
The Case for Aspect-Oriented Reflective Middleware

Paul Grace*, Eddy Truyen, Bert Lagaisse, Wouter Joosen
Department of Computer Science, K. U. Leuven, Belgium

{Paul.Grace, Eddy.Truyen, Bert.Lagaisse, Wouter.Joosen}@cs.kuleuven.be
* On Leave from Lancaster University

ABSTRACT
The emergence of applications domains such as pervasive and
autonomic computing has increased the need for customisation
and dynamic adaptation of both distributed systems, and the
underlying middleware platforms. Two highly complementary
technologies have been advocated to meet these challenges,
namely: aspect oriented programming (AOP) and reflective
middleware. However, these have so far been considered in
isolation, or typically target a particular middleware challenge e.g.
using aspects to customise a middleware implementation; or using
reflection (or dynamic AOP) to alter runtime behaviour. We
believe that in combination these technologies better support the
engineering of dynamic distributed systems. In this paper, we
explore how aspects and reflection have been utilised in both the
programming language and middleware communities; building
upon this work, we identify four core relationships that form the
basis of our model for aspect-oriented reflective middleware. We
then explore the potential of this model to i) increase support for
the engineering of dynamic reconfigurations, and ii) improve the
performance of adaptive systems.

Categories and Subject Descriptors
C.3.11 [Software Architectures]: Patterns (reflection).

General Terms
Design

Keywords
Dynamic adaptation, aspect oriented programming, reflection,
middleware

1. INTRODUCTION
Engineering distributed systems is becoming increasingly

complex in domains where diversity and dynamic adaptation are
central elements. There is a need to customise middleware, and
middleware services to individual deployment domains e.g. in
real-time and pervasive settings. Furthermore, it is clear in
modern distributed systems that the operational environment,
application requirements or general context may alter over time
e.g. in autonomic or mobile applications; hence, enhanced support
for adaptation is a central requirement.

Reflection and aspect-oriented programming (AOP) are two
approaches that have been utilised to support developers in
overcoming these challenges. Reflection provides introspection
and adaptation of a wide range of system concerns (e.g. the
component architecture, or resource usage); whereas AOP
supports the composition and adaptation of cross-cutting system
behaviour (e.g. security or persistence). Although the two are

highly complimentary [1], they have typically been utilised in
isolation for adaptive systems, or combined at different stages of
the development lifecycle e.g. using aspects to customise
reflective middleware at design time [2], using aspect weaving at
compile time to make systems adapt-ready [3,4], or layering
dynamic aspects atop reflection meta-object protocols (MOP) [5].
This demonstrates that the two approaches benefit one another;
we wish to explore these benefits further by combining reflection
and aspects at runtime. For this, we extend the multi-model
approach (to meta-space) of reflective middleware [6] to include
an aspect MOP; we term middleware built upon this model
aspect-oriented reflective middleware (AORM).

We demonstrate in this paper, that aspect-oriented reflective
middleware offers the following important benefits:

• The ability to perform fine-grained introspection and
dynamic adaptation of aspects (using the aspect MOP), not
supported in state of the art dynamic AOP systems [7]. This
includes the ability to adapt or re-order advice behaviour,
and importantly reconfigure the joinpoint set (i.e. where the
aspect is deployed). Hence, self-adaptation and system wide
validation of crosscutting concerns is supported.

• The provision of multiple system viewpoints to better
support complex adaptations; each MOP manages adaptation
of a system concern e.g. the architecture MOP manages
component adaptation; the aspect MOP manages cross-
cutting module adaptation; and the resource MOP manages
resource usage adaptation.

• Increased system performance by reducing the overheads
incurred by reflection. Aspects are used to deploy reflection
only where required (c.f. partial reflection [8]).

We acknowledge that existing aspect and reflection solutions
support some of these features; but we believe the combination of
reflection and aspects offer a more complete, principled solution.

 The paper is organized as follows. Section 2 analyses the
existing research in the area of aspects and reflection; it explores
work from both the programming language and middleware
community, and identifies the core relationships between aspects
and reflection. Section 3 then presents the key contribution of this
paper, which is the aspect-oriented meta-space for dynamic
middleware platforms; this follows closely from the principles
identified in section 2. Finally, section 4 draws conclusions and
identifies a roadmap for future research.

