
Research Directions in Reflective Middleware: the
Lancaster Experience

Gordon S. Blair
Lancaster University

Computing Department,
Bailrigg, Lancaster LA1 4WA, UK

+44 1524 65201

gordon@comp.lancs.ac.uk

Geoff Coulson
Lancaster University

Computing Department,
Bailrigg, Lancaster LA1 4WA, UK

+44 1524 65201

geoff@comp.lancs.ac.uk

Paul Grace
Lancaster University

Computing Department,
Bailrigg, Lancaster LA1 4WA, UK

+44 1524 65201

p.grace@lancaster.ac.uk

ABSTRACT
In this paper, we survey three generation of reflective middleware
research carried out at Lancaster University, present experiences
gained from this research, and highlight a number of important
areas of future research. In particular, we discuss the extension of
our reflective middleware ideas in terms of both depth and
breadth. The depth extension applies reflective middleware
principles to systems that lie beneath the traditional middleware
domain: e.g. operating systems and networks. The breadth
extension then applies the principles in a much broader range of
application areas than those traditionally considered in reflective
middleware research. These include reflective middleware for
Grid computing and for sentient-object-based real-time control
systems. We also briefly consider future work in applying our
approach to the development of self-managing systems.

Keywords
Reflective middleware, multi-model approach, deep middleware,
case studies, autonomic computing.

1. INTRODUCTION
Reflection [Kiczales,91] has now emerged as an important
technique in the support of more configurable and re-configurable
middleware. A number of experimental reflective middleware
platforms have been developed and discussed in the literature
[Kon,02]. The results of this research are also being incorporated
in industrial-strength middleware; for example the design of JBoss
4.0 [JBoss,04] is strongly based on this work.

The authors of this paper have been heavily involved in this
research over the last few years. In this paper, we chart the various
generations of reflective middleware developed at Lancaster, and
highlight a number of important ongoing research areas for the
subject.

2. REFLECTIVE MIDDLEWARE AT
LANCASTER UNIVERSITY
2.1 Three Generations of Systems
To date, three distinct generations of reflective middleware have
been developed at Lancaster:

• Generation 1: Early Prototypes. In this early phase, the
Python language was used to construct rapid prototypes of
reflective middleware platforms. This work involved the

development of our multi-model approach and the definition
of four orthogonal reflective meta-models (interface,
architecture, interception and resources) [Costa,00].

• Generation 2: Open ORB. This phase involved the design
and implementation of an experimental reflective CORBA
platform with the goals of i) demonstrating the benefits of
configurability and reconfigurability in the middleware
domain, and ii) investigating techniques for the efficient
implementation of reflective middleware. The end product
was a CORBA platform that supported a radical binding
framework in which individual ‘interaction types’ (e.g.
streaming, messaging, transactions etc.) could be specialised
for different classes of application and which also supported
openness and adaptation in terms of its internal structure
(e.g. in terms of protocol and resource frameworks). This
platform was shown to have performance characteristics
similar to commercial ORBs (but with the added benefits
mentioned above), demonstrating that reflective middleware
platforms can indeed be efficiently implemented [Blair,01].

• Generation 3. Towards Middleware Independence. In this
third phase, we have investigated the role of reflection in
supporting independence from any particular middleware
platform or paradigm. In other words, we do not constrain
applications to use (for example) CORBA; rather, we use
reflection to dynamically discover the styles of middleware
required in a given context and then automatically configure
the middleware framework to support such styles of
interaction. This approach is particularly applicable in highly
heterogeneous and/ or dynamic environments and has been
primarily demonstrated in a mobile setting [Grace,03].

2.2 A Summary of the Current Approach
Our current approach (as used in the third of the above-mentioned
generations) is based on three key concepts: components,
component frameworks and reflection as described below.

Component-based approaches are currently very popular in
distributed systems at the application level to support properties
such as third party composition, deployment and re-use. However,
in our approach, we also adopt components at the level of the
middleware platform itself. In other words, both the middleware
platform and the application are uniformly constructed in terms of
a set of interconnected components.

This basic structure is then supplemented by the coarser-grained
structuring of component frameworks, such that a middleware
platform is composed of a set of frameworks each of which
represents some aspect of the required functionality or structure
(e.g., protocol frameworks, dispatching of incoming calls,
resource management and scheduling, etc). Typically, these
component frameworks accept ‘plug-in’ components that add or
extend behaviour (e.g. in terms of pluggable protocols).
Component frameworks are themselves components, thus
facilitating the construction of nested structures. Component
frameworks also embody domain-specific knowledge about the
architecture of a given sub-structure—this is a crucial factor in
maintaining the integrity of the platform during periods of change.

