The Case for Aspect-Oriented Reflective Middleware

Paul Grace*, Eddy Truyen, Bert Lagaisse, Wouter Joosen
Department of Computer Science, K. U. Leuven, Belgium

{Paul.Grace, Eddy.Truyen, Bert.Lagaisse, Wouter.Joosen}@cs.kuleuven.be
* On Leave from Lancaster University

ABSTRACT

The emergence of applications domains such as sieevand
autonomic computing has increased the need fororisation
and dynamic adaptation of both distributed systears] the
underlying middleware platforms. Two highly complemary
technologies have been advocated to meet thesderied,
namely: aspect oriented programming (AOP) and ctvle
middleware. However, these have so far been comsida

isolation, or typically target a particular middiese challenge e.g.

using aspects to customise a middleware implenientadr using
reflection (or dynamic AOP) to alter runtime belwawi We
believe that in combination these technologiesebettipport the
engineering of dynamic distributed systems. In théper, we
explore how aspects and reflection have been edilis both the
programming language and middleware communitiesidibg
upon this work, we identify four core relationshighat form the
basis of our model for aspect-oriented reflectivddieware. We
then explore the potential of this model to i) e&se support for
the engineering of dynamic reconfigurations, andniprove the
performance of adaptive systems.

Categories and Subject Descriptors
C.3.11 poftware Ar chitectures]: Patterns (reflection)

General Terms
Design

Keywords
Dynamic adaptation, aspect oriented programmin@eatéon,
middleware

1. INTRODUCTION

Engineering distributed systems is becoming indnghs
complex in domains where diversity and dynamic &atagm are
central elements. There is a need to customise levidde, and
middleware services to individual deployment dorsaeg. in
real-time and pervasive settings. Furthermore, sitciear in
modern distributed systems that the operationalirenment,
application requirements or general context magr aver time
e.g. in autonomic or mobile applications; hencéagrted support
for adaptation is a central requirement.

Reflection and aspect-oriented programming (AOR) taro
approaches that have been utilised to support dees in
overcoming these challenges. Reflection providdésospection
and adaptation of a wide range of system conceeng. the
component architecture, or resource usage); wherk@f
supports the composition and adaptation of crofsagusystem
behaviour (e.g. security or persistence). Althotigh two are

highly complimentary [1], they have typically beetilised in
isolation for adaptive systems, or combined atedéffit stages of
the development lifecycle e.g. using aspects totoouise
reflective middleware at design time [2], using expyveaving at
compile time to make systems adapt-ready [3,4]layering
dynamic aspects atop reflection meta-object prdso@dOP) [5].
This demonstrates that the two approaches beneditamother;
we wish to explore these benefits further by connigjreflection
and aspects at runtime. For this, we extend theti-moldel
approach (to meta-space) of reflective middlew&ietd include
an aspect MOP we term middleware built upon this model
aspect-oriented reflective middlewgsORM).

We demonstrate in this paper, that aspect-oriergédctive
middleware offers the following important benefits:

e The ability to perform fine-grained introspection and
dynamic adaptation of aspects (using the aspect M@
supported in state of the art dynamic AOP systefhsThis
includes the ability to adapt or re-order advicénehaour,
and importantly reconfigure the joinpoint set (vehere the
aspect is deployed). Hence, self-adaptation ankrsyside
validation of crosscutting concerns is supported.

e« The provision of multiple system viewpoints to lett
support complex adaptations; each MOP managesatitapt
of a system concern e.g. the architecture MOP neamag
component adaptation; the aspect MOP manages cross-
cutting module adaptation; and the resource MOPages
resource usage adaptation.

e Increased system performance by reducing the ozmdehe
incurred by reflection. Aspects are used to depédlection
only where required (c.f. partial reflection [8]).

We acknowledge that existing aspect and reflecBofutions
support some of these features; but we believedh@ination of
reflection and aspects offer a more complete, jpied solution.