2. REFLECTION AND AOP
2.1 Background

AOP [9] is a software engineering approach designed to
tackle the problems of tangled code i.e. the basic functional

implementation of your component becomes tangled with
additional code for features such as security, persistence, logging,
and monitoring. Developers often implement these features in an
ad-hoc manner across the system, which leads to increased system
development, debugging, and evaluation time because of the
increased system complexity. Therefore, AOP supports the
concept of separation of concerns to counter this problem; i.e.
individual concerns such as security and monitoring code are not
implemented within the base code, rather these are each
implemented as an individual advice, which is a piece of code that
can then be woven into the base code at compile time. Developers
express pointcuts, which identify positions in the code
(joinpoints) where these advices should be attached. Dynamic
AOP promotes the same benefits as AOP, but the aspects are
woven at run-time rather than compile time. In this paper, we
focus of pointcut based AOP; other forms include composition
filters and hyperslice approaches.

Reflection is the capability of a system to reason about itself
and act upon this information. For this purpose, a reflective
system maintains a representation of itself that is causally
connected to the underlying system that it describes [10]. In
middleware platforms, two styles of reflection have emerged.
Structural reflection is concerned with the underlying structure of
objects or components i.e. it is possible to inspect interface
information, and adapt software architecture topology.
Behavioural reflection is concerned with activity in the underlying
system, e.g. in terms of the arrival and dispatching of invocations.

Table 1. Comparison of AOP and reflection

Technology Cross
cutting

Adaptation Self-
Adaptation

Reflection Poor General Yes

AOP Strong Aspects only No

We now compare the two approaches (illustrated in table 1).
Both support separation of concerns, where an aspect or MOP
implements each concern. However, concerns that crosscut the
base level are more easily applied using aspects (reflection can be
used to manage crosscutting behaviour, but this becomes
increasingly complex in large-scale systems). Similarly, both
approaches support adaptation of system behaviour; however, in
dynamic AOP only aspects can be added and removed, whereas
reflection supports a wider range of adaptation types (e.g.
component or resource adaptation). Furthermore, reflection
supports self-awareness, so a system can base its adaptation
decision on its current status; a capability not available in AOP.
From table 1 it is clear that both technologies can benefit from the
other; e.g. improving the management of crosscutting behaviour
in reflective systems, or building self-adaptive aspect-based
systems; in the following sections we examine the extent to which
reflection and aspects have been successfully combined, both in
programming languages and middleware solutions.

2.2 Uniting Aspects and Reflection in
Programming Languages
Research from the programming language community has
investigated the relationship between aspects and reflection;

indeed the original work into AOP was inspired from MOPs [9],
with AOP being seen as a principled subset of reflective
programming. Sullivan [1] first identifies the complex nature of
programming reflective systems (“too much rope” for the
developer), and secondly states that reflection consumes too much
overhead to be a worthwhile technology. He then promotes AOP
languages as a means to tame the complexity and reduce
overhead; the key contribution is the use of aspects as an interface
to the functionality of MOPs.

Tanter [8] similarly advocates the use of cross-cutting
techniques to reduce the expense of reflection. That is, he
identifies that MOPs typically reify every object in the system,
however the majority of these meta-object are rarely used; this
increases memory costs, and adds unnecessary levels of
indirection (as invocations pass through the meta-level). Hence,
only locations that need to be reflected on are reified; this is
known as partial reflection. An aspect-oriented approach is used
to define where the MOP is added.

Alternatively, Kojarski et al., [11] explore the two-way
relationship between aspects and reflection; they argue that AOP
is another computational reflection mechanism, where a joinpoint
model reflects the program’s behaviour and the advice provides
the intercession capability. Further, they identify that AOP can be
implemented atop reflection; pointcut descriptions rely on
introspection information from structural MOPs, and advices rely
on behavioural MOPs. Notably, they also identify that reflection
can be implemented atop aspects i.e. using aspects to generate
data provided by Java reflection (e.g. field introspection).

2.3 Aspects and Middleware
2.3.1 Customising Middleware
Middleware technologies are typically deployed in multiple
environments, where a one-size fits all approach results in
unnecessary implementation. Hence, aspects have been used to
modularize crosscutting middleware functionality, so that
evolution and customisation of the middleware is straightforward.
The following technologies apply aspects at compile time. [12]
modularises the crosscutting concerns of a CORBA ORB.
Similarly, [2] identifies that in reflective middleware, reflection
crosscuts core middleware functionality; hence, aspects are used
to customise the reflective MOPs. Finally, Demir et al. [13]
present an aspect-oriented IDL that allow developers to insert
application-level behaviour lower in the middleware stack,
bypassing unnecessary layer processing, e.g. performing security
checks on an object method invocation at the socket layer.