Reflection is then used to support introspection and adaptation of
the underlying component/ component framework structures. In
the spirit of our multi-model approach, three reflective meta-
models are now supported (the resources meta-model that we
defined in generation 1 now no longer exists—this is simply
modeled as a particular middleware component framework):

1. The interface meta-model supports the dynamic discovery of
the set of interfaces defined on a component; support is also
provided for the dynamic invocation of methods defined on
these interfaces.

2. The architecture meta-model enables the programmer to both
discover and adapt the architecture of an underlying
component framework. A meta-level representation of the
architecture is provided in terms of components, inter-
connections and architectural style rules.

3. The interception meta-model supports the dynamic
interception of incoming method calls on interfaces and also
the association of pre- and post-method-call behaviour.

We also provide a lightweight and efficient component
technology supporting the above design, i.e. OpenCOM. This was
initially based on a minimal subset of COM (particularly the
vtable structure) but has now evolved to be independent of this
software so that it also runs in Unix-based environments.

Further details of this design can be found in the literature
[Coulson,02]. The software is also available on-line
(http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/
software.php) for experimentation by other research groups (in
particular, we provide access to the core reflective component
technology and an ever-expanding set of component frameworks).

2.3 Experiences from this Research
In general, this work has been very successful and in particular we
have demonstrated:

1. The key role of reflection in providing a more open and
flexible approach to the construction of middleware

platforms (as demanded by many contemporary application
domains);

2. The fact that reflection does not necessarily incur a
performance overhead when compared to standard
technologies [Coulson,04a];

3. That reflective middleware can deliver on platform
independence [Grace,03].

We have also demonstrated the utility of the approach in a number
of areas, most notably mobile computing [Grace,03].

3. FUTURE RESEARCH DIRECTIONS
3.1 Going Deep
The essence of reflective middleware is to provide open access to
key aspects of the internals of the middleware platform. In some
platforms, this is restricted to fairly minimal (and shallow) aspects
such as the arrival or dispatching of incoming calls. In others,
more comprehensive access is provided to this underlying
engineering. At Lancaster, we are currently experimenting with
pushing this concept further with what we refer to as deep
middleware. In this approach, we attempt to open up low level
aspects of the system including key functionality normally
considered as being located in the underlying operating system or
indeed in the network itself. In some ways, our resources meta-
model was an early instantiation of this concept, providing the
ability to introspect and adapt resource allocation to both
application-level and middleware-level tasks, and also the
management of these resources (a similar approach has also been
investigated by the Think project at INRIA [Fassino,02]). We are
now investigating the application of such ideas in the
complementary area of networking.

In the Open Overlays project, we are investigating the
implementation of overlay networks as component frameworks
within the middleware platform. The motivation here is to enable
configurability and reconfigurability of core networking
functionality without having to make any particular assumptions
about the underlying IP network.

In terms of background, overlay networks are virtual
communications structures that are logically ‘laid over’ an
underlying physical network such as the Internet. They are
typically implemented by deploying appropriate application-level
routing functionality at strategic places in the network (in
principle both in the core and at the network edge). Overlays
have to date mainly been used in two areas: i) to alleviate the
effects of slow or sporadic deployment of new services in the
Internet (e.g. application-level multicast); and ii) to directly
provide application-level functionality that is out-of-scope for
the underlying network (e.g. large-scale peer-to-peer file
sharing). Examples of overlay types are: reliable multicast
overlays such as SRM; content dissemination networks;
unstructured peer-to-peer overlays such as Gnutella; structured
dynamic hashtable (DHT)-based peer-to-peer overlays such as
Chord; resilient overlay networks (RONs); and the routing
overlays used in ad-hoc or wireless sensor networks. See
[Grace,04] for a survey.

In our design, we offer a generic component framework for
overlay network deployment as shown in figure 1 below.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
3rd Workshop on Adaptive and Reflective Middleware Toronto, Canada
Copyright 2004 ACM 1-58113-949-7…$5.00.