The paper is organized as follows. Sectioanalyses the
existing research in the area of aspects and tieffedat explores
work from both the programming language and middiew
community, and identifies the core relationshipsireen aspects
and reflection. Section 3 then presents the keyritution of this
paper, which is the aspect-oriented meta-space dfgramic
middleware platforms; this follows closely from thinciples
identified in section 2. Finally, section 4 drawsenclusions and
identifies a roadmap for future research.

2. REFLECTION AND AOP

2.1 Background
AOP [9] is a software engineering approach desigteed
tackle the problems of tangled code i.e. the bdasictional

implementation of your component becomes tangledh wi
additional code for features such as security,igtersce, logging,
and monitoring. Developers often implement thesguies in an
ad-hoc manner across the system, which leads teased system
development, debugging, and evaluation time becais¢he
increased system complexity. Therefore, AOP supgpdlfte
concept of separation of concerns to counter thidlpm; i.e.
individual concerns such as security and monitodade are not
implemented within the base code, rather these eaeh
implemented as an individuativice which is a piece of code that
can then be woven into the base code at compike evelopers
express pointcuts which identify positions in the code

indeed the original work into AOP was inspired from®Ps [9],
with AOP being seen as a principled subset of ctfle
programming. Sullivan [1] first identifies the colap nature of
programming reflective systems'tqo much rope” for the
developer), and secondly states that reflectiorseoes too much
overhead to be a worthwhile technology. He thermates AOP
languages as a means to tame the complexity andceed
overhead; the key contribution is the use of agpastan interface
to the functionality of MOPs.

Tanter [8] similarly advocates the use of crosshogt
techniques to reduce the expense of reflection.t Tiba he
identifies that MOPs typically reify every objeat the system,

(joinpointy where these advices should be attached. Dynamic however the majority of these meta-object are yarsled; this

AOP promotes the same benefits as AOP, but thecespee
woven at run-time rather than compile time. In tp&per, we
focus of pointcut based AOP; other forms includenposition
filters and hyperslice approaches.

Reflection is the capability of a system to reaabout itself
and act upon this information. For this purposerefiective
system maintains a representation of itself thatc@usally
connected to the underlying system that it dessrif#d]. In
middleware platforms, two styles of reflection hagmerged.
Structural reflection is concerned with the undedystructure of
objects or components i.e. it is possible to inspeterface
information, and adapt software architecture togwlo
Behavioural reflection is concerned with activitythe underlying
system, e.g. in terms of the arrival and dispatglohinvocations.

Table 1. Comparison of AOP and reflection

Technology Cross Adaptation Self-
cutting Adaptation

Reflection Poor General Yes

AOP Strong Aspects only No

We now compare the two approaches (illustrateclitet1).
Both support separation of concerns, where an aspeMOP
implements each concern. However, concerns thatscub the
base level are more easily applied using aspesfledtion can be
used to manage crosscutting behaviour, but thisorhes
increasingly complex in large-scale systems). Sirlyi) both
approaches support adaptation of system behaviauvever, in
dynamic AOP only aspects can be added and remoevieeteas
reflection supports a wider range of adaptationesype.g.
component or resource adaptation). Furthermorelectain
supports self-awareness, so a system can baseddfstation
decision on its current status; a capability natilable in AOP.
From table 1 it is clear that both technologies loanefit from the
other; e.g. improving the management of crossayttiehaviour
in reflective systems, or building self-adaptivepest-based
systems; in the following sections we examine tkterd to which
reflection and aspects have been successfully cwdbiboth in
programming languages and middleware solutions.

2.2 Uniting Aspects and Reflection in
Programming L anguages

Research from the programming language communitg ha
investigated the relationship between aspects asilkction;

increases memory costs, and adds unnecessary |@fels
indirection (as invocations pass through the metal). Hence,
only locations that need to be reflected on aréerki this is
known aspartial reflection An aspect-oriented approach is used
to define where the MOP is added.