Aspects are used to make systems adapt-ready; this is similar
to partial reflection [8]. System locations that need to be adapted
at a later stage have reflective MOPs added. Trap/J [3] uses
aspects at compile time, to create meta-sockets that have a
behavioural MOP for dynamic insertion of interceptors. Similarly,
[4] advocates a two-stage process for developing adaptive
systems, namely using aspects at compile time to weave run-time
reflective mechanisms into the system.

2.3.2 Dynamic Aspects
Dynamic AOP supports runtime weaving of aspects; hence,

crosscutting modules can be reconfigured at runtime. A number of
dynamic AOP tools have been developed; these typically vary in
how aspects are weaved (e.g. efficient bytecode rewriting,
dynamic proxies, etc.), when aspects are weaved (load-time e.g.

AspectWerkz [14] or run-time e.g. JBoss [15]), and where aspects
are weaved. [16] describes three styles of location weaving: i)
total hook weaving (where a hook is a location where an advice is
woven) augments every location in the code with a hook, ii) actual
hook weaving weaves hooks only to locations of interest, and iii)
collected weaving where actual advice code is placed instead of
hooks (reducing indirection). Total hook weaving is the most
flexible, and most expensive; while collected weaving is least
flexible, but has the best performance.

Further examples of Dynamic AOP middleware are Dymac
[17], MIDAS [18] and JAC [19]. Dymac provides a remote
pointcut approach for deploying application specific aspect
behaviour (e.g. application logging, or authentication) across
remote hosts at run-time. MIDAS is a middleware layer
underpinned by a dynamic AOP system (Prose [7]). MIDAS adds
functional extensions to the developer’s basic code
implementation at run-time. When required, the extension is
downloaded to the MIDAS middleware, which then dynamically
weaves the code into the base application at run-time.

From our initial analysis of dynamic AOP systems, the
majority provide coarse grained adaptation of aspects, namely
the whole aspect (made up of pointcut description and advice
implementation) can be added and removed. However, there is
increasing need to make informed decisions about deployed
aspects e.g. discovering the conflict issues between advice
ordering and adapting accordingly [20]. Hence, we believe that
introspection and fine-grained adaptation of aspects is a
fundamental requirement. In current systems, Prose, JAC and
JBoss provide fine-grained adaptation of the chain of advices that
execute at joinpoints. JAC provides policies to resolve advice
conflicts at runtime. Similarly, Prose provides an API to discover
information such as the list of all system joinpoints, or the list of
joinpoints related to a pointcut. However, these are ad-hoc
approaches to fine-grained adaptation that can be improved
through the use of a principled aspect MOP with richer facilities.

2.4 Reflective Middleware
Example middleware technologies that leverage reflection are: the
work at Lancaster University [6], DynamicTAO [21], and Arctic
Beans [22]. These systems use reflection to principally configure
and reconfigure the behaviour of the middleware. For example,
platforms can be tailored to support domain specific applications
in heterogeneous environments; or the middleware can adapt its
behaviour based upon changing context e.g. adapting a streaming
binding in fluctuating QoS conditions. An important feature of
reflective middleware is the separation of concerns provided by
multiple meta-object protocols. For example, a system can be
separated into its component architecture, and resource use; this
allows decisions and adaptations to be made from either
viewpoint. This contrasts with dynamic AOP where only aspects
can be adapted.

 There are examples were reflective middleware has utilised
the potential of aspects. We have already discussed how aspects
can deploy partial reflection [3]. Further, Arctic Beans has
investigated the role of aspects to deploy security and transaction
behaviour in the middleware. Alternatively, Rasche et al. [23]
define a reconfiguration aspect that essentially manages
adaptation and hides the complexity of reflection from the
developer. However, as far as we are aware no system treats

aspects as a modular concern, which can be adapted in a similar
manner to dynamic AOP.

2.5 Analysis
It is clear from this considerable body of work that together

aspects and reflection have an important role to play in modern
middleware. From this research we have identified four important
relationships between aspects and reflection that can be leveraged
in middleware to improve support for the engineering of dynamic
distributed systems.