Figure 1. Generic Structure of the Overlay CF

Figure 1 shows an Open Overlays component framework
configuration that involves a two multi-layered overlay
instantiations: a group and streaming overlay supported by an
instance of the Chord DHT overlay [Stoica,01]; and a keyword
search overlay supported by probabilistic multicast. As can be
seen, multiple overlay networks can co-exist within a single
middleware platform instance; and it is also possible to layer
overlays on top of overlays to construct higher-level, more
application-specific semantics.

The component framework additionally supports finer-grained
compositions of overlays by requiring that overlay plug-ins are
structured in terms of three sub-components. These are: i) a
‘control’ part which cooperates with its peers to build and
maintain a virtual network topology, ii) a ‘forwarding’ part
that routes messages over the virtual topology, and iii) a ‘state’
part that encapsulates state such as nearest neighbours. Given
this structure, overlay implementations can quickly be
developed by building on the individual sub-components of
existing overlays. For example, we have an content-based
routing overlay that can use the ‘control’ part of a number of
different overlay types, but provides its own forwarding sub-
component [Hughes,04].

Essentially, the Open Overlays work continues the direction
begun in Open ORB of providing an extensible set of interaction
types; but the availability of network-level support considerably
extends the richness and scope of the interaction types that can be
made available (e.g. into areas of resource discovery, peer-to-peer
file sharing, efficient wide area publish-subscribe, wide area
multicast etc).

But the ‘deep’ approach also offers the potential for intimate
access to sub-overlay networking functionality around and even
below the IP level. In this area we are investigating, in a second
project, a more radical application of our approach. In this project,
called Netkit, we are building component frameworks for generic
network elements, including routers, in support of programmable
networking functionality. Here we are not only addressing out-of-
band control and management concerns: we are deploying
OpenCOM components and component frameworks even in the
‘fast path’ of low level packet scheduling, routing and forwarding.

Furthermore, we are not only addressing commodity PC-based
routers but also dedicated Network Processors [NP,04] that are
intended to provide line-speed routing functionality in the core
network.

Clearly, performance and memory footprint are crucial issues in
this area. Because of these constraints we have recently
completely re-engineered our OpenCOM runtime in terms of a
microkernel structure in which the use of previously ‘core’
OpenCOM functionality is made optional. For example, the
reflective meta-models themselves become optional and loadable-
on-demand. We have also designed component frameworks that
encapsulate certain fundamental low-level functionality offered by
the OpenCOM runtime—e.g. loading components and creating
bindings between interfaces—so that we can provide such
functionality as plug-in components. Doing this allows us to
directly leverage low-level mechanisms in the underlying
‘deployment environment’ (e.g. a Network Processor) without
incurring any OpenCOM related overhead. For example, on the
Intel IXP1200 Network Processor, we provide a plug-in
component binder that leverages dedicated bus hardware to enable
communication between components. Using this approach we can
build packet forwarders that perform as well as dedicated
software—while additionally offering all the usual benefits of
configuration, reconfiguration etc. More detail on this work is
available in the literature [Coulson,03], [Ueyama,03].

3.2 Going Wide
Many claims have been made about the benefits of reflective
middleware but, in truth, these claims have not yet been fully
substantiated. In practice, experiments have focused on rather
narrow and in some ways obvious areas (most notably mobile
computing). While this is beneficial, it is also important for the
subject to validate the ideas more generally. Therefore, we are
currently investigating the applicability of the reflective
middleware approach in a wide range of additional application
domains.

Most notably, we are investigating the role of reflective
middleware in Grid computing. The middleware that has so far
emerged to support Grid applications can be viewed as falling into
two generations. The first of these was exemplified by the Globus
2 toolkit which provided a loosely-coupled set of tools (e.g. for
discovering Grid resources, providing security, initiating remote
job execution etc.). The second generation then attempted to
structure these tools in a more ‘architected’ way by subsuming
them under a Web Services-derived ‘service oriented architecture’
(see [Coulson,04b] for more detail).

From the perspective of the broader middleware community,
however, these platforms—even the second generation ones—still
appear quite primitive. First, they are extremely limited, in
comparison to object-based middleware platforms, in terms of i)
the provision of generic services (cf. CORBA’s fault tolerance,
persistent state, automated logging, load-balancing etc., services),
and ii) scalability and performance (cf. EJB and CCM). Second,
they have little or no support for QoS specification and realisation
as required by sophisticated Grid applications [Coulson,04b]. We
believe that a prime cause of this deficiency is an over-reliance by
these platforms on SOAP as a communications engine. Although
very flexible and general, SOAP clearly shows its limitations
when relied on exclusively to support large-volume scientific

datasets; and its lack of support for interaction types other than
messaging and request-reply interactions is also a severe
limitation. Third, the current platforms are monolithic: they have
zero support for flexible configuration and reconfiguration as
found in modern reflective middleware platforms and thus (for
example) cannot realistically be deployed on ‘limited’ hardware
platforms such as PDAs.