Alternatively, Kojarski et al., [11] explore the dwvay
relationship between aspects and reflection; thigueathat AOP
is another computational reflection mechanism, ehejoinpoint
model reflects the program’s behaviour and the ayrovides
the intercession capability. Further, they identifgt AOP can be
implemented atop reflection; pointcut descriptionsly on
introspection information from structural MOPs, aamdlices rely
on behavioural MOPs. Notably, they also identifattheflection
can be implemented atop aspects i.e. using aspeaenerate
data provided by Java reflection (e.g. field inp@ction).

2.3 Agpectsand Middleware

2.3.1 Customising Middleware

Middleware technologies are typically deployed irultiple
environments, where a one-size fits all approactultg in
unnecessary implementation. Hence, aspects have s to
modularize crosscutting middleware functionalityp shat
evolution and customisation of the middleware iaightforward.
The following technologies apply aspects at comgiitee. [12]
modularises the crosscutting concerns of a CORBABOR
Similarly, [2] identifies that in reflective middleare, reflection
crosscuts core middleware functionality; hence eetspare used
to customise the reflective MOPs. Finally, Demir &t [13]
present an aspect-oriented IDL that allow developer insert
application-level behaviour lower in the middlewastack,
bypassing unnecessary layer processing, e.g. perfgrsecurity
checks on an object method invocation at the sdalet.

Aspects are used to make systems adapt-readyisthisnilar
to partial reflection [8]. System locations thaedeao be adapted
at a later stage have reflective MOPs added. Tr{gj/duses
aspects at compile time, to create meta-sockets lihge a
behavioural MOP for dynamic insertion of intercapt@imilarly,
[4] advocates a two-stage process for developingpticke
systems, namely using aspects at compile time aveveun-time
reflective mechanisms into the system.

2.3.2 Dynamic Aspects

Dynamic AOP supports runtime weaving of aspectsicag
crosscutting modules can be reconfigured at runthrmeumber of
dynamic AOP tools have been developed; these tijypicary in
how aspects are weaved (e.g. efficient bytecoderitiegy
dynamic proxies, etc.), when aspects are weavetdl-fione e.g.

AspectWerkz [14] or run-time e.g. JBoss [15]), avitkre aspects
are weaved. [16] describes three styles of locatigaving: i)

total hook weaving (where a hook is a location wehem advice is
woven) augments every location in the code witlakhii) actual

hook weaving weaves hooks only to locations ofrege and iii)

collected weaving where actual advice code is pldnstead of
hooks (reducing indirection). Total hook weavingtie most
flexible, and most expensive; while collected weagvis least
flexible, but has the best performance.

Further examples of Dynamic AOP middleware are Dyma

aspects as a modular concern, which can be adaptedimilar
manner to dynamic AOP.

2.5 Analysis

It is clear from this considerable body of worktthagether
aspects and reflection have an important role &y ph modern
middleware. From this research we have identifad fmportant
relationships between aspects and reflection thatbe leveraged
in middleware to improve support for the enginegriri dynamic
distributed systems.

[17], MIDAS [18] and JAC [19]. Dymac provides a reta
pointcut approach for deploying application specifaspect
behaviour (e.g. application logging, or autheniaat across
remote hosts at run-time. MIDAS is a middleware elay
underpinned by a dynamic AOP system (Prose [7]PAS adds
functional extensions to the developer's basic code
implementation at run-time. When required, the esi@n is
downloaded to the MIDAS middleware, which then dyiwally
weaves the code into the base application at roe-ti

From our initial analysis of dynamic AOP systemhe t
majority providecoarse grained adaptatioof aspects, namely
the whole aspect (made up of pointcut descriptiod advice
implementation) can be added and removed. Howeliere is

increasing need to make informed decisions abouytogied

1. Dynamic aspects can be added to systems by lengrdige
facilities provided by existing MOP#%his is fairly common
in programming languages; however, only [5] has
investigated this in component-based systems, amiira
time.