1. Dynamic aspects can be added to systems by leveraging the
facilities provided by existing MOPs. This is fairly common
in programming languages; however, only [5] has
investigated this in component-based systems, and at run-
time.

2. Reflection is complex; aspects provide a principled subset of
reflective programming to tame this complexity.

3. The overheads of reflection can be reduced by using aspect
approaches to deploy MOPs were required.

4. Reflection can be applied to fully support self-aware
adaptation of aspects, and the fine-grained adaptation of
cross-cutting behaviour. No reflective middleware or
dynamic AOP system provides this capability.

Although initial work in this area has shown promising
results; the solutions are either localised to individual
relationships or focus on aspects or reflection in isolation.
Similarly, many of the approaches apply aspects and reflection at
different stages of the development lifecycle. Hence, we believe
that further research is required to investigate how to apply them
together at run-time in order to meet the requirements of highly-
adaptive and autonomic systems.

3. AO REFLECTIVE MIDDLEWARE
3.1 The Core Model
The Aspects and Reflection Meta Model (figure 1) is an extension
of the Lancaster multi-model approach [6]; every application level
component offers a meta-space consisting of a set of distinct meta-
models. Our extension combines (at the meta-level) the
traditional reflective MOPs (i.e., architecture, interface, resource
and interception), with a novel aspect-oriented MOP. A key
benefit of this model over prior reflective and aspect systems is
that it provides multiple viewpoints for adaptation of components,
resources, interceptors, and crosscutting concerns (aspects). This
model also supports at runtime the relationships identified in
section 2.5 (the first three are explored further in subsequent
sections).

• The Aspects MOP supports fine-grained introspection and
adaptation of cross-cutting behaviour.

• Aspects can be added to a system at run-time using the
Aspect MOP as the implementation of this MOP is
underpinned by existing reflective MOPs.

• The interception MOP can be deployed dynamically at
specified locations using an aspect whose pointcut reacts to
structural reflection events (e.g. component creation).

• Reconfiguration aspects can be deployed using the Aspect
MOP that abstract over reflective MOPs.

So far we have implemented this model in the OpenCOM
platform (The implementation is termed AOpenCOMJ and is
available at http://gridkit.sourceforge.net); we plan to also
implement the model in a dynamic aspect-oriented middleware to
demonstrate wider applicability.

Fig 1. The Aspects and Reflection Meta Model

3.2 Fine-grained Aspect Adaptation
3.2.1 The Aspect Meta-Object Protocol
The aspect MOP introspects and adapts cross-cutting behaviour of
the base component system. Hence, aspects are modules that
apply across functional components; they have two core elements:

• the joinpoint set (where the aspect is applied in the system)
described by a pointcut expression. Joinpoints can describe:
traditional binding execution points e.g. receptacle call and
interface call; component creation/delete/connect events;
interface creation; resource change etc. That is, events from
both the base and meta-level. Hence, our aspect model is
extensible to new system behaviour.

• The advice set; i.e. the aspect module’s behaviour
implementation. We use generic advices (individual
operations similar to traditional interceptors) that can be
either pre, post or around behaviour. These are deployed in
an ordered execution chain at each joinpoint.

The meta-level represents and adapts these base-level elements;
this allows such behaviour as listing all aspects in operation (and
more specifically the pointcuts and advices that compose them)
which is important for: informing future adaptation decisions,
verification and tracing of system behaviour against requirements,
and identification of and resolution of interactions between
deployed aspects [24].

...

List<AspectMeta> enumAspects()

List<Advice> enumAdvices(Joinpoint jp)

Boolean replacePointcut(AspectID a, Pointcut p)

Boolean addAdvice(Pointcut p, Advice av)

Boolean reorderAdvices(Joinpoint jp, List<Advice>)

...

Fig 2. Sample operations in the aspect MOP

Figure 2 describes a sample set of operations available from the
MOP. Example introspection operations are enumAspects and
enumAdvices; these return metadata describing information about
the aspects currently deployed. The first describes the full

information about the aspect’s pointcut and its advice list, the
second lists all behaviours (potentially from multiple aspects) at
an individual joinpoint in the base. The MOP also includes
operations for fine-grained dynamic adaptation. The
replacePointcut operation allows the developer to pass a new
pointcut expression and the existing aspect behaviour will be
moved from the prior joinpoint set to the new joinpoint set.
addAdvice adds new advice code to a locations identified by the
pointcut description; finally, reorderAdvices takes the new
ordering of advices for a given joinpoint and adapts the behaviour
accordingly.