In the GridKit project [Coulson,04b], we are applying the
architectural ideas discussed in this paper to provide a “third
generation” Grid middleware technology.

Resource
Management

Resource
Discovery

Service
Binding

Grid

Security

Open Overlays

Grid Services

Figure 2. The Scope of Gridkit

As illustrated in figure 2, the vision of Gridkit is to provide
middleware support in each of four ‘domains’ which we identify
as key in supporting Grid applications. These domains, which are,
of course, captured as component frameworks, are as follows:

• Service binding. This hosts pluggable interaction types and
also provides generic APIs that allow the application
programmer to uniformly create and use instances of selected
interaction types.

• Resource discovery. This provides service discovery and,
more generally, resource discovery services. It supports the
use of multiple pluggable discovery technologies to
maximise the flexibility available to applications. Examples
of alternative technologies are SLP, UPnP, Jini or Salutation
for more traditional service discovery, GRAM
[Czajkowski,98] for CPU discovery in a Grid context, and
peer-to-peer protocols for more general resource discovery.

• Resource management. This comprises both coarse-grained
distributed resource management as currently provided by
services such as GRAM, and the fine-grained local resource
management (e.g. of channels, threads, buffers etc) that is
required to build end-to-end QoS.

• Grid security. This hosts pluggable services that support
secure communication between participating nodes
orthogonally to the interaction types in use.

As well as being directly available to application developers, these
frameworks can easily be combined to provide more complex
middleware capabilities. For example, service bindings can
integrate with Grid security to produce secure interactions. Note
that all four domains are underpinned by the Open Overlays
framework discussed above (which itself can be underpinned by
the Netkit services where required).

We are also investigating the applicability of the reflective
middleware ideas in embedded control systems. The vision of the

Cortex project [Sivaharan,04] is that future mission-critical
computer systems will be comprised of so called sentient objects.
In broad terms, sentient objects consume events from a variety of
different sources including sensors and event channels, fuse these
to derive higher-level contexts, reason about these using expert
system logic (based on a CLIPS inference engine), and produce
output events whereby they actuate the environment or interact
with other objects. In more detail, the project is exploring the area
of autonomous vehicle navigation in which vehicles, represented
as mobile sentient objects, have the objective of traveling along a
given path, defined by a set of GPS waypoints. Every vehicle acts
as a sentient objects that cooperates with other vehicles (sentient
objects) by inter-vehicle communication mechanisms and with
other infrastructure objects (e.g. traffic lights or speed signals).

As expected, the Cortex work partitions the concerns involved in
this application area into different component frameworks. More
specifically, the Cortex platform consists of an inter-sentient-
object-communication component framework (this in turn
supports publish-subscribe and group interaction types), and a
context component framework. The latter provides the facility for
supporting a range of inference engines and sensor fusion
algorithms that may be selected at runtime. For example, one
fusion component provides algorithms to fuse sensor data from
GPS, ultrasonic, compass and context events received via event
channels and derive higher-level contexts. The fusion component
algorithms include Gaussian modeling and dead-reckoning,
together with home grown algorithms to fuse noisy sensor data
and to help build a more accurate real time ‘image’ of the
environment.

WLAN 802.11b (ad-hoc), Windows CE

Payload Channel TCB control channel

Group Communication CF-(Ad-hoc Multicast)

Publish-Subscribe CF- (for MANET)

Programming Interfaces
M
I
D
D
L
E
W
A
R
E

Sentient
Objects

Sentient
Objects

Context CF-
Sensor Fusion

Inference Engine

Timely Computing
Base

Figure 3. The Cortex Middleware

In more detail, the Cortex middleware, which is illustrated in
figure 3, consists of a ‘timely computing base’ for real-time
interaction on which are layered component frameworks for ad-
hoc multicast and publish-subscribe (these are notionally an
instantiation of the Open Overlays framework). Alongside these
are component frameworks for resource and QoS management,
and the sensor fusion inference engine.

Finally, we are interested in the role of reflective middleware in
emerging areas such as ubiquitous computing and also
environmental informatics (including wireless sensor networks).