2. Reflection is complex; aspects provide a principgabtset of
reflective programming to tame this complexity

3. The overheads of reflection can be reduced by uasmgpct
approaches to deploy MOPs were required

4. Reflection can be applied to fully support self-aav
adaptation of aspects, and the fine-grained adapabf
cross-cutting behaviour.No reflective middleware of
dynamic AOP system provides this capability.

1574

aspects e.g. discovering the conflict issues betwadvice
ordering and adapting accordingly [20]. Hence, wdielve that
introspection and fine-grained adaptation of aspeid a
fundamental requirement. In current systems, Prds&; and
JBoss provide fine-grained adaptation of the clodiadvices that
execute at joinpoints. JAC provides policies toohes advice
conflicts at runtime. Similarly, Prose providesAdl to discover
information such as the list of all system joingsjror the list of
joinpoints related to a pointcut. However, these ad-hoc
approaches to fine-grained adaptation that can rberoved
through the use of a principled aspect MOP witheidacilities.

2.4 Reflective Middleware

Example middleware technologies that leverage ctéfie are: the
work at Lancaster University [6], DynamicTAO [2Hnd Arctic
Beans [22]. These systems use reflection to prallgigonfigure
and reconfigure the behaviour of the middleware. &le,
platforms can be tailored to support domain specifiplications
in heterogeneous environments; or the middlewareattapt its
behaviour based upon changing context e.g. adaptstgeaming
binding in fluctuating QoS conditions. An importafeature of
reflective middleware is the separation of conceprevided by
multiple meta-object protocols. For example, a eystcan be
separated into its component architecture, anduresouse; this
allows decisions and adaptations to be made frotherei
viewpoint. This contrasts with dynamic AOP wherdyosspects
can be adapted.

There are examples were reflective middkewhas utilised
the potential of aspects. We have already discubsedaspects
can deploy partial reflection [3]. Further, ArctBeans has
investigated the role of aspects to deploy secarity transaction
behaviour in the middleware. Alternatively, Rasdfteal. [23]
define a reconfiguration aspect that essentially nagas
adaptation and hides the complexity of reflectiawnf the
developer. However, as far as we are aware no reysteats

Although initial work in this area has shown proimis
results; the solutions are either localised to viullial
relationships or focus on aspects or reflection isolation.
Similarly, many of the approaches apply aspectsrafidction at
different stages of the development lifecycle. Henwe believe
that further research is required to investigates b apply them
together at run-time in order to meet the requirgsmef highly-
adaptive and autonomic systems.

3. AOREFLECTIVE MIDDLEWARE
3.1 TheCore Modd

The Aspects and Reflection Meta Mod#gure 1) is an extension
of the Lancaster multi-model approach [6]; everglaation level
component offers a meta-space consisting of afsistinct meta-
models. Our extension combines (at the meta-levkd
traditional reflective MOPs (i.e., architectureteiriace, resource
and interception), with a novel aspect-oriented MOR key
benefit of this model over prior reflective and asipsystems is
that it provides multiple viewpoints for adaptatiohcomponents,
resources, interceptorand crosscutting concerr@spects). This
model also supports at runtime the relationshipentified in
section 2.5 (the first three are explored furthersubsequent
sections).

* The Aspects MOP supports fine-grained introspectod
adaptation of cross-cutting behaviour.

e Aspects can be added to a system at run-time usiag
Aspect MOP as the implementation of this MOP is
underpinned by existing reflective MOPs.

e« The interception MOP can be deployed dynamically at
specified locations using an aspect whose poirradts to
structural reflection events (e.g. component cogti

* Reconfiguration aspects can be deployed using theeét
MOP that abstract over reflective MOPs.

So far we have implemented this model in the OpedCO
platform (The implementation is termed AOpenCOMX da
available at http:/gridkit.sourceforge.ngt we plan to also
implement the model in a dynamic aspect-orientedidiaivare to
demonstrate wider applicability.