3.2.2 Use Cases
To motivate the requirement for fine-grained adaptation of

aspects using the aspect MOP we present following use cases.

Client C1
C2b

C2a

C3c

C3b

C3a

A1 A2 A3

Advices

= Join point
d=1 d=2 d=3

P1 = C*.*
P2 = C1.* || C2*.*
P3 = C1.*

d= Call depth

Fig 3. Joinpoint set adaptation

Consider a layered set of components as depicted in figure 3. A
monitoring aspect applies a set of advices to create a trace of the
call flow (for development purposes). Depending upon the load of
the system (which can be discovered using the resource MOP),
the call flow depth is determined: at high load, only the called
operations on the façade (C1) are traced (using pointcut P3).
When the load is lower for the system, a deeper trace is created
(e.g. pointcut P2 selects all joinpoints up to a 2-layer depth,
pointcut P1 selects all joinpoints up to a depth of 3 layers. Our
aspect MOP then allows us to switch at runtime between those 3
pointcuts (e.g. using the replacePointcut operation), while keeping
the runtime state of the aspect. This results in a performance gain
by avoiding unnecessary interception and joinpoint reification.
Without such an operation, the advice would be applied to all
joinpoints; this advice would need to keep track of the depth, and
decide whether to create the trace for that depth. When the time to
intercept a joinpoint, reify it and activate the advice is of the same
order of magnitude (or greater) than the execution time of the
tracing advice, the performance gain becomes significant. In
general, for advising a fluctuating set of joinpoints, the aspect
MOP will offer performance gains as well as ease of composition
compared to the state-of-the-art in dynamic AO and pure
reflective middleware.

In the second use-case, when a new aspect must we woven
into an existing aspect composition at runtime, a reordering of
advices at a shared join point may occur. Consider a client-server
system with authentication, caching, logging, and encryption
aspects [20]. Initially no aspects are woven into the system.
However, when the mean execution time of client requests
deteriorates beyond some predetermined threshold due to network
latency, a cache aspect is woven into the system. This aspect
intercepts client requests and checks a local cache to see if the
same request has already been issued. Later, when the system

must operate in a secure mode, an authentication aspect is
dynamically woven into the system; this consists of an advice that
denies the client access to the server until they provide correct
identification credentials. When aspects execute at the same join
point, the order in which their respective advices are executed
may be critical for the correct operation of the system. If the cache
advice is executed before the authentication advice, clients are
able to get access to resources without authenticating themselves.
As such, the only correct way is that the authentication advice
executes before the cache advice. In AO frameworks, such as
JBoss AOP, the order of advice execution is determined by the
order in which aspects are added to the system. As a result,
weaving the authentication aspect after the cache aspect has been
woven yields the wrong execution order. The aspect MOP allows
us to inspect the state for verification, and dynamically insert
advices into particular positions of an existing advice chain to
resolve such issues (using the reorderAdvices operation).

3.3 Dynamic AOP atop Reflective MOPs
As advocated in prior research [1], we leverage traditional
reflection MOPs to add dynamic aspects within the model. Figure
1 shows that the aspect MOP is dependent on the following three
meta-object protocols.

• The interface meta-model supports inspection of a
component’s provided and required interfaces. Typically,
you can examine the operations available on these interfaces,
and or dynamically invoke one of the operations. The aspect
MOP uses the introspection operations of this MOP to
discover interfaces (and/or method) that match a pointcut
expression to form a given joinpoint.

• The architecture meta-model accesses the software
architecture of a component represented by a component
graph (a set of connected components, where a connection
maps between a required and provided interface in the same
address space). Hence, the architecture meta-model can be
used to both discover and make changes to this structure at
run-time. The aspect MOP uses introspection operations of
this MOP to discover components that match a given
joinpoint expression.

• The interception meta-model enables the dynamic insertion
of interceptors, which support the insertion of pre- and post-
behaviour onto interfaces. These interceptors are executed
before each operation invocation of an interface, and after
the operation has completed. The aspect MOP fully utilises
introspection and adaptation operations to apply advices
using behavioural interceptors.

Note, this is one configuration of the meta-level; however, as the
meta-level is implemented as components we can produce more
flexible dependencies between MOPs; this is demonstrated in the
following section to produce partial reflection behaviour.