3.3 Self-management
There is growing interest in the distributed systems community in
the general area of self-repairing, self-healing or self-organizing
software systems [Schmerl,02]. Self-management is clearly
attractive for application domains such as mobility and ubiquitous
computing but it is also potentially applicable to other areas such
as the Cortex work referred to above.

Our contention is that a major prerequisite for self-management is
the openness of systems. In other words, to support self-
management, it is necessary to have access to various aspects of
the system infrastructure and to be able to reconfigure such
aspects at run-time. It is also important that such changes do not
endanger the overall integrity of the (running) system. Clearly,
these properties are provided, at least at a basic level, by our
general architectural philosophy of components, component
frameworks, and reflection.

Building on this, we have developed a generic ‘self-management’
component framework [Blair,02] that supports the injection of
monitoring and adaptation behaviour into the meta-space of a
system. In this framework, policies for monitoring and adaptation
strategy selection are expressed as timed automata, which then
map directly on to management components which act as timed
automata interpreters at run-time. These then interface to other
components in the system using event notification, i.e. they
register for events of interest, receive events, react to them and
then emit events to interested parties. The use of timed automata
has the benefit of allowing us to carry out formal analysis of the
self-adaptation behaviour. Furthermore the inherent composability
of timed automata allows us to build larger self-managing systems
by aggregating multiple smaller systems.

In our current work on self-management we are applying the
timed automata approach to several of the areas discussed in this
paper. In particular, self-management is playing a large part in the
automatic (re)configuration of overlay networks in the Open
Overlays project.

4. CONCLUDING REMARKS
This paper has surveyed and evaluated three generations of
reflective middleware research at Lancaster and has discussed a
number of ways in which we are carrying this research forward
into the future. In the ‘depth’ dimension, we believe that there is
great potential in developing future systems that are ‘vertically
integrated’ and can be seamlessly inspected and adapted as a
unified ‘pool’ of component-based functionality. Already in our
existing prototypes applications merge into the middleware; in the
future, we see the middleware similarly merging into the
underlying operating systems and network infrastructures. This
promises great benefits in terms of optimally configuring systems
(e.g. minimising memory footprints in resource-poor deployment
environments like PDAs and wireless sensor network elements)
and providing maximal scope for run-time adaptation and self-
management. Of course it should also be mentioned there are
numerous integrity-related issues here that must be addressed by
future research.

We have also outlined our activities in the ‘breadth’ dimension.
These activities are proving to be an interesting testing ground for
reflective component-based approach to systems building. In
particular, the Gridkit work is demanding in terms of

interoperability, security and maximal flexibility, while the Cortex
work is demanding in terms of the complementary areas of real-
time behaviour, reliability and embedded environments. In the
future we plan to extend our activities here in to the areas of
wireless sensor networks. This area will simultaneously stretch us
in the depth and breadth dimensions as well as providing
interesting challenges in the areas of self-management.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of the
large team of researchers who are currently working in the areas
touched on by this paper. In particular, we single out Wei Cai,
Danny Hughes, Ackbar Joolia, Kevin Lee, Nikos Parlavantzas,
Georgios Samartzidis, Thirunavukkarasu Sivaharan, Jo Ueyama,
and Wai-Kit Yeung. We would also like to thank the UK EPSRC
for their kind support in funding this research.

6. REFERENCES
[Blair,01] Blair, G.S., Coulson, G., Andersen, A., Blair, L.,
Clarke, M., Costa, F., Duran-Limon, H., Fitzpatrick, T., Johnston,
L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and
Implementation of OpenORB v2”, IEEE DS Online, Special Issue
on Reflective Middleware, Vol. 2, No. 6, 2001.

[Blair,02] Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H.,
Grace, P., Moreira, R., Parlavantzas, N., “Reflection, Self-
Awareness and Self-Healing”, Proc. First ACM Workshop on
Self-healing Systems (WOSS'02), held in conjunction with ACM
SIGSOFT ’02, Charleston, South Carolina, USA, November 18th
2002.

[Costa,00] Costa, F. Duran, H., Parlavantzas, N., Saikoski, K.,
Blair, G.S., Coulson, G., “The Role of Reflective Middleware in
Supporting the Engineering of Dynamic Applications”, In
Reflection and Software Engineering, Cazzola, W., Stroud, R. and
Tisato, F. (Eds), Springer-Verlag, LNCS Vol. 1826, pp 79-98,
2000.