Aspects MOP

Metalevel
Intercep%on MOP Interfaci MOP Archif % OP Resou$as mMopP

)00

Base level

Fig 1. The Aspects and Reflection M eta M odel

3.2 Fine-grained Aspect Adaptation
3.2.1 The Aspect Meta-Object Protocol

The aspect MOP introspects and adapts cross-cioghgviour of
the base component system. Hence, aspects are esothat
apply across functional components; they have e elements:

« thejoinpoint set(where the aspect is applied in the system)
described by a pointcut expression. Joinpointsdestribe:
traditional binding execution points e.g. recepachll and
interface call; component creation/delete/connegénts;
interface creation; resource change etc. Thatvisnts from
both the base and meta-level. Hence, our aspecelnied
extensible to new system behaviour.

e The advice set i.e. the aspect module’s behaviour
implementation. We use generic advices (individual
operations similar to traditional interceptors) tttean be
either pre, post or around behaviour. These aréogeg in
an ordered execution chain at each joinpoint.

The meta-level represents and adapts these basedlements;
this allows such behaviour as listing all aspestsperation (and
more specifically the pointcuts and advices thahpose them)
which is important for: informing future adaptatiaecisions,
verification and tracing of system behaviour agaieguirements,
and identification of and resolution of interacsorbetween
deployed aspects [24].

Li st <Aspect Met a> enumAspect s()

Li st <Advi ce> enumAdvi ces(Joi npoi nt jp)

Bool ean repl acePoi nt cut (Aspect!| D a, Pointcut p)
Bool ean addAdvi ce(Poi ntcut p, Advice av)

Bool ean reorder Advi ces(Joi npoi nt jp, List<Advice>)

Fig 2. Sample operationsin the aspect M OP

Figure 2 describes a sample set of operationsadlaifrom the
MOP. Example introspection operations aeumAspectand
enumAdvicesthese return metadata describing information abou
the aspects currently deployed. The first descrittes full

information about the aspect’s pointcut and itsieal\ist, the
second lists all behaviours (potentially from nplii aspects) at
an individual joinpoint in the base. The MOP alswlides
operations for fine-grained dynamic adaptation. The
replacePointcutoperation allows the developer to pass a new
pointcut expression and the existing aspect bebawull be
moved from the prior joinpoint set to the new jaiimg set.
addAdviceadds new advice code to a locations identifiedhwy
pointcut description; finally, reorderAdvices takdhe new
ordering of advices for a given joinpoint and agahe behaviour
accordingly.

3.2.2 Use Cases

To motivate the requirement for fine-grained adtpita of
aspects using the aspect MOP we present followsegcases.

d=1 d=2 d=3 d= Call depth
@®= Join point
Mo
Pr=crr Advices
P2 =C1.*|| C2*.*
P3=C1.*

Fig 3. Joinpoint set adaptation

Consider a layered set of components as depictéigure 3. A

monitoring aspect applies a set of advices to eradrace of the
call flow (for development purposes). Dependingniite load of
the system (which can be discovered using the resoMOP),

the call flow depth is determined: at high load)yotne called

operations on the fagade (C1) are traced (usingtqai P3).

When the load is lower for the system, a deepe&etia created
(e.g. pointcut P2 selects all joinpoints up to day&r depth,
pointcut P1 selects all joinpoints up to a depti3dayers. Our
aspect MOP then allows us to switch at runtime betwthose 3
pointcuts (e.g. using the replacePointcut operatiwhile keeping
the runtime state of the aspect. This results performance gain
by avoiding unnecessary interception and joinpagification.

Without such an operation, the advice would be iadpto all

joinpoints; this advice would need to keep trackhaf depth, and
decide whether to create the trace for that déptien the time to
intercept a joinpoint, reify it and activate thevae is of the same
order of magnitude (or greater) than the executiore of the

tracing advice, the performance gain becomes s$ignif. In

general, for advising a fluctuating set of joinfdsinthe aspect
MOP will offer performance gains as well as easearhposition

compared to the state-of-the-art in dynamic AO gouare

reflective middleware.