3.4 Exploring Partial Reflection at Runtime
Tanter [8] applies partial reflection at compile time. Here, we

present initial experiments that how dynamic aspects can be used
to apply partial reflection to a running system. The traditional
meta-space applies per composite component. Hence, you can
compose the entire system as a single composite with a
corresponding meta-space. However, this will reify the entire
system with every MOP incurring expensive overhead.

Alternatively, you can compose a system of multiple composites,
each with distinct meta-space configurations. This is illustrated in
figure 2; an initial composite of composites A and B has a full
meta-space, whereas A has no meta-space, and B only an
interception MOP. Akin to prior research we use aspects at run-
time to create such partial reflection systems; here aspects
deployed in the base composite build the MOPs in a sub-
composite.

Fig 4. Using aspects for partial reflection

To illustrate this we describe how aspects are used to build the
meta-space for composite B in figure 4. In this case, we wish to
only apply an interception MOP, and furthermore we wish to
tailor this further to ensure that delegators (advice proxies that
code can be dynamically added around) are only attached to
interfaces of a specific type; this reduces the indirection in the
system (as invocations on components in B won’t go through a
delegator). For this, we define an aspect in the base composite
whose pointcut locates a component (with a particular interface)
create event in composite B; on this “joinpoint match” an advice
executes code to build (or add to) the MOP in B’s meta-space.
This is one example, but similar strategies can be employed to
tailor MOPs (and indeed Aspect MOPs) to ensure optimization.

To illustrate the potential benefits of this approach; we took
an existing middleware (Gridkit [25]), which applies a full set of
MOPs (architecture, interface and interception) to every
component in the middleware. The attachment of delegators to
every interface is a non-optimised solution. Interceptors are only
utilised in a small percentage of interfaces; hence, in the majority
of situations an additional level of indirection is unnecessary.
Therefore, we used aspects to apply the interception MOP only
where required. We then compared existing configuration
behaviour using the original full MOP against the aspect MOP
model. Table 2 shows the results; for the publisher and group
configurations there is an approximate 8% increase in
performance. The CORBA implementation consists of a less
complex component configuration (in terms of components and
connectors); hence, there is only a small improvement. This shows
that fine-grained compositions with frequent calls between
components are particularly suited to this engineering
improvement,

Table 2. The cost of unnecessary indirection

Gridkit Configuration Original MOP
(Msg/sec)

Aspect MOP
(Msg/sec)

CORBA client 2352 2399

Group Communication 1723 1860

Sensor Publisher 2623 2844

4. CONCLUDING REMARKS
In this paper we have identified the potential of combining aspects
and reflection in middleware systems to increase support for the
development of dynamic distributed systems. Our two key
contributions are: i) an aspect MOP that supports fine-grained
inspection and adaptation of cross-cutting concerns, and ii) an
extension to the multi-model of reflective model that considers
aspects as another adaptation concern. We have performed initial
implementation and experimentation in the Lancaster family of
middleware, and demonstrated that early results are promising.

 However, this remains work in progress; and further
applications and experimentation in real systems is required to
fully illustrate the power of this approach. Hence, in our roadmap
of future research, we plan to apply the model to the Dymac
aspect middleware, and compare directly the development of real
world dynamic systems with both traditional dynamic AOP and
reflective approaches. We will particularly measure improvements
in development complexity, and performance improvements.

5. REFERENCES
[1] G. Sullivan. Aspect Oriented Programming Using

Refelection and MetaObject Protocols. Communication of
the ACM, 44(10):95-97. October 2001.

[2] N.Cacho, T.Batista. Using AOP to Customize a Reflective
Middleware. Int'l Symposium on Distributed Objects and
Applications, pp. 1133–1150, Agia Napa, Cyprus, Nov 2005.

[3] Z. Yang, B. Cheng, R. Stirewalt, J. Sowell, S. Sadjadi, P.
McKinley. An aspect-oriented approach to dynamic
adaptation. ACM SIGSOFT Workshop On Self-healing
Software (WOSS'02), pp. 85-92, Charleston, SC, Nov 2002

[4] P. David, T. Ledoux, N. Bouraqadi-Saadani. Two-step
weaving with reflection using AspectJ. OOPSLA 2001
Workshop on Advanced Separation of Concerns in Object-
Oriented Systems. Tampa, USA, October 2001

[5] N. Bencomo, G. Blair, G. Coulson, P. Grace, A. Rashid.
Reflection and Aspects Meet Again: Runtime Reflective
Mechanisms for Dynamic Aspects. Middleware ‘05
Workshop on Aspect Oriented Middleware Development
(AOMD 05). Grenoble, France, November 2005.

