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ABSTRACT 

Component-based software structuring principles are now commonly and successfully applied at the 

application level; but componentisation is far less established when it comes to building low-level 

systems software. Although there have been pioneering efforts in applying componentisation to 

systems-building, these efforts have tended to be narrowly targeted at specific application domains 

(e.g. embedded systems, operating systems, communications systems, programmable networking 

environments, or middleware platforms). They also tend to be narrowly targeted at specific 

deployment environments (e.g. standard personal computer (PC) environments, network processors, 

or microcontrollers). The disadvantage of this narrow targeting is that it fails to maximise the 

genericity and abstraction potential of the component approach. In this paper we argue for the 

benefits and feasibility of a generic yet tailorable approach to component-based systems-building 

that offers a uniform programming model in a wide range of target domains and deployment 

environments. More specifically, we present our OpenCom component model which is explicitly 

tailorable to diverse domains and environments. The component model is supported by a reflective 

runtime architecture that is itself built from components. After describing OpenCom and evaluating 

its performance and overhead characteristics, we present and evaluate two case studies of systems 

we have built using OpenCom technology, thus illustrating its benefits and its general applicability. 

  

1. Introduction 

Application-level component-based software is now well established. Prominent examples include: browser 
plug-ins [Mozilla,05], JavaBeans and Enterprise JavaBeans [Sun,05], the CORBA Component Model [OMG,99], 
Microsoft’s .NET [Microsoft,05], and ICENI Grid components [Furmento,02]. Overall, some key characteristics of 
the component approach are as follows: i) it promotes a high degree of genericity and abstraction in software 
design, implementation, and deployment, which leads to higher programmer productivity; ii) it facilitates flexible 
configuration of software (and, potentially, run-time reconfiguration), and iii) it fosters third-party software reuse 
[Emmerich,02].  

A broadly-accepted definition of software components is that they are “units of composition with 

contractually-specified interfaces and explicit context dependencies only ... that can be deployed independently 

and are subject to composition by third parties” [Szyperski,98]. Some component models restrict composition to 
build time or load time, but many (including all of the above) additionally support the composition of components 

at run time. The “explicit context dependencies” aspect of the definition means that third parties can 

straightforwardly deploy independently-developed components into established runtime software environments. 
Deployment is straightforward because it is clear and explicit what a newly-deployed component expects from its 
environment.  

Although component models are widely used at the application level, it is far less common to see the 

component approach being exploited in the construction of low-level systems software such as embedded systems, 
operating systems, communications systems, programmable networking environments, or middleware platforms. 

This is primarily because systems environments are typically far more demanding than application environments in 
terms of complexity, performance, and resource constraints. Nevertheless, the potential of the component approach 
appears in principle just as compelling in the systems area as it is in the applications area, and this view has been 

borne out by a number of pioneering efforts over the last few years. For example, proposals for component 
platforms for building embedded systems include Pebble [Magoutis,00], PECOS [Winter,02] and Koala 



  

[Ommering,00]; proposals for componentised operating systems (OSs) include THINK [Fassino,02], OSKit 

[Ford,97] and MMLITE [Helander,98]; proposals for componentised programmable networking environments 

include VERA [Karlin,01], MicroACE [Johnson,03], and Netbind [Campbell,02]; and proposals for 

componentised middleware platforms include LegORB [Roman,00], k-Components [Dowling,01] and various 

JavaBeans-based approaches (e.g. [Bruneton,00] and [Joergensen,00]).  

However, all of these efforts suffer from the key limitation that they are narrowly targeted. This applies in two 

senses: i) in terms of the target domain at which they are aimed (i.e. embedded systems, OSs, etc.), and ii) in terms 

of the intended deployment environment in which they will operate (e.g., most of the above-mentioned 

technologies have been deployed only on conventional desktop machines as opposed to more ‘exotic’ deployment 
environments like personal digital assistants (PDAs), embedded hardware, or network processors). The 

disadvantage of this narrow targeting is that it fails to maximise the genericity and abstraction potential of the 

component approach—for example it locks systems component programmers into narrow, non-transferable skill 

sets and areas of expertise. Also, it fails to support the construction of component-based systems that span target 

domains and/or deployment environments (e.g. embedded middleware, or OSs for network processors). 

In this paper, we discuss a general-purpose component-based systems-building technology called ‘OpenCom’. 

OpenCom tries to maximise the genericity and abstraction potential of the component based programming model 

while at the same time supporting a principled approach to supporting the unique requirements of a wide range of 

target domains and deployment environments. This is achieved by splitting the programming model into a simple, 

efficient, minimal kernel, and then providing on top of this a principled set of extension mechanisms that allow the 

necessary tailoring. We also recognise and support a separation of roles between programmers who use the 

extension mechanisms to realise an OpenCom-based platform in a given deployment environment, and 
programmers who then use this environment to develop a target system (e.g. an embedded system, OS, etc.). 

In more detail, the design of OpenCom tries to address the following requirements: 

• Target domain independence. A general purpose systems-building technology should provide only 
generic and fundamental functionality that is independent of the specialist needs of any particular target 
domain. For example, a generic technology should not inherently support characteristics such as real-time 
execution, sand-boxing, or 24x7 availability. This is because such characteristics carry an inevitable cost 
which should not be incurred where they are not required. Nevertheless, a general purpose technology 
should be inherently tailorable and extensible so that it can be specialised in a natural and explicitly-
supported way to meet such needs where required. The same consideration applies to run-time 
reconfigurability: the technology should provide a basis for this but should not dictate the policies that 
control and manage it. 

• Deployment environment independence. The technology should be straightforwardly deployable in a wide 
range of deployment environments from PCs, to supercomputers, to set-top boxes, to resource-poor 
PDAs, to bare-iron embedded systems with no OS support, to networks-on-a-chip. This implies simplicity 
(for ease of porting), small memory footprint, and programming language independence. More 

fundamentally, it again implies inherent support for tailorability and extensibility. A key aspect of 
extensibility at the deployment-environment level is that it should be straightforward to expose 
idiosyncratic hardware and software features of the underlying deployment environment (e.g. multiple 

processors, hardware hashing units, optimised inter-process communication (IPC) channels, memory 

hierarchies, etc.) in terms of the native abstractions of the generic component-based programming model.  

• Negligible overhead. As well as incurring only a small memory overhead, the technology should impose 
as small a demand as possible on other resources—especially processing resources. This particularly 

implies that the ‘in-band’ execution path [Coulson,04] of target systems should be as independent as 
possible of any runtime support provided by the technology (e.g. inter-component communication should 
not be reliant on a kernel-mediated message passing service). In addition, exposing deployment-

environment-specific features in terms of generic programming model abstractions (as discussed above), 
should incur as small a performance penalty as possible—ideally a penalty of zero.  

The remainder of this paper is structured as follows: First, section 2 provides an overview and motivation of 
the general OpenCom approach. Then, section 3 presents in detail our minimal component-based programming 

model. Next, sections 4 and 5 discuss the key ‘extension mechanisms’ that are (optionally) layered on top of the 



  

OpenCom kernel and are instrumental in providing the necessary tailorability and extensibility. Section 6 then 

analyses the inherent performance characteristics and overheads of the OpenCom approach; and section 7 presents 

case studies of our recent use of OpenCom, including its extension layers, in building non-trivial systems. Finally, 

related work is discussed in section 8, and our conclusions are offered in section 9. 

2. Overall Approach 

We approach the satisfaction of the requirements identified above—i.e. target domain independence, 

deployment environment independence, and negligible overhead—through the architecture illustrated in figure 1. 

At the heart of the architecture is a minimal component runtime kernel that supports the basic services of loading 
and binding components. This is discussed in detail in section 3. A runtime kernel is required to be able to support 

dynamic systems which have an inherent need for runtime reconfigurability (e.g. extensible OSs, active networking 

nodes, adaptive middleware etc. [Blair,04]). The kernel lies immediately above the (hardware and/or software) 

deployment environment. The kernel is policy free, and its application programmer’s interface (API) is target-

system and deployment-environment independent. For static systems, it is used only to initially configure the 

system—when configuration is complete, it can be unloaded so that it does not consume any resources. In dynamic 

systems, the kernel continues to exist at run time. However, even here its resource demands are minimal as shown 

in section 6.  