In the second use-case, when a new aspect mustowenw
into an existing aspect composition at runtimegardering of
advices at a shared join point may occur. Consaddrent-server
system with authentication, caching, logging, amtrgption
aspects [20]. Initially no aspects are woven inte system.
However, when the mean execution time of clientuests
deteriorates beyond some predetermined thresh@dainetwork
latency, a cache aspect is woven into the systdms d@spect
intercepts client requests and checks a local ctzhsee if the
same request has already been issued. Later, viigesystem

must operate in a secure mode, an authenticatipecass

dynamically woven into the system; this consistaufadvice that
denies the client access to the server until theyige correct

identification credentials. When aspects executéhatsame join
point, the order in which their respective advieae executed
may be critical for the correct operation of theteyn. If the cache
advice is executed before the authentication agwtents are

able to get access to resources without autheintictiemselves.
As such, the only correct way is that the authation advice

executes before the cache advice. In AO framewosksh as
JBoss AOP, the order of advice execution is deteethiby the

order in which aspects are added to the systema Assult,

weaving the authentication aspect after the caspect has been
woven yields the wrong execution order. The aspoP allows

us to inspect the state for verification, and dyitalty insert

advices into particular positions of an existingviad chain to

resolve such issues (using the reorderAdvices tipaja

3.3 Dynamic AOP atop Reflective MOPs

As advocated in prior research [1], we leveragditicnal
reflection MOPs to add dynamic aspects within tloeleh. Figure
1 shows that the aspect MOP is dependent on tleniog three
meta-object protocols.

e The interface meta-model supports inspection of
component’s provided and required interfaces. Talpic
you can examine the operations available on thesefaces,
and or dynamically invoke one of the operationse @kpect

MOP uses the introspection operations of this M@P t

discover interfaces (and/or method) that match mtpat
expression to form a given joinpoint.

e The architecture meta-model accesses
graph (a set of connected components, where a ctone
maps between a required and provided interfachdrsame
address space). Hence, the architecture meta-noadebe
used to both discover and make changes to thiststaiat

run-time. The aspect MOP uses introspection operatdf

this MOP to discover components that match a given

joinpoint expression.

e The interception meta-model enables the dynamieriios
of interceptors, which support the insertion of-paad post-
behaviour onto interfaces. These interceptorseaseuted
before each operation invocation of an interface] after
the operation has completed. The aspect MOP fuilises
introspection and adaptation operations to applyicad
using behavioural interceptors.

Note, this is one configuration of the meta-levewever, as the
meta-level is implemented as components we canugeodhore
flexible dependencies between MOPs; this is dematest in the
following section to produce partial reflection lsfour.

3.4 Exploring Partial Reflection at Runtime
Tanter [8] applies partial reflection at compilmé. Here, we
present initial experiments that how dynamic aspean be used
to apply partial reflection to a running system.eTtaditional
meta-space applies per composite component. Hgmee,can
compose the entire system as a single composith wit
corresponding meta-space. However, this will rdifie entire
system with every MOP

Alternatively, you can compose a system of multigdenposites,
each with distinct meta-space configurations. Thidlustrated in
figure 2; an initial composite of composites A aBdhas a full
meta-space, whereas A has no meta-space, and B amly
interception MOP. Akin to prior research we useea$p at run-
time to create such partial reflection systems;ehaspects
deployed in the base composite build the MOPs isub-

composite.

Fig 4. Using aspectsfor partial reflection

To illustrate this we describe how aspects are tsédild the
meta-space for composite B in figure 4. In thisecage wish to
only apply an interception MOP, and furthermore wish to
tailor this further to ensure that delegators (e€vpproxies that
code can be dynamically added around) are onlclath to
interfaces of a specific type; this reduces thar@ution in the
system (as invocations on components in B won'tlgough a
delegator). For this, we define an aspect in theeb@mposite
whose pointcut locates a component (with a padicirterface)
create event in composite B; on this “joinpoint ahdtan advice
executes code to build (or add to) the MOP in Betarspace.

the softwareThis is one example, but similar strategies careimployed to
architecture of a component represented by a coemon

tailor MOPs (and indeed Aspect MOPS) to ensurenapétion.