[6] G. Blair, G. Coulson, et al. The Design and Implementation
of OpenORB v2. IEEE DS Online, Special Issue on
Reflective Middleware, Vol. 2, No. 6, 2001.

[7] A .Popovici, T. Gross, G. Alonso. Dynamic Weaving for
Aspect Oriented Programming. 1st International Conference
on Aspect-Oriented Software Development (AOSD), pp.
141-147. Enschede, Netherlands, April 2002.

[8] E. Tanter. From Metaobject Protocols to Versatile Kernels
for Aspect Oriented Programming. Ph.D. Thesis, University
of Nantes, France, 2004.

[9] P. Maes. Concepts and Experiments in Computational
Reflection. OOPSLA'87, Vol. 22 of ACM SIGPLAN
Notices, pp. 147-155, ACM Press, 1987.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Vieira
Lopes, J. Loingtier, J. Irwin. Aspect Oriented Programming.
ECOOP'97. pp. 220-242. Jyväskylä, Finland, June 1997.

[11] S. Kojarski, K. Lieberherr, D. Lorenz and R. Hirschfeld.
Aspectual Reflection. AOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect
Technologies. Boston, Massachusetts, March 2003.

[12] C. Zhang and H. Jacobsen. Refactoring Middleware with
Aspects. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1058 - 1073, November 2003.

[13] O. Demir, P. Devanbu, E. Wohlstadter and S. Tai. An
Aspect-oriented Approach to Bypassing Middleware Layers.
Proceedings of Aspect-Oriented Software Development
(AOSD), pp. 25-35. Vancouver, Canada, March 2007.

[14] J. Boner and A. Vasseur. AspectWerkz Web Site,
http://aspectwerkz.codehaus.org, July 2007.

[15] JBoss AOP. http://labs.jboss.com/jbossaop/ July, 2007

[16] R. Chitchyan, I. Sommerville. Comparing Dynamic AO
Systems. Proceedings of the AOSD’04 Dynamic Aspects
Workshop, pp. 23-36, Lancaster UK, March 2004.

[17] B. Lagaisse and W. Joosen. True and Transparent Distributed
Composition of Aspect-Components. Middleware'06, pp. 42-
61. Melbourne, Australia, November 2006.

[18] A. Popovici, A. Frei, G. Alonso. A Proactive Middleware
Platform for Mobile Computing. Middleware ‘03, pp. 455-
473. Rio de Janeiro, Brazil, June 2003.

[19] R. Pawlak, L. Seinturier, L. Duchien & G. Florin. JAC: A
Flexible Solution for Aspect-oriented Programming in Java.
Proceedings of Reflection’01, pp. 1-24. Kyoto, Japan, 2001.

[20] P. Greenwood, L. Blair. Policies for an AOP Based Auto-
Adaptive Framework. NetObjectDays Conference, Erfurt,
Germany, September 2005.

[21] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L.
Magalhães, R. Campbell. Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB.
Middleware’2000, pp. 121-143, New York, April 2000.

[22] A. Andersen, G. Blair, V. Goebel, R. Karlsen, T. Stabell-
Kulø, W. Yu. Arctic Beans: Configurable and Re-
configurable Enterprise Component Architectures. IEEE
Distributed Systems Online, Vol. 2, No. 7, 2001.

[23] A. Rasche, W. Schult, and A. Polze. Self-Adaptive
Multithreaded Applications - A Case for Dynamic Aspect
Weaving. 4th Workshop on Adaptive and Reflective
Middleware (ARM 2005), Grenoble, France, Nov 2005

[24] Sanen, F., E. Truyen, W. Joosen. Managing Concern
Interactions in Middleware. In Proceedings of the 7th IFIP
International Conference on Distributed Applications and
Interoperable Systems, pp.267-283. Cyprus, May 2007.

[25] P. Grace, G. Coulson, G. Blair, B. Porter: Deep Middleware
for the Divergent Grid. IFIP/ACM Middleware 2005, pp.
334-353, Grenoble, France, Nov 2005.