Above the kernel is a layer of so-called extensions which enhance the basic loading and binding based 

programming model in accordance with the needs of various target domains and deployment environments. This 

layer thus plays a central role in providing the tailorability and extensibility that OpenCom aims to deliver. The 

extensions are independently and optionally deployable and configurable (via the kernel). Importantly, the 
extensions are themselves implemented as components, so there is no essential boundary between the extensions 
and target system ‘layers’ and thus no inherent layering overhead. The extensions that we currently employ fall into 
the two main classes: First, platform extensions, discussed in section 4, provide structured support for tailorability 
and extensibility at the deployment environment level—essentially, this layer addresses the above-mentioned 
requirement to efficiently expose unique features of deployment environments in terms of generic component-
based abstractions. Second, reflective extensions, discussed in section 5, provide generic support for target system 
reconfiguration—i.e. inspecting, adapting and extending the structure and behaviour of dynamic systems at run 
time [Maes,87]. These reflective extensions build on and extend inherently reflective features of the kernel such as 
explicitly represented cross-component bindings and support for extensible meta-data (see section 3). We also 
provide a set of security extensions; these, however, are not as mature as the other extensions and are not discussed 
further in this paper. 

platform extensions

component runtime kernel

deployment environment (hardware and/or software)

target system

kernel API

reflective extensions

component frameworks (CFs)

 

Fig. 1: Overall OpenCom architecture 

A key architectural feature of the OpenCom approach is its extensive use of the notion of component 

frameworks [Szyperski,98]. Component frameworks work at a coarser granularity than components, and contribute 

a generic approach to the structuring and extensibility of software through component composition. In OpenCom, a 

component framework (hereafter CF) is a tightly-coupled set of components that i) cooperates to address some 
focused area of concern; ii) provides a well-defined extension protocol that accepts additional ‘plug-in’ 
components that modify or extend the CF’s behaviour; and iii) constrains [Clarke,01] how these plug-ins may be 

organised. As an example, we have a protocol stacking CF that accepts protocol components as its plug-ins, and 
constrains its plug-ins to be composed into linear stacks [Coulson,02].  

OpenCom CFs typically employ run-time pluggability as well as merely the design-time or build-time 
pluggability that is found in many component models. For example, a CF may be represented at runtime as a ‘root’ 



  

component that exports an operation that accepts plug-in components as its arguments. Internally, this root 

component discovers the interfaces supported by plug-ins (using reflection as explained later), and configures and 

binds them in a manner appropriate to the CF (e.g. in the above-mentioned protocol stacking CF, the root 

component would discover and bind the interfaces of its plug-ins to generate a linear stack topology). We have also 

explored a more sophisticated approach in which CF constraints are expressed at design time in terms of an 

architecture description language (specifically, ACME [Garlan,00]) and are compiled to generate CF-specific 

constraint policing code [Joolia,05]. The key point, however, is that different CFs can adopt different approaches 

to pluggability and constraint. If fact, CFs do not inherently require anything beyond the facilities provided by the 

foundational component model; i.e. minimal CFs can be viewed simply as architectural patterns.  

As will become clear in the remainder of this paper, CFs provide structure and extensibility at all levels of the 

architecture. At the level of the platform extensions, CFs are provided that, for example, support plug-in ‘loader’ 

and ‘binder’ components. Similarly, at the level of the reflective extensions, plug-ins take the form of, e.g., 

operation interceptors. At the target-system level, plug-ins are applied in such areas as protocol stacking (as 

discussed above), thread scheduling, packet forwarding, memory management, or user interaction; and they define 

plug-ins and constraints that make sense in those domains.  

3. The Programming Model and the Kernel API  

3.1 Programming Model 

A high-level view of the elements of the OpenCom component-based programming model is given in figure 2 

(the legends in brackets refer to the example given in section 3.3 below). Capsules are containing entities into 

which components are loaded, instantiated and composed. Each capsule defines a name space for its contained 
component instances (hereafter, we refer to component instances simply as ‘components’), and offers the 
OpenCom kernel API which is discussed in section 3.2 below. Capsules do not recognise any nesting or 
hierarchical organisation of their contained components, although such organisations can be conceptually 
superimposed on this basic ‘flat’ organisation through the use of ADL-based CFs or other such formalisms.  

Components are encapsulated units of functionality which interact with other components in their containing 
capsule exclusively through so-called interaction points, of which there are two types: ‘interfaces’ and 
‘receptacles’. Component types are templates from which components (instances) can be instantiated at run time. 
Each component type is defined by a name, the set of the interaction points it supports, and a set of statically-
defined <name, type, value> properties (this so-called ‘static property’ facility is used to associate arbitrary meta-
data with a component type which is available at run time using the getprop() kernel call; see below). Interfaces are 
units of service provision offered by components. Components types may support any number of interfaces 
including zero (in figure 2, each of the large components has one interface and one receptacle; and the small 
component has none). The use of multiple interfaces is useful in embodying separations of concern (e.g. between 
base functionality and component management). Interfaces are defined in terms of sets of operation signatures and 
associated datatypes. Receptacles are ‘required interfaces’ that make explicit the dependencies of a component on 
other components. Components may support any number of receptacles. Receptacles are key to supporting the 

third-party mode of deployment and composition inherent in a component-oriented environment: when third-party-

deploying a component into a capsule, one knows by looking at its receptacles precisely which other components 
must be present to satisfy the component’s dependencies.  

For language independence, we use the OMG’s IDL interface definition language [OMG,95] to define 

interfaces, receptacles and component types. Interfaces and receptacles are expressed using the standard interface 

definition syntax1. Component types, on the other hand, employ the following extended syntax (which is similar to 

a subset of the OMG ‘component’ syntax):  

<comp_type_defn> ::= “componentType” <comp_name> “{” <static_props> <provides_and_uses> “}” 

<static_props> ::= (<prop_name> “:” <prop_type> “=” <prop_value> “;”)* 

<provides_and_uses> ::= (<provides> | <uses>)* 

<provides> ::= “provides” <interface_name> “;” 

<uses> ::= “uses” <interface_name> “;” 

                                                 
1  Actually, receptacles do not need to be defined explicitly as each receptacle is implicitly defined in terms of its associated interface.  



  

 The ‘provides’ clause refers to interfaces supported by the component type and the ‘uses’ clause refers to its 

receptacles. The elements <comp_name>, and <interface_name> are strings; the latter refers to the names of IDL 

interfaces defined elsewhere. Similarly, <prop_name> is a string, and <prop_type> refers to an IDL data type 

defined elsewhere; <prop_value> is a value of the appropriate <prop_type>.  

Note that we do not provide any facilities at the component type definition level for ‘nesting’ component 

definitions, or to specify static bindings between receptacles and interfaces. The aim is to maximise the simplicity 

of the programming model. Nevertheless, such higher-level facilities can be straightforwardly built on top where 

required. For example, we have employed the ACME ADL to specify such concerns, and have also experimented 

with an XML-based formalism [Joolia,05]. However, when such formalisms are employed they always compile 
down to the basic OpenCom programming model—i.e. a ‘flat’ component structure in which all receptacle-

interface bindings are created at run time.  

A binding is a run-time association between a single interface and a single receptacle. Interfaces may 

participate in multiple bindings, whereas each receptacle may only participate in a single binding at a time. Like 

component deployment, the creation of bindings is inherently third-party in nature. That is, bindings can be created 

by any component within the capsule, not only by the ‘first-party’ components whose interface or receptacle is 

actually participating in the binding. Each binding is represented by a component (the small component in figure 2) 

that is implicitly created by the kernel. The semantics of these components (often called ‘binding components’) are 

identical to those of any other component—with the following exception: when such a component is destroyed, the 

interface/receptacle association that it represents is also destroyed. The OpenCom specification allows kernel 

implementations to employ binding components that themselves support any number of interfaces and receptacles. 