[Coulson,02] Coulson, G., Blair, G.S., Clark, M., Parlavantzas,
N., “The Design of a Configurable and Reconfigurable
Middleware Platform”, ACM Distributed Computing Journal, Vol
15, No 2, pp 109-126, April 2002.

[Coulson,03] Coulson, G., Blair, G.S., Hutchison, D., Joolia, A.,
Lee, K., Ueyama, J., Gomes, A.T., Ye, Y., “NETKIT: A Software
Component-Based Approach to Programmable Networking”,
ACM SIGCOMM Computer Communications Review (CCR),
Vol 33, No 5, October 2003.

[Coulson,04a] Coulson, G., Blair, G.S., Grace, P., “On the
Performance of Reflective Systems Software”, Proc. International
Workshop on Middleware Performance (MP 2004), April, 2004,
Phoenix, Arizona; Satellite workshop of the IEEE International
Performance, Computing and Communications Conference
(IPCCC 2004), 2004.

[Coulson,04b] Coulson, G., Grace, P., Blair, G.S., Mathy, L.,
Duce, D., Cooper, C., Yeung, W.K., Cai, W., “Towards a
Component-based Middleware Framework for Configurable and
Reconfigurable Grid Computing”, Proc. Workshop on Emerging
Technologies for Next Generation Grid (ETNGRID-2004),
associated with 13th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises
(WETICE-2004), Modena, Italy, June 2004.

[Czajkowski,98] Czajkowski, K., Foster, I., Karonis, N., Carl
Kesselman, C., Martin, S., and Smith, W., and Tuecke, S., “A
Resource Management Architecture for Metacomputing Systems”,
Proc. Workshop on Job Scheduling Strategies for Parallel
Processing, pp 62-82, Springer-Verlag, ISBN 3-540-64825-9,
1998.

[Fassino,02] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.,
“THINK: A Software Framework for Component-based Operating
System Kernels”, Usenix Annual Technical Conference, Monterey
(USA), June 10th-15th, 2002.

[Grace,03] Grace, P., Blair, G.S., Samuel, S., “ReMMoC: A
Reflective Middleware to Support Mobile Client
Interoperability”, Proc. International Symposium of Distributed
Objects and Applications (DOA’03), Catania, Italy, November
2003.

[Grace,04] Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung,
W.K., Cai, W, Duce, D., Cooper, C., “GRIDKIT: Pluggable
Overlay Networks for Grid Computing”, Proc. International
Symposium of Distributed Objects and Applications (DOA’04),
Larnaca, Cyprus, October 2004.

[Hughes,04] Hughes, D., Coulson, G., Warren, I., “A Framework
for Developing Reflective and Dynamic P2P Networks
(RaDP2P)”, Proc. 4th IEEE International Conference on Peer-to-
Peer Computing, Zurich, Switzerland, August 2004.

[JBoss,04] The JBoss Project: http://www.jboss.org/index.html.

[Kiczales,91] Kiczales, G., J. des Rivières, D.G. Bobrow, “The
Art of the Metaobject Protocol”, MIT Press, 1991.

[Kon,02] Kon, F., Costa, F., Blair, G.S., Campbell, R., “The Case
for Reflective Middleware: Building Middleware that is Flexible,
Reconfigurable, and yet simple to Use”, CACM, Vol. 45, No. 6,
2002.

[NP,04] The Network Processing Forum:
http://www.npforum.org/.

[Schmerl,02] Schmerl, B., Garlan, D., “Exploiting Architectural
Design Knowledge to Support Self-repairing Systems”, Proc. 14th
International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy, July 2002.

[Sivaharan,04] Sivaharan, T., Blair, G., Friday, A., Wu, M.,
Duran-Limon, H., Okanda, P., Sorensen, C., “Cooperating
Sentient Vehicles for Next Generation Automobiles”, Proc. 1st
International Workshop on Applications of Mobile Embedded
Systems (WAMES'04), Boston, June 2004.

[Stoica,01] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
Balakarishnan, H., “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, Proc. ACM SIG-COMM, San
Diego, 2001).

[Ueyama,03] Ueyama, J., Schmid, S., Coulson, G., Blair, G.S.,
Gomes, A.T., Joolia A., Lee, K, “A Globally-Applied Component
Model for Programmable Networking”, Proc. International
Workshop on Active Networks (IWAN 2003), Kyoto Japan, 10-
12 Dec 2003.