To illustrate the potential benefits of this apmioawe took
an existing middleware (Gridkit [25]), which apgia full set of
MOPs (architecture, interface and interception) éwery
component in the middleware. The attachment of gdétes to
every interface is a non-optimised solution. Ineégtors are only
utilised in a small percentage of interfaces; heircéhe majority
of situations an additional level of indirection isinecessary.
Therefore, we used aspects to apply the interaegl®P only
where required. We then compared existing confijpma
behaviour using the original full MOP against thepect MOP
model. Table 2 shows the results; for the publistred group
configurations there is an approximate 8% increase
performance. The CORBA implementation consists ofess
complex component configuration (in terms of congus and
connectors); hence, there is only a small improvenihis shows
that fine-grained compositions with frequent calietween

components are particularly suited to this engineer
improvement,
Table 2. The cost of unnecessary indirection

Gridkit Configuration Original MOP Aspect MOP
(Msg/sec) (Msg/sec)

CORBA client 2352 2399

Group Communication 1723 1860

Sensor Publisher 2623 2844

incurring expensive overhead.

4. CONCLUDING REMARKS

In this paper we have identified the potential @ibining aspects
and reflection in middleware systems to increaggstt for the
development of dynamic distributed systems. Our they

contributions are: i) an aspect MOP that suppdris-@rained
inspection and adaptation of cross-cutting conceamsl ii) an

extension to the multi-model of reflective modetticonsiders
aspects as another adaptation concern. We hawvermped initial

implementation and experimentation in the Lancafenily of

middleware, and demonstrated that early resultprmaising.

However, this remains work in progress; andthier
applications and experimentation in real systemsegulired to
fully illustrate the power of this approach. Henitepur roadmap
of future research, we plan to apply the modelhe Dymac
aspect middleware, and compare directly the devedop of real
world dynamic systems with both traditional dynamd&®P and
reflective approaches. We will particularly measimprovements
in development complexity, and performance improvets.

5. REFERENCES

[1] G. Sullivan. Aspect Oriented Programming Using
Refelection and MetaObject Protocols. Communicatibn
the ACM, 44(10):95-97. October 2001.

[2] N.Cacho, T.Batista. Using AOP to Customize a Réflec
Middleware. Intl Symposium on Distributed Objeasad
Applications, pp. 1133-1150, Agia Napa, Cyprus, 12005.

[3] Z. Yang, B. Cheng, R. Stirewalt, J. Sowell, S. SdijP.
McKinley. An aspect-oriented approach

Software (WOSS'02), pp. 85-92, Charleston, SC, Rad2

[4] P. David, T. Ledoux, N. Bouragadi-Saadani. Two-step
weaving with reflection using AspectJ. OOPSLA 2001
Workshop on Advanced Separation of Concerns in @bje
Oriented Systems. Tampa, USA, October 2001

[51 N. Bencomo, G. Blair, G. Coulson, P. Grace, A. Rhsh
Reflection and Aspects Meet Again: Runtime Reflecti
Mechanisms for Dynamic Aspects.

(AOMD 05). Grenoble, France, November 2005.

[6] G. Blair, G. Coulson, et al. The Design and Impletagon
of OpenORB V2.
Reflective Middleware, Vol. 2, No. 6, 2001.

[71 A .Popovici, T. Gross, G. Alonso. Dynamic Weaving f
Aspect Oriented Programming. 1st International €mice

on Aspect-Oriented Software Development (AOSD), pp.

141-147. Enschede, Netherlands, April 2002.