Binding components with zero interfaces/receptacles (such as the one shown in the figure) are sufficient for 

lightweight implementations in resource-poor deployment environment; but less constrained implementations are 
free to support binding components that have interfaces that, for example, support operations to obtain the 
identifiers of the bound interface/receptacle, or to insert interceptors. Such facilities, however, are more typically 
supported by extension binders as discussed in section 4.2.  

kernel

API
interface

receptacle

component

binding component

capsule

(Client)

(Server)

(IClient)

(IServ1)

(IServ2)

 

Fig. 2: Elements of the kernel-level programming model 

3.2 The Run Time Kernel API  

Each capsule embodies a single kernel instance which offers the following run time API1: 

interface Kernel { 

typedef struct template {long id}; 

typedef struct component {long id}; 

typedef struct interface {long id}; 

typedef struct receptacle {long id}; 

 

status load(in string component_type_name, out template t); 

status instantiate(in template t, out component c); 

status unload(in template t); 

status destroy(in component c); 

status bind(in interface i, in receptacle r, out component binding);  

status putprop(in long entity_UID, in string key, in any value); 

                                                 
1  The API, specified here in OMG IDL, has been slightly simplified for presentational purposes. 



  

status getprop(in long entity_UID, in string key, out any value); 

long   register(in long proposed_UID); 

status notify(in ICallback callback); 

    } 

 

This API is deliberately minimal in nature and has been specified on the basis of considerable experience and 

experimentation with runtime component model APIs over the past few years [Clarke,01], [Coulson,03], 

[Grace,05]. The basic philosophy is to build the API in terms of two very primitive system-level facilities: dynamic 

loading (in the shape of load(), instantiate(), unload() and destroy()); and dynamic linking (in the shape of 

bind())1. This API then supports the implementation of all other areas of systems-related functionality (e.g. 
concurrency, protection, distribution, etc.) as well-defined components that build on the basic kernel-level loading 

and linking services. The fact that the ‘loading and binding layer’ is offered as a well-defined component model 

which is consistently re-used in the higher layers lends great coherence, uniformity and flexibility to the approach, 

while at the same time allowing the kernel to be implemented in an extremely small, efficient and policy-free 

manner.  

We now discuss the API in detail. The struct definitions are used to name the four types of entities 

comprehended by the kernel (i.e. templates, components, interfaces and receptacles). Wrapping the UIDs of these 

entities in structs facilitates language-independent type safety at a cost of only sizeof(long) bytes of memory 

overhead per UID. Load() loads a named component type into the capsule and returns a ‘template’—i.e. an in-

memory representation of a component type (including its executable code) which can subsequently be instantiated 

using instantiate(). Instantiation is separated from loading to assist the user in controlling the trade-off between 

memory economy and instantiation latency. For example, a programmer may choose to load and instantiate on 
demand (high instantiation latency, but with the benefit of only incurring memory overhead when a given 
component is actually required); or alternatively she may choose to pre-load templates so that instances can later be 
created quickly (low instantiation latency at the expense of having the templates occupy memory between the load 
and instantiate steps). Unload() unloads the specified template (to free up memory), and destroy() destroys a 
component instance. Unload() fails if there are extant instances of the target template; and destroy() fails if any of 
the target component’s receptacles or interfaces are currently bound. As the kernel itself is modeled as a 
component which exports its API as an OpenCom interface, destroy() can be used to remove the kernel itself—this 
frees up the memory used by the kernel but leaves all components and bindings untouched; the effect is to forego 
the possibility of making subsequent run-time changes in the capsule. Bind() is used to create a binding between a 
specified receptacle and interface. As bindings are represented by components, destroy() is used to remove a 
binding. The arguments to bind() (i.e. an interface and a receptacle of the to-be-bound components) can be 
obtained from an internal kernel ‘registry’ which is accessed via the putprop() and getprop() calls. All components 
are required on instantiation to call putprop() to store in the registry their interfaces and receptacles, using built-in 
key arguments of “I” and “R” respectively. These interfaces and receptacles can then be retrieved, given the target 
component’s identifier, using getprop(). Apart from these built-in keys, higher-level CFs and extensions can use 
the registry facility to attach arbitrary meta-data (using keys that they themselves define) to any component model 
entity (i.e. templates, components, interfaces or receptacles). 

Finally, the purpose of register() and notify() is to provide specific support to the extensions, as discussed 
below in sections 4 and 5. Register() allocates a UID for any newly-created entity and stores it in the registry. It is 
used when entities are created by platform extensions rather than by the kernel itself. The role of notify() is to assist 

reflective extensions in obtaining and maintaining information about relevant activity in the capsule, and to serve 

as the basis of a policy enforcement point for security and consistency management purposes. When a callback is 
registered with notify(), every subsequent call on the kernel (i.e. of load(), bind() etc.) is reported to the callback. 
More specifically, the callback is invoked twice for each kernel call: The first invocation is made before the 

associated kernel call has been made; it reports the ‘in’ arguments of the kernel call (e.g. the name argument to 
load()). The second callback is made after the associated kernel call has been made; it reports the ‘out’ argument 
values that have come back from the kernel call. It is possible to use this callback facility to ‘veto’ a kernel call by 

returning a specific value from the first callback. This prevents the kernel call from being executed and as a 
consequence prevents the second callback from occurring; an error code is returned to the caller of the kernel call.  

                                                 
1  Having said that, we do obviously provide some additional calls that have been found to be generally useful—i.e., basic facilities to (i) 

manage meta-data associated with component model elements (i.e. putprop() and getprop()), (ii) manage names (i.e. register()), and (iii) 

reflect on calls being made on the API (i.e. notify()). 



  

Despite its minimality and relative ease of realisation (see section 6), the above-described API already 

provides a powerful and self-contained component-based programming model. It is nevertheless still quite limited 

in terms of its tailorability and extensibility. For example, it supports only a single (implicit) mechanism for 

loading and binding components, and it does not provide any specific support for principled reconfiguration 

beyond the basic capability to dynamically create and destroy components and bindings. The extensions layer 

described in sections 4 and 5 build on the basic kernel functionality to specifically address such concerns. 

3.3 Programming Language Bindings 

We have realised the above-described programming model and kernel in Java, C and C++, and in a range of 
deployment environments (see the case studies in section 7). All the language bindings employ an IDL compiler to 

generate glue code, and to define, according to standard OMG-defined programming language mappings, the 

language-specific representations of the four OpenCom entities (i.e. templates, components, interfaces and 

receptacles), and common data types like ints, strings etc.  

Due to its simplicity and accessibility, it is most useful to use the Java programming language to exemplify 

language binding issues. In the Java binding, components and receptacles are represented as Java classes, and 

component interfaces are represented as Java interfaces that the component class ‘implements’. The IDL compiler 

generates the receptacle classes and also a per-component class called _<component_name> from which the 

programmer’s component implementation class should inherit. This generated class makes available the kernel API 

operations to its user-defined child class (this is done by transparently pre-binding a per-component receptacle 

called kernel to the kernel interface), encapsulates the declaration and initialisation of the receptacle classes, and 

uses putprop() to register the component type’s static properties with the kernel. The child class itself may also, of 

course, register any further ‘dynamic’ properties with the kernel as it sees fit. 

Given this preamble, it should be straightforward to understand the following simple example which refers to 
the component topology shown in figure 2. First, we define the interfaces used in the example: 

interface IServ1 {int op1(int i, int j);} 
interface IServ2 {int op2(int i);} 
interface IClient {int setup(); int call(char op, int arg1, int arg2);} 

Next, we define the two component types: the Server type provides an IServ1 interface and has a receptacle for 
IServ2; and the Client type provides IClient and has a receptacle for IServ1: 

componentType Server {version:int=1; provides IServ1; uses IServ2;} 
componentType Client {provides IClient; uses IServ1;} 

Next, we write Java application code corresponding to these specifications. This might appear as follows:  

 
public class Server extends _Server implements IServ1 { 
    public Server() { super(); } 
    public int op1(int a, int b) {return ...;} /* defined in IServ1 */ 
} 
 
public class Client extends _Client implements IClient { 
    public Binding b; 
 
    public Client() { super(); } 
    public int setup() { /* defined in IClient */      

    Template t_serv = kernel.load("Server"); 

        Component serv = kernel.instantiate(t_serv.id); 

        OCM_IRefList ilist = (OCM_IRefList)kernel.getprop(serv.id, “I”); 

        IServ1 i_IServ1 = (IServ1)ilist.getIRef("IServ1");  

     kernel.bind(r_IServ1.id, i_IServ1.id, b); /* binding component returned as b */ 

    } 
    public int call(char op, int arg1, int arg2) { /* defined in IClient */ 
        ... 

    int result = r_IServ1.op1(arg1, arg2); /* call the bound receptacle */  
     return result; 
    } 
}     



  

Client loads, instantiates and (first-party1) binds to Server when its IClient.setup() operation is called. It 

subsequently calls Server.IServ1.op1() when its IClient.call() operation is called.  

