC uses OpenCOM [3] as its
underlying component technology and is built as a set of component frameworks (CFs).

Request-Response Solicit-Response One-Way Notification

SR

SP SP
RMI

SP

Content
&
Subject
Filter

Content
&
Subject
Filter

SR

Publish-
Subscribe

SPSubject
Filter

SR

Subject
Filter

Input

Output

Output

Output

Output

Output

Output

Output Input

Input

Input

Input

Input

Concrete message
Abstract message

SR – Service Requestor
SP – Service Provider

SRSP

SR SP

SR

SR
SP

SR

SP

OpenCOM is a lightweight, efficient and reflective component model, built using a subset of
Microsoft COM. ReMMoC is then implemented as a set of component frameworks, where a
component framework is defined as “a set of rules and contracts that govern the interaction
of a set of components” [4].

Figure 2. The ReMMoC Architecture

Figure 2 illustrates the architecture of ReMMoC, which consists of two key component
frameworks: (1) a binding framework for interoperation with mobile services implemented
upon different middleware types, and (2) a service discovery framework for discovering
services advertised by a range of service discovery protocols. The binding framework is
configured by plugging in different binding type implementations, e.g. IIOP Client, Publisher,
SOAP client etc. and the service discovery framework is similarly configured by plugging in
different service discovery protocols. The ReMMoC component manages the reconfiguration
of the underlying frameworks and provides an interface for discovering and interoperating
with services (section 4.4).

4.2 The Binding Framework

The primary function of the binding framework is to interoperate with heterogeneous mobile
services. Therefore, over time it may be configured as an IIOP client configuration and make
a number of IIOP requests, or change to a subscribe configuration and wait to receive events
of interest. Different middleware paradigms, synchronous or asynchronous (e.g. tuple spaces,
media streams, RPC, publish-subscribe or messaging), can be plugged into the binding
framework if they have been implemented using OpenCOM components. The component
framework structure manages the configuration and dynamic reconfiguration of these
bindings and ensures that a correct binding type is in place before operation occurs. Each
component framework in the platform implements a single meta-architecture interface
(ICFMetaArchitecture) that provides operations to inspect and dynamically change its internal
structure.

Within the binding framework changes are made at two distinct levels. Firstly, each
binding type implementation can be replaced. For example, an IIOP configuration can be
replaced by a publish-subscribe configuration. Multiple personalities can also be created, e.g.
a publish-subscribe publisher and SOAP client together; their implementation is simply a

ReMMoC

IIOP, SOAP or
Subscribe Map

Accept
DiscoverDiscovery

Protocol

IReMMoC

IServiceCall

ILifeCycle

IConnections
IMetaInterface

IServiceLookup

ILifeCycle
IConnections
IMetaInterface

IIIOPICFMetaArchitecture

ILifeCycle
IConnections
IMetaInterface

Binding CF
Service

Discovery CF

ILifeCycle
IConnections
IMetaInterface

ILifeCycle
IConnections
IMetaInterface

ILifeCycle
IConnections
IMetaInterface

ICFMetaArchitecture

configuration of components, but more than one interface is exposed by the framework.
Secondly, fine-grained changes to each configuration can be made in light of environmental
context changes, such as those involving quality of service, or changes in the application’s
requirements. For example, an application may require IIOP server side functionality, in
addition to the existing client side; therefore components implementing server side
functionality are added.

In order to test and evaluate the ReMMoC platform, we have implemented IIOP client and
server, SOAP client and Publish-Subscribe personalities.

4.3 The Service Discovery Framework

The Service Discovery framework allows services that have been advertised by different
service discovery protocols to be found. The component configuration is configured to the
discovery technology currently used in the environment. For example, if only SLP is currently
in use, the framework’s configuration will be an SLP Lookup personality. However, if SLP
and UPnP are both being utilised at a location then the framework’s configuration will include
component implementations to discover both. The DiscoverDiscoveryProtocol component in
figure 2 monitors the environment and controls this reconfiguration.

The service discovery framework offers a set of generic service discovery methods. This
includes a generic service lookup operation that returns the information from different service
discovery protocol searches in a generic format. For example, a lookup of a weather service
across two discovery configurations, e.g. UPnP and SLP, returns a list of matched services
from both types. It is this information (the description of the service returned by the lookup
protocol) that is used to configure the binding framework.

We have implemented the service discovery framework with two service discovery
protocol implementations: SLP and UPnP both with service lookup and registration
capabilities, allowing us to demonstrate how to overcome the problems of the availability of
multiple service discovery protocols. However, as with the binding framework, it is feasible
for new discovery protocols to be integrated into the framework.