[8] E. Tanter. From Metaobject Protocols to Versatikerréls
for Aspect Oriented Programming. Ph.D. Thesis, ©rsity
of Nantes, France, 2004.

[9] P. Maes. Concepts and Experiments in Computational
Reflection. OOPSLA'87, Vol. 22 of ACM SIGPLAN
Notices, pp. 147-155, ACM Press, 1987.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maedayi@ira
Lopes, J. Loingtier, J. Irwin. Aspect Oriented Rresgming.
ECOOP'97. pp. 220-242. Jyvaskyld, Finland, Jun& 199

to dynamic
adaptation. ACM SIGSOFT Workshop On Self-healing

Middleware ‘05
Workshop on Aspect Oriented Middleware Development

IEEE DS Online, Special Issue on

[11] S. Kojarski, K. Lieberherr, D. Lorenz and R. Hirfsl.
Aspectual Reflection. AOSD 2003 Workshop on Sofewar
engineering Properties of Languages for
Technologies. Boston, Massachusetts, March 2003.

[12] C. Zhang and H. Jacobsen. Refactoring Middlewarth wi
Aspects. IEEE Transactions on Parallel and Distetu
Systems, 14(11):1058 - 1073, November 2003.

[13] O. Demir, P. Devanbu, E. Wohlstadter and S. Tain A
Aspect-oriented Approach to Bypassing Middlewargdra.

Proceedings of Aspect-Oriented Software Development

(AOSD), pp. 25-35. Vancouver, Canada, March 2007.

[14] J. Boner and A. Vasseur. AspectWerkz Web Site,
http://aspectwerkz.codehaus.org, July 2007.

[15] JBoss AOP. http://labs.jboss.com/jbossaop/ Jul§720

[16] R. Chitchyan, I. Sommerville. Comparing Dynamic AO
Systems. Proceedings of the AOSD’'04 Dynamic Aspects
Workshop, pp. 23-36, Lancaster UK, March 2004.

[17] B. Lagaisse and W. Joosen. True and Transparetitiidigd
Composition of Aspect-Components. Middleware'06,4#%
61. Melbourne, Australia, November 2006.

[18] A. Popovici, A. Frei, G. Alonso. A Proactive Midellare
Platform for Mobile Computing. Middleware ‘03, p65-
473. Rio de Janeiro, Brazil, June 2003.

[19] R. Pawlak, L. Seinturier, L. Duchien & G. FlorirAQ: A
Flexible Solution for Aspect-oriented Programminglava.
Proceedings of Reflection’01, pp. 1-24. Kyoto, Jg2001.

[20] P. Greenwood, L. Blair. Policies for an AOP BaseddA
Adaptive Framework. NetObjectDays Conference, Erfur
Germany, September 2005.

[21] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L.
Magalhaes, R. Campbell. Monitoring, Security, arnh&mic
Configuration with the dynamicTAO Reflective ORB.
Middleware’2000, pp. 121-143, New York, April 2000.

[22] A. Andersen, G. Blair, V. Goebel, R. Karlsen, Talgtll-
Kulg, W. Yu. Arctic Beans: Configurable and Re-
configurable Enterprise Component ArchitectureEBE
Distributed Systems Online, Vol. 2, No. 7, 2001.

[23] A. Rasche, W. Schult, and A. Polze. Self-Adaptive
Multithreaded Applications - A Case for Dynamic &sp
Weaving. 4th Workshop on Adaptive and Reflective
Middleware (ARM 2005), Grenoble, France, Nov 2005

[24] Sanen, F., E. Truyen, W. Joosen. Managing Concern
Interactions in Middleware. In Proceedings of tiie [FIP
International Conference on Distributed Applicas@nd
Interoperable Systems, pp.267-283. Cyprus, May 2007

[25] P. Grace, G. Coulson, G. Blair, B. Porter: Deepdiéd/are
for the Divergent Grid. IFIP/ACM Middleware 2005 p
334-353, Grenoble, France, Nov 2005.

Aspect