Much of the machinery is defined behind the scenes in the automatically-generated _Server and _Client 

classes. This includes the definition of the receptacle classes (which are conventionally named as 

r_<interface_name>—i.e. Client.r_IServ1 in our example) and the initialisation of these in the constructor. The 

constructor also includes generated code that stores the component type’s static properties into the kernel, together 

with the component’s interfaces and receptacles (using the ‘standard’ “I” and “R” keys mentioned above). The 

mirror-image of this latter mechanism, together with a helper class called OCM_IRefList, is employed to obtain the 

IServ1 interface from the newly-instantiated Server component. Then bind() is called to bind the Client’s r_IServ1 
receptacle to the just-obtained i_IServ1 interface. The kernel type-checks the arguments passed to bind() using Java 

reflection.  

The C and C++ language bindings follow a similar pattern, but suitably adapted to the target language’s 

capabilities. For example, in the C binding, a component is represented by a .c file that contains implementations 

of all the component’s interfaces’ operations. The user must also provide startup() and shutdown() lifecycle-

management functions, and take responsibility for allocating and deallocating within them the memory for 

receptacles and interface etc. The IDL compiler generates a per-component header file that contains the necessary 

definitions of receptacles and interfaces. These are represented as structs, with pointer-to-function members 

representing operations, and a per-type unique identifier (UID) member to help with type checking (the latter is 

used by the kernel to type-check the receptacle and interface arguments passed to bind()). The action of bind() is 

simply to assign the function pointers in the interface struct to those in the receptacle struct, resulting in an 
extremely minimal and efficient implementation of component binding. Interface operations are represented as 
user-provided C functions which conventionally take as their first argument the UID of the component instance 
being invoked. Operation invocations on bound receptacles are realised using per-operation IDL-compiler-
generated CALL_<opname>(<receptacle>, <arglist>) macros which transparently dereference the given 
receptacle to determine and call the appropriate target C function with the appropriate first argument.  

4. The Platform Extensions 

4.1 Overview  

The platform extensions augment the basic programming model elements discussed above with new, optional, 
abstractions and services that play a major role in delivering the tailorability and extensibility promised by 
OpenCom. The platform extensions are of three kinds, caplets, loaders, and binders, and they are collectively 
supported by a CF called the Platform Extensions CF. Figure 3 visualises caplets, loader and binders as being 
‘plugged into’ the platform extensions CF using an extend() operation (see later).  

primary caplet 

plug-in extension caplet plug-in extension caplet 

platform
extensions CF

platform
extensions CF

platform
extensions CF

extend() extend() load

b
in

d bind

plug-in

loaders
plug-in

binders

 

Fig. 3: The programming model extended with caplets, loaders and binders 

In brief, caplets are specialised plug-in component-support environments that can be dynamically instantiated 
within a capsule; loaders are plug-ins that are responsible for loading components into caplets in various different 

ways; and binders are plug-ins that are responsible for creating bindings both within and across a capsule’s caplets 
in various different ways. In the context of the Platform Extensions CF, the ‘original’ capsule environment (i.e., 

                                                 
1  We provide a complementary example that illustrates third-party binding in section 4.4.2. 



  

before the Platform Extensions CF was loaded) is referred to as the primary caplet, and all subsequently-loaded 

caplets are referred to as extension caplets. Similarly, the ‘original’ loader and binder (which are implicit behind 

the kernel’s load() and bind() calls) are referred to respectively as the primary loader and the primary binder, and 

all subsequently-loaded ones are known as extension loaders and extension binders. We motivate plug-in caplets, 

loaders and binders, and discuss them in detail, in section 4.3 below.  

As well as hosting these plug-ins, the Platform Extensions CF recognises and embodies an implicit system 

development methodology that draws a clean distinction between two distinct ‘programmer roles’ as follows: 

• the deployment environment programmer (hereafter environment programmer) creates suitable caplets, 
loaders and binders for a particular deployment environment using facilities native to that environment 

(this relates to the pink areas in figures 2, 3 and 4); 

• the target system programmer (hereafter system programmer) then develops target systems using the 

APIs described in sections 3 and 4.2, together with a specific palette of caplets, loaders and binders that 

has been provided by the environment programmer (this relates to the blue areas in figures 2, 3 and 4). 

Distinguishing these two roles is key to OpenCom’s approach of offering a simple and generic programming 

model in a diverse and extensible environment of target domains and deployment environments. The use of the two 

roles is discussed in section 4.4; they are further discussed in the context of case studies in section 7. 

4.2 The Platform Extensions CF’s API  

The API offered by the Platform Extensions CF is as follows: 

interface Platform_Extensions { 

status extend(in extension_type ext_type,  

in string ext_name, out component ext); 

status load(in string name, in component loader,  

in component caplet, out template t); 

status instantiate(in template t, out component c); 

status unload(in template t); 

status destroy(in component c); 

status bind(in interface i, in receptacle r,  

in component binder, out component binding); 

status setdefaultextension(in extension_type ext_type, in component ext); 

status notify(in ICallback callback); 

} 

It will first be observed that the API is similar to, but builds on, the basic kernel API given in section 3. 
Extend() calls on the primary loader to load and instantiate a component that will play the role of an extension. The 
ext_type argument is an enumerated type {CAPLET, LOADER, BINDER} which specifies which one of the three 
possible extension types is intended; the ext_name argument then refers to the name of a component type that will 
play the corresponding role (i.e. the role of a caplet, a loader or a binder). Load() is like the similarly-named 

operation in the kernel API; the difference is that this version allows a particular loader and caplet to be specified. 
Likewise, bind() allows the specification of a particular binder. Every time a component model element (i.e. a 

template, component, interface or receptacle) is created, the creating component must record appropriate registry 

entries pertaining to the element using kernel.register() and kernel.putprop() (e.g. a loader that creates a new 
component instance should register the latter and the latter’s interaction points). This gives newly-created entities a 
UID and makes them visible to the rest of the system as if they were created as a result of calls on the kernel API.  

Setdefaultextension() is used to designate an extension of a given extension_type (i.e. a caplet, loader or 
binder) as a default to be used in subsequent calls to load() and bind() if an argument of DEFAULT is passed as 

the (resp.) caplet, loader and binder arguments of these calls. This ‘default’ facility is useful in helping to manage 
the complexity of simultaneously supporting many caplets, loaders, and binders. The basic idea is to employ the 

‘strategy’ pattern [Gamma,04]: i) the environment programmer writes a ‘meta-loader’ or ‘meta-binder’ that knows 
the set of loaders (binders) available in a given deployment environment, and the conditions under which each is 

used (e.g. to deal with specific component types; to load into specific caplets etc.); ii) the environment programmer 
uses setdefaultextension() to designate this meta-loader (meta-binder) as the default; and iii) when the system 
programmer calls load() (or bind()) the meta-loader (meta-binder) dispatches to a specific caplet, loader or binder 

according to its inbuilt knowledge.  



  

Finally, notify() is identical in function to the similarly-named operation in the kernel API. Its use is discussed 

in section 5. 

4.3 Caplets, Loaders and Binders 

4.3.1 Caplets 

Motivation As mentioned, caplets are specialised component-support environments that can be dynamically 

instantiated within a capsule. There are three main motivations for caplets. The first is for different caplets to 

represent different technology domains in the underlying deployment environment. For example, if it was desired 

to build a system that comprised both C++ and Java components, this could be achieved by employing a separate 
caplet for each of the two language environments. In such cases, the caplets might typically be realised as OS 

processes, with one executing a Java Virtual Machine (JVM). Alternatively, if a deployment environment consisted 

of multiple bus-connected microcontrollers, each with its own private memory, a caplet could be used to represent 

each microcontroller/memory pair. The essential difference between supporting multiple caplets in the same 

capsule and simply employing multiple separate capsules is that in the former case all the contained components, 

regardless of which caplet they are in, see a common name space and a single kernel API instance. This enables the 

‘third-party’ loading and binding semantic of the kernel to operate transparently across caplets. 