4.4 The ReMMoC API

To allow clients to be developed independently of individual middleware types, ReMMoC
offers an API based upon the abstract service definitions proposed by section 2. In particular,
ReMMoC presents an event-based programming model that overrides the different
computational models of each paradigm. Each abstract service operation is carried out and its
result is returned as an event. For example, if that operation is executed by an RMI invocation
or an event subscription the result is always an event. Similarly, service lookup operations
return results as events. Figure 3 documents the API of ReMMoC, which consists of
operations to: lookup services, lookup then invoke abstract WSDL operations, invoke
operations on known services, or create and host service provider operations.

ReMMoC maps these API calls to the binding framework through the use of a
reconfigurable mapping component, illustrated in figure 2. For example, an IIOP mapping
component maps WSDL operations to IIOP invocations through the interface exposed by the
binding framework; it can be replaced by a subscribe mapping component, which maps to
subscribe requests. These components carry out the mapping of abstract to concrete
operations described in section 2 (cf. Web Services). However, it is beyond the scope of this
document to describe how each individual API call is mapped. By utilising different mapping
components a greater range of middleware functionality offered by each implementation can
be maintained.

 interface ReMMoC_ICF : IUnknown {
 HRESULT WSDLGet (WSDLService* ServiceDescription, char* XML);
 HRESULT FindandInvokeOperation (WSDLService ServiceDescription, char* OperationName,
 int Iterations, ReMMoCOPHandler Handler);
 HRESULT InvokeOperation (WSDLService ServiceDescription, ServiceReturnEvent
 ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler Handler);
 HRESULT CreateOperation (WSDLService ServiceDescription, ServiceReturnEvent

 ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler Handler);
 HRESULT AddMessageValue(WSDLService *ServiceDescription, char* OperationName,
 char* ElementName, ReMMoC_TYPE type, char* direction, VARIANT value);
 HRESULT GetMessageValue(WSDLService *ServiceDescription, char* OperationName,
 char* ElementName, ReMMoC_TYPE type, char* direction, VARIANT value); }

Figure 3. The ReMMoC API

5. Concluding Remarks and Future Work

In this paper, we have demonstrated the problem of middleware heterogeneity that exists in
mobile computing environments, with the need to provide new techniques to allow mobile
client applications to be developed independently of particular middleware implementations.
We have briefly presented a reflective middleware for mobile computing (ReMMoC) that
supports the development of mobile client applications by overcoming the problems of
middleware heterogeneity. ReMMoC can configure and reconfigure itself between a number
of discovery and binding personalities. More detail on ReMMoC can be found in [5]. We
argue that a marriage of web services with reflective middleware offers a solution to mobile
client interoperability.

ReMMoC has been fully developed and tested using simple applications e.g. chat, news
and stock quote clients across IIOP, SOAP and Publish-Subscribe bindings. Ongoing work
includes an evaluation of this method on larger, complex applications and across a range of
further middleware bindings e.g. tuple spaces, group communication and data-sharing to
investigate the scope of its applicability.

Furthermore, ReMMoC is made up of a number of components that may be used at one
time or another. However, storing all of the components that may be used will quickly
exhaust a mobile device’s resources. Therefore, a component downloading architecture is
needed that allows components to be downloaded and used only when required. To improve
the performance times of this, a predictive cache based upon context information (e.g.
components previously used at a location) is an interesting option.

Finally, Web Service description formats are emerging (e.g. WSEL) that extend abstract
service descriptions to include non-functional aspects (e.g. quality of service and security).
Languages to describe more complex interaction patterns are also available e.g. Web Services
Flow Language. An investigation of the integration of these into ReMMoC is required.

6. References

[1] W3C. “Web Services Architecture”, W3C Working Draft, http://www.w3.org/TR/ws-
arch/. November, 2002.
[2] W3C. “Web Services Description Language (WSDL) Version 1.2”, W3C Working Draft,
http://www.w3.org/TR/wsdl12/. March, 2003.
[3] Clarke, M., Blair, G., Coulson, G. and Parlavantzas, N. “An Efficient Component Model
for the Construction of Adaptive Middleware”. In Proceedings of Middleware 2001,
Heidelberg, Germany. November 2001.
[4] Szyperski, C. “Component Software: Beyond Object-Oriented Programming”. Addison
Wesley, 1998.
[5] Grace, P., Blair, G. and Samuel, S. “Interoperating with Services in a Mobile
Environment”, Technical Report (MPG-03-01), Lancaster University. 2003.