The second motivation for caplets is to provide privacy and isolation between components that are mutually 

distrustful, or which have different privileges. For example, when building an OS environment one might 

implement the OS kernel as one caplet and user space as another (or user space could be represented using multiple 

caplets, one per process; or caplets could be used to impose protection domains in a single address space). A 

similar strategy could be adopted in an active networking environment where it was necessary to isolate user-
provided functionality from system functionality so that the latter could not crash the former (see, e.g., 
[Karlin,01]). To manage privacy and isolation, extension caplets can choose whether or not to allow their 
components access to the kernel: Where required, extension caplets arrange kernel access for their hosted 
components by providing a kernel proxy, and using a cross-caplet binder to bind this to the kernel interface in the 
primary caplet. But this arrangement can be selectively disallowed either by the primary caplet or by the extension 
caplet itself. 

The third and final motivation for caplets is to support heterogeneous component styles—i.e. different 
implementations of the abstract component concept. The component style supported by the primary caplet is 
known as the primary component style; styles supported by extension caplets are known as extension component 

styles. While the semantics of all component styles must conform to the general characteristics given in section 3 
(i.e. support for interfaces and receptacles etc.), each extension component style is free to take its own position on 
a range of issues such as the following: 

• the layout of components on disc and in memory—this may be language/compiler/OS specific; 

• whether components can be instantiated multiple times or are singletons (i.e. instantiable only once); 

• whether components may support an arbitrary set of interaction points or if these are somehow 
constrained (e.g. in terms of numbers or types of interfaces, or numbers or types of operations in those 

interfaces); 

• whether components support fixed sets of interaction points or if these can be dynamically created; 

• whether components are represented as native executables or as interpreted code (e.g. Java). 

There are two major reasons to support extension component styles. The first is to be able to accommodate 
components written using existing component models (e.g. for purposes of reuse, integration, or backward 

compatibility). For example, we could integrate Microsoft COM components and JavaBeans in a single system by 
providing a caplet for each of these component styles, together with a suitable cross-caplet binder. The second 
reason for supporting extension component styles is to support ‘specialised’ styles. For example, in a primitive 

resource-poor deployment environment such as a microcontroller or sensor network element, we could define a 
minimal component style that imposed severe restrictions on the numbers of interfaces components can support, or 

the types of arguments that can be passed to operations (e.g. integers only). Nevertheless, such specialised styles 
still look exactly the same to external third-party code that deploys and binds components in the standard manner 

supported by the enclosing capsule’s kernel API. See section 7.2 for a detailed discussion of such a case.  

Realisation From the point of view of the system programmer, a caplet is simply a (primary-style) component 

that is loaded into the primary caplet (where the Platform Extensions CF itself resides). This primary-style 



  

component encapsulates all the deployment-environment-specific machinery needed to realise its particular 

instantiation of the caplet concept. The necessary machinery is created and/or initialised when the ‘caplet 

component’ is first instantiated (more detail is given below in section 4.4.1). At the environment programmer level, 

however, there is a basic requirement that caplets must provide a basic communicational facility to enable them to 

interact with the rest of the deployment environment (e.g. so that loader and binders can work with them). To meet 

this requirement the primary style component that represents a caplet must implement the following interface: 

interface Caplet { 

int createchannel(void); 

status destroychannel(in long channel); 

status sendmessage(in long channel, in any message); 

any receivemessage(in long channel); 

} 

In other words, this interface is required for a component to be recognised as a valid caplet by the Platform 

Extensions CF. The fact that caplets provide an execution environment for components but are otherwise passive is 

reflected in the form of this interface which, as can be seen, provides only generic message passing services and 

does not support any caplet-specific functionality. The way in which these message passing services are used by 

loaders and binders that will be associated with the caplet is discussed below in section 4.4.1.  

4.3.2 Loaders 

Motivation Extension loaders are used to load components into a capsule (or, more specifically, a caplet) in 

some particular manner. In many cases, extension loaders are closely associated with particular caplet types. For 

example, a caplet type that supports a particular component style would typically have an associated loader that 

knows how to load and instantiate components of this style. However, the concept of pluggable loaders has a much 
wider applicability than this. In particular, separating the loader and caplet concepts allows one to associate several 
loaders with a particular caplet type, or to share common loaders across multiple caplet types. It also allows us to 
provide different loaders with specialised semantics and behaviours. For example, different loaders might get 
component templates from different places (e.g. from different repositories or over the network). Similarly, loaders 
might perform security checks on the templates they load and/or instantiate, or validate particular properties, or 
perform special behaviours on loading/instantiation. As an example of the latter, a loader might use reflection (see 
section 5) to transparently analyse a component’s receptacles when loading it, and then recursively pre-load the full 
set of components on which it depends; or another loader could load balance across a set of processor/memory 
units managed within a single caplet. 

Realisation As with caplets, a plug-in loader is, to the system programmer, simply a primary-style component 
that offers a facade that hides arbitrary deployment-environment-specific functionality. To be recognised as a 
loader by the Platform Extensions CF, loader components are required to implement the following interface, the 
operations of which are called by the Platform Extensions CF as a result of prior calls of the latter’s corresponding 

calls: 

interface Loader { 

status load(in string name, in component caplet, out template t); 

status instantiate(in template t, out component c); 

status unload(in template t); 

status destroy(in component c); 

} 

4.3.3 Binders 

Motivation The motivation for plug-in binders is to represent different ‘binding mechanisms’ in the 

underlying deployment environment. For example, different binders can abstract over binding mechanisms such as 
interrupts, traps, special buses, shared RAM, optimised register transfers, nearest-neighbour registers in pipeline 
architectures, or OS-level IPC calls. The plug-in binder abstraction makes all such features uniformly available to 

the component programmer both within and across caplets, and between components of a common style or 
different styles. In addition, binders can support special behaviours such as operation interception, performing 

security checks on invocations, or supporting ‘actor’ like concurrency models in which thread context switches 
take place while a thread is executing inside a binding. 

Binders can vary widely in their complexity. At the more complex end of the scale, bindings that operate 
across caplets or component styles may need to incorporate stubs and skeletons to mediate between components 



  

that assume different calling conventions (perhaps because they were generated by different compilers), or which 

employ different representations of types or different language semantics. In some cases, these stubs and skeletons 

may be automatically generated by an IDL compiler in the classic ‘middleware’ style; in other cases they might be 

hand coded for performance reasons. In all cases, however, the necessary complexity is completely encapsulated 

within the specific binder and is thus hidden from the user of the generic component-based programming model.  

Note that the possibility of cross-caplet binding raises questions concerning the degree of coupling and the 

distribution of the caplets that comprise a single capsule. The answers are deployment environment specific, but all 

bindings within an OpenCom capsule are at minimum assumed to be reliable in the sense that the semantic of 

making a call over a cross-caplet binding should be indistinguishable, apart from a slightly greater latency, from 
that of making a call over an intra-caplet binding. That is, the binding must not drop or reorder any messages. 

Given this, one would not usually expect the degree of coupling and distribution within a capsule to be so loose 

and widely-distributed that cross-caplet binders would need to implement complex middleware-like functionality in 

order to maintain the required degree of reliability. If a target system must operate in such a loose and widely-

distributed environment, the preferred approach would be to design the system not as a set of caplets within a 

single capsule, but as a number of capsules containing middleware-like CFs (as described in the case study of 

section 7.3).  

Realisation Like caplets and loaders, plug-in binders are simply primary-style components that offer a facade 

that hides arbitrary deployment-environment-specific functionality. To be recognised by the Platform Extensions 

CF they are required to implement the following interface: 

interface Binder { 

status bind(in interface i, in receptacle r, out component binding); 

status destroy(in component binding); 

   } 

4.4 Programmer Roles 

4.4.1 The Environment Programmer Role: Creating Platform Extensions 

As mentioned, the Platform Extensions CF sees plug-in caplets, loaders and binders simply as primary style 
components that support specified interfaces. Behind these interfaces, however, can lurk a great deal of 
deployment-environment-specific complexity that the environment programmer (but not the system programmer ) 
must deal with. For example, consider a ‘Java caplet’ that encapsulates a JVM and supports a Java-based 
OpenCom component style. Having been instantiated with a call of extend(), such a caplet might proceed by 
forking a new process to run a JVM, and then establish contact with this new process using some OS-specific IPC 
mechanism—e.g. a UNIX pipe.  
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Fig. 4: Environment programmer concepts 

In such cases, i.e. whenever there is a physical separation between the primary-style extension component and 
the software that implements the extension, we typically employ a ‘delegator-delegate’ pattern in which the 

extension component plays the role of a delegator and the ‘separate software’ plays the role of a delegate. The two 
players communicate, using some appropriate protocol, over the channels supported by caplets. The use of the 

delegator-delegate pattern is illustrated in figure 4. (Figure 4 also shows the binder-related environment 



  

programmer concepts of stubs, skeletons and cross-caplet binding implementations—these are dynamically created 

by plug-in binders as required.) 

As a more concrete example of the use of the delegator-delegate pattern, consider the following sequence of 

steps that might be taken in instantiating a new loader for the above-mentioned Java caplet example:  

i) in the primary caplet, the loader component (delegator) is loaded using extend(); 

ii) this delegator opens a channel to the Java caplet using createchannel() in the Java caplet’s interface; 

iii) the delegator uses a Java-caplet-specific protocol to send (using sendmessage()) a command to the 

Java caplet delegate to ask it to load the loader’s delegate (loading the loader’s delegate can be done 
using any appropriate means; as we are in the environment programmer domain here, this is outside 

the scope of the OpenCom programming model); 

iv) the delegator opens a new channel and uses this to communicate, using a loader-specific protocol, 

with its newly-established delegate.  

One would use similar steps to instantiate a binder plug-in for the Java caplet. Cross-caplet binders employ a 

single delegator and multiple delegates—one in each of the caplets it knows how to deal with. We consider more 

concrete examples of delegator-delegate based extensions in section 7.2. 

4.4.2 The System Programmer Role: Using Platform Extensions 

To further appreciate the distinction between the environment and system programmer roles, consider the 

simple program below in which an system programmer builds on a set of platform extensions that have been 

provided by an environment programmer. In this program, the system programmer instantiates and third-party 
binds a primary-style component in the primary caplet to a component in the ‘Java caplet’ discussed above. The 
system programmer also employs an extension loader that loads components into the Java caplet (as discussed 
above), and an environment programmer provided extension binder that binds components across the two caplet 
types.  

template jtemp, ptemp; 

component jcaplet, jloader, cbinder, jcomp, pcomp, binding; 

interface ifaces[N]; 

receptacle recpts[N]; 

 

/* set up the Java caplet with a Java specific loader and binder */ 

extend(CAPLET, “MyJavaCaplet”, jcaplet); 

extend(LOADER, “MyJavaLoader”, jloader); 

extend(BINDER, “MyJavaToPrimaryBinder”, cbinder); 

 

/* load and instantiate the components */ 

load(“PrimaryComp1”, PRIMARY, PRIMARY, ptemp); 

load(“JavaComp1”, jloader, jcaplet, jtemp); 

instantiate(ptemp, pcomp); 

instantiate(jtemp, jcomp); 

 

/* obtain interaction points on the components and bind them */  

getprop(pcomp.id, “R”, recpts); 

getprop(jcomp.id, “I”, ifaces); 

bind(ifaces[0], recpts[0], cbinder, binding); 

The key point to notice is the transparency and generality of this system programmer code. First, the structure 

of the code is independent of the underlying caplet structure and caplet types involved: it would be essentially 
similar if we were dealing with only one caplet, or if the primary caplet ran on a PC and the extension caplet 

represented a primitive microcontroller attached to the PC by a PCI bus and supported a component style in which 
components were realised as small segments of machine code (see section 7.2). Second, the code could be 

executed unchanged with the same effect from within any component in the capsule (including one running in the 
microcontroller caplet cited above). This means that system programmers do not need to know or care in which 
caplet their components will execute, and that the choice of an optimal target caplet for a newly loaded component 

can be left to the platform (i.e. to an extension loader or meta-loader).  



  

5. The Reflective Extensions 

5.1 Overview 

The purpose of the OpenCom reflective extensions is to support the construction of dynamic target systems 

that need to change or evolve during their execution in a controlled and principled manner. To achieve this, the 

reflective extensions provide generic support for inspecting, adapting and extending the structure and behaviour of 

systems at run time. They also help to maintain an architectural separation of concerns between system building (or 

‘base-level’ programming) and system configuration and adaptation (or ‘meta-programming’). This distinction is 

orthogonal to the distinction between the environment and system programmer roles discussed above.  

Following Maes [Maes,87], we view the essence of reflection as enabling the inspection and manipulation of 

‘causally-connected meta-models’ of a software system [Maes,87]. Causally-connected meta-models are 

representations of some aspect of the system under consideration, and they expose a so-called ‘meta-interface’ 

through which the representation can be inspected and manipulated. ‘Causal connection’ means that i) run-time 

changes made to a meta-model (effected via its meta-interface) cause corresponding changes to immediately be 

reflected in the represented system; and ii) changes in the represented system that occur due to some external cause 

are similarly reflected in the meta-model. A key principle of our approach to reflection support is to provide an 

extensible set of orthogonal meta-models, each of which is optional and can be dynamically loaded when required, 

and unloaded when no longer required (assuming no dependencies). We have found in our experimentation to date 

that the meta-models described in the following subsection are particularly useful. 

5.2 Example Reflective Meta-models  

The Interface Meta-model This provides two related capabilities: i) to dynamically discover (at run time) 
details of the interaction points of a component in terms of their operation signatures; and ii) to perform ‘dynamic 
invocations’ on dynamically-discovered interfaces. Together, these capabilities enable components to invoke 
interfaces which were not known to them at compile time (i.e. they need not support the requisite receptacles). 
Essentially, these capabilities are similar to Java core reflection except that they work at the OpenCom level and 
are therefore programming language independent. One possible drawback of the interface meta-model is that its 
dynamic invocation capability allows one to bypass the architectural structure of an OpenCom system in terms of 
its explicit bindings. But in some circumstances it is important to support such dynamic behaviour. For example, it 
is particularly useful in supporting generic functionality such as debugging, component database browsing, or 
generic bridging (cf. the CORBA dynamic invocation interface or DII [OMG,95]). It is also required to support the 
architecture and interception meta-models discussed below with the necessary typing information.  

In implementation, the interface meta-model is realised as a singleton primary-style component that uses the 
OpenCom kernel’s getprop() and putprop() APIs to store and obtain the interface types associated with a 
component, and pointers to IDL definitions of these types in an encapsulated IDL repository. It implements 
dynamic invocation by offering a generic invoke() API which is modeled on the CORBA DII interface. The 
arguments to invoke() comprise the target interface and operation, together with a stack of argument values that is 
built manually by the invoking component on the basis of the run-time IDL type information provided by the meta-

model. Internally, the meta-model establishes a binding to the target interface in the normal manner (i.e. using the 

bind() call) so that the called component is unaware of the fact that it is being invoked in an unusual manner. 

The Architecture Meta-model This represents the topology of the current set of components within a 

capsule. It is used primarily to achieve coarse-grained topological inspection, adaptation and extension of the 

structure of a dynamic target system. For example, in a media-streaming scenario, we have used it to dynamically 
manage the set of media codecs in use when a mobile PDA migrates between fixed and wireless networks 
[Blair,04]. This involves first inspecting the underlying component topology to locate the codec component, and 

then adapting/extending the topology to effect corresponding change (e.g. to replace the codec). The meta-model 
provides a ‘graph-oriented’ API in which components are represented as nodes and bindings as arcs. Inspection is 
carried out by traversing the graph, and adaptation/extension is achieved by adding or removing nodes or arcs (e.g. 

adding a node results in the deployment of a new component). An example of the use of the architecture meta-
model is given in section 7.2.  

In implementation, the architecture meta-model is realised as a singleton primary-style component that 
provides a topological view of the capsule contents based on i) the raw component/interface/receptacle data in the 

kernel’s registry; ii) the typing information maintained by the interface meta-model; and iii) current binding 



  

information as provided by a notify() callback (see section 3). When the architecture meta-model is used to 

adapt/extend the system topology (e.g. by adding a node as above), it effects the necessary changes by using 

appropriate kernel calls to load components, create bindings etc. as required. 

The Interception Meta-model This meta-model, which is a version of probably the most widely explored 

reflective mechanism in general use [Kon,02], exposes the process of invoking an operation in a component’s 

interface. More specifically, a meta-interface is provided that allows the meta-programmer to insert arbitrary code-

elements called interceptors within bindings, such that an interceptor is executed whenever an operation is invoked 

across the binding (more specifically, either before, or after, or both before and after, the invocation). Such an 

interceptor might, for example, audit the pattern of invocations and their arguments for debugging purposes, or 
dispatch invocations to an alternative object instance (‘hooking’), or insert a security or concurrency control check 

on an invocation. Interception is especially useful in adaptation scenarios; for example, in the above-mentioned 

media streaming/mobile computing scenario, an interceptor on a low-level protocol component could be used to 

monitor and detect the conditions under which a codec should be replaced by means of the architecture meta-

model. In addition, interception can be used as a basis for dynamic aspect-oriented programming [Bencomo,05]. 

A commonly-cited disadvantage of interception is that it incurs an inherent performance overhead whether or 

not an interceptor is actually installed [Coulson,04]. This is because interception typically requires bindings to 

support a level of indirection. Our realisation of the interception meta-model uses the plug-in binder concept to 

sidestep this disadvantage. That is, we provide both interception-capable and non-interception-capable binders and 

select from these according to requirement—i.e., we choose an interception-capable binder only where we are 

likely to need interception. If we choose wrongly we can straightforwardly recover by destroying the current 

binding and rebinding using a different binder. An additional advantage of per-binder interception is that we can 
provide alternative models of interception that use different underlying implementations offering different trade-
offs. 

5.3 Controlling Access to Reflective Meta-Models  

Reflection is a powerful and general technique, and its use should always be constrained to minimise 
programmer errors. Our approach to providing such constraint is to limit the set of components that can access the 
reflective meta-models: in particular, access is typically given to CFs but not to their plug-ins. As well as 
preventing spurious access, this helps ensure that meta-models are accessed only when conditions are ‘safe’; for 
example, a CF might restrict component replacement via the architecture meta-model to situations in which no 
invocations are currently being made on interaction points owned by the ‘old’ component. Further, a CF could 
define a suitable state-transfer protocol to carry-over essential state from the old component to the new one.  

6. Performance and Overheads 

We now discuss the inherent performance properties and overheads of OpenCom. This section offers a generic 
treatment; more specific performance evaluations involving measurements of particular systems constructed using 
the technology are given in section 7.  

In assessing inherent overheads, we recognise a key distinction between in-band and out-of-band execution 

[Coulson,04]. In-band execution refers to segments of code that are repeatedly executed in the normal course of 
events and are therefore particularly performance sensitive; out-of-band execution, on the other hand, refers to 
code segments that are executed only ‘occasionally’ to the extent that their impact on system performance is 

negligible. On the basis of this distinction it can be seen that the kernel inherently incurs zero in-band execution 

overhead—this is because it is only involved in out-of-band operations, viz. loading, instantiating and destroying 
components; and creating and destroying bindings. These operations are typically only invoked when a system is 
being (re)configured; that is, an established component topology need not make any calls on the kernel. Note that 

this is quite unlike the situation in operating system microkernels, which are unavoidably involved in critical in-
band operations (such as interrupt handling or thread scheduling). Note also that the ‘out-of-band’ characterisation, 
with the exception of the overhead introduced by interception-capable binders (see below), also applies to the 

reflective meta-models. 

Of course, these observations do not imply that the performance of target systems constructed using OpenCom 

is entirely unaffected by the use of the technology! In particular, the following overhead-contributing factors are 
important: 



  

• overheads inherent in the primary and extension component styles used (e.g. per-component memory 

overhead) 

• performance overheads inherent in bindings (whether created by the primary binder or extension binders) 

• the granularity of the componentisation of the target system (which, in turn, affects the relative impact of 

the above two factors). 

To gain insight into these overheads we now provide a brief overview of our ‘reference’ kernel 

implementation1 and present some basic measures of its performance and overheads2. The reference 

implementation realises its primary caplet in terms of a standard Linux process (it also runs under Windows). The 

primary component style is based on the standard ELF executable format emitted by the GNU C++ compiler. The 
primary loader is based on Linux Shared Objects (or Windows DLLs), and the primary binder uses standard C++ 

vtables to realise bindings. As well as the primary binder we have two extension binders that work with primary-

style components in the primary caplet: the first of these offers an implementation of the interception meta-model; 

the second optimises away the vtable apparatus by replacing the usual vtable-based indirected call in the caller’s 

code segment with a simple CALL instruction. While this CALL-based extension binder saves some overhead, it 

can only be used where the component on the receptacle side is a singleton. Note that the CALL-based binding 

works by modifying the code associated with the receptacle in the caller’s code segment. Such code rewriting 

approaches are sometime dangerous; our modification, however, is small, well-defined and constrained in scope. 

Using our reference implementation, we carried out the following measurements of inherent overhead, the 

results of which are summarised in Table 1: 

• Memory footprint of kernel. We measured this as 32 Kbytes. This is a modest overhead which should 
make the kernel deployable in many resource-scarce environments.  

• Memory footprint of a null component. The memory requirement of a null primary-style component (i.e. 
one with no interfaces and receptacles and null initialisation/finalisation routines) is 36 bytes. This 
compares to an overhead of 20 bytes for a single null C++ object. In addition, the per-interface and per-
receptacle overhead is 28 bytes (with an additional 5 bytes per operation).  

• Component loading and instantiation time. The time taken to load a single null primary-style component 
(averaged over a few million loads) was measured as 9.8µs (compared to 7µs for a Linux Shared Object 
containing a null C++ object); and the time to instantiate an already-loaded null component was measured 
as 0.47µs (compared to 0.28µs for a null C++ object). The small overheads here are attributable to the 
larger file size of the OpenCom component template (due to meta-data etc.), and the slightly more 
complex instantiation process, including interaction with the kernel registry. 

• Time to create a primary binding. This was measured as 2.4µs—which is identical to the time required to 
create a vtable in C++. 

Table 1: Summary of Measures of Inherent Overhead  

 OpenCom Native C++ 

Memory footprint of kernel 32 Kbytes N/A 

Memory footprint of null component 36 bytes 20 bytes (null C++ object) 

Mem. footprint of receptacle/interface 28 bytes N/A 

Component loading time 9.8µs 7µs (null C++ object) 

Component instantiation time  0.47µs 0.28µs (null C++ object) 

Time to creating a primary binding 2.4µs 2.4µs (C++ vtable creation) 

Next, we measured the time taken to perform invocations across different types of bindings. The details, which 

are summarised in Table 2, are as follows: 

                                                 
1  In addition to our C++-based reference implementation, we have Java and C implementations as discussed in section 3.3. 
2  In all experiments, we used a Dell Precision 340 series workstation equipped with 4 x 1.6GHz Pentium processors, 512 MB of RAM, 

and running Linux Redhat 8.0. 



  

• Overhead of calls made across a primary binding. To measure this, we performed a series of invocations 

across a primary binding involving an interface with a single operation with no arguments and a void 

return value. We measured 101 x 10
6
 calls per second. We then confirmed that, as expected, this is 

identical to the invocation rate achieved when calling a method in a simple C++ object (which employs 

vtables in an identical manner). Thus there is zero in-band overhead arising from the use of the primary 

binder. 

• Overhead of calls made across an intercepted binding. This test used the same interface as above but 

employed a binding created by our interception-capable extension binder. We used a null ‘before’ 

interceptor and measured 5.8 x 10
6
 calls per second. Comparing this overhead with that of the primary 

binder (see above), this represents a slowdown factor of 17.4—thus it is clear that there is a substantial 

cost incurred for interception. However, to put this into perspective, we repeated the comparison using a 

target operation with a more typical and representative non-null body—viz. an empty loop of 1000 

iterations. This time we measured 0.54 x 10
6 

calls per second for the primary binding and 0.5 x 10
6
 for the 

intercepted binding—a slowdown factor of only 1.08. This illustrates that the absolute overhead of calls in 

still very small. Bear in mind also that, as explained in section 5, an system programmer only needs to 

incur this cost when interception is actually required. 

• Overhead of calls made across a CALL-based binding. This test again used the above-described interface 

but this time employed our CALL-based singleton binder. We measured 198 x 10
6
 calls per second, thus 

revealing that singleton bindings yield a two-fold speed-up over primary (vtable-mediated) bindings. We 

also confirmed that, as expected, this is identical to the performance achieved when calling a null C 

function in a simple C program. Again, this indicates zero in-band overhead arising from the use of the 

binder abstraction. 

Table 2: Overhead of OpenCom Operation Invocation 

 OpenCom calls/sec C/C++ calls/sec 

Primary binding  101 x 10
6
  101 x 10

6
 (C++ method calls)  

Intercepted binding  5.8 x 10
6
  N/A 

Primary binding (non-null op) 0.54 x 10
6 
 N/A 

Intercepted binding (non-null op) 0.5 x 10
6
 N/A 

CALL-based binding 198 x 10
6
  198 x 10

6
 (C function calls) 

Overall, it can be fairly concluded from the above figures that the basic approach to building component-based 
systems adds little overhead to that of a traditional programming language based systems development 
environment.  

7. Case Studies 

7.1 Overview 

Having described and evaluated the basic OpenCom technology, we now report on our experiences with the 

technology and present two representative and contrasting case studies of the use of the technology to build non-
trivial target systems.  

In terms of experiences OpenCom has been used by over 25 programmers at several universities, with 

different skill levels ranging from 3
rd

 year undergraduates to experienced systems researchers. These programmers 
have applied OpenCom in a diverse range of systems domains including middleware (e.g. OpenORB 

[Parlavantzas,05] or ReMMoC [Grace,03]), sensor networks (e.g. Gridkit [Hughes,06]), embedded systems (e.g. 
RUNES [Costa,07]), programmable networking (e.g. NETKIT [Coulson,03]) and overlay networks (Open 

Overlays [Grace,05]). Some of these systems have been quite large—e.g. OpenORB employs over 40 components 
and comprises 63,000 lines of code, while ReMMoC employs over 25 components and comprises some 30,000 

lines of code. Furthermore, over 10 OpenCom developers have worked on multiple projects in different domains; 
e.g. in both mobile computing and sensor networks. On the basis of this experience we can report anecdotally that 



  

it is indeed the case that, thanks to OpenCom’s uniformity of approach, a developer’s prior experience in one 

domain considerably reduces their time to develop in a second domain. 

In terms of case studies, we focus in the following sub-sections on the above-mentioned OpenORB and 

NETKIT projects. For each case study we discuss in context the application of the two programmer roles (system 

and environment programmers), and also provide an overall evaluation, including a performance evaluation.  

7.2 Case Study 1: Programmable Networking Environments on Network Processors 

7.2.1 Introduction 

Network processors [NPF,05] are specialised multi-processor devices that process and forward network 

packets at gigabit speeds. Unlike traditional high-speed routers, network processors (hereafter, NPs) process 

packets in software—primarily for reasons of flexibility and modifiability. They offer an ideal case study for a 

systems-level software component model because i) they are widely acknowledged to be very difficult to program 

(e.g. they feature specialised hardware and often have no standard OS environment); and ii) the software must be 

extremely efficient to meet the demands for gigabit forwarding speeds. In this section we briefly describe work 

carried out in our recently-completed NETKIT project [Coulson,03] which explored the use of NPs (specifically, 

the Intel IXP range of NPs [Intel,04]) in building flexible programmable networking environments.  

An Intel IXP-based router, as illustrated in figure 5, consists of an IXP card connected to a host PC (running 

Linux) via a PCI bus. IXP cards comprise the following: an XScale processor running Linux and serving as a 

general purpose control processor; an array of so-called microengine ‘reduced instruction set’ (RISC) processors 

that are attached to each other and to the control processor through a series of buses and a hierarchical 
DDR/SRAM shared memory architecture; and a set of dedicated hardware elements (not shown) such as network 
interfaces and a hardware hash unit. The microengines are responsible for ‘fast-path’ packet forwarding. They 
execute small code modules, written in C or assembler, that run in a ‘bare-iron’ environment (i.e. no OS). They 
have general purpose, although primitive, instruction sets, and also support specialised packet-forwarding 
functionality such as checksumming, hardware timing and pseudo-random number generation. As well as having 
access to shared memory, each microengine has a private instruction/data memory called a microstore.  

 

Fig. 5: Outline of an Intel IXP-based router 

7.2.2 Programmer Role Considerations 

System Programmer Role The system programmer role works entirely in terms of the abstract OpenCom 

concepts described in sections 3 and 4. Using these concepts, we have developed a ‘Network Element’ CF, and 
also a nested Routing CF that takes various routing protocols such as RIP, BGP or OSPF as its plug-ins, and a 
nested Translator CF that is capable of translating between different versions of IP. These are illustrated in figure 6 

which also indicates which of the three environments (i.e. the PC, the XScale or the microengines) that each CF 
and component resides in. Essentially, the Network Element CF [Coulson,03] defines ‘hot spots’ in a software 
router architecture that accept different component-based implementations of network elements such as classifiers, 

forwarders, schedulers. It is thus closely related to programmable networking systems such as VERA [Karlin,01]. 
However, the key point is that by building on the set of plug-in caplets, loader and binders provided by the 

environment programmer (see below), the CF developer is able to largely disregard the underlying complexity and 
heterogeneity of the IXP architecture. Thus, when the Network Element CF accepts a new forwarder provided by 

its user, and must bind this to an existing classifier and a scheduler, it does not need to act differently depending on 
which microengines these components reside on, or what communication mechanism is being used to bind their 
interfaces and receptacles.  



  

The power and generality of the OpenCom approach is also evident in dynamic reconfiguration scenarios 

involving the reflective meta-models. Consider, for example, a scenario in which a Network Element CF user 

dynamically installs an IPv6-to-IPv4 protocol translator. The initial CF configuration, illustrated in figure 6, 

comprises several components on the router’s fast-path, namely a classifier and a forwarder, scheduling 

components, and a component for processing IP options on the slow-path. These various components are assigned 

by the Network Element CF to caplets in a way that best exploits the hardware capabilities of the IXP-based router; 

for example, the CF would typically deploy the fast-path components in the microengine caplets, the IP options 

component in a XScale caplet, and the Routing CF in an XScale caplet or even a PC caplet.  
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Fig. 6: IXP-based router reconfiguration scenario 

Initially, the Translator CF accepts from the user a v6->v46 protocol translator. This is offered to the CF via a 
CF-specific interface which uses the interface meta-model to check the to-be-loaded component type for 
conformance to the CF’s criteria for plug-ins. The Translator CF then employs a kernel-level meta-loader, as 
described in section 4.1, to transparently select an appropriate loader for the component type. The selected loader 
again uses the interface meta-model to check that the to-be-loaded component conforms to its own requirements 
(e.g. that microengine-hosted components support only single-integer arguments/return values as discussed above). 
The Translator CF then uses the OpenCom kernel’s getprop() operation to locate the classifier’s receptacle, and, by 
manipulating a CF-specific API that encapsulates and constrains the architecture meta-model, arranges for this to 
be bound to the translator. Here, the CF checks that the proposed binding does not violate its rules for structural 
integrity; having verified this, the CF asks the meta-binder to actually do the work. It could additionally add an 
interceptor to the binding to, say, monitor and log the number of IPv6 packets actually forwarded.  

Environment Programmer Role The first decision to be taken by the OpenCom environment programmer 
role when deploying OpenCom on an Intel IXP-based router is the scoping of capsules—e.g. should there be 
separate capsules for the PC, XScale and microengines, or should a single capsule span the entire router? We chose 
a single all-encompassing capsule on the basis that this promotes the highest degree of integration between the 

different areas of the router hardware. The next decision is where to locate the capsule’s primary caplet. Given that 

our reference kernel implementation runs under Linux, and that the microengines themselves are too primitive to 
support the kernel, the choice was between the host PC and the XScale processor. We chose the XScale because it 
is more ‘central’—i.e. in more direct contact with the microengines; but the PC would also have been possible. 

Next, we must define a suitable set of extension caplets and corresponding component styles, loaders and binders. 
In the XScale and PC environments the caplets were implemented as standard OS processes, but in the 
microengine environment we designed a specialised caplet type (see below) that runs on each microengine. Note 

that other caplet-to-microengine mappings are possible. For example, it would have been possible to encapsulate 
all the microengines within a single caplet whose loader ‘intelligently’ assigns components to specific 

microengines on the basis of their current loading, and perhaps even migrates already-running components between 
microengines according to some resource management policy.  

In the remainder of this section we focus on the above-mentioned microengine caplet, which is of most interest 
in illustrating the generality of our systems-building approach. The implementation of the microengine caplet itself 

is relatively straightforward: its only function is to establish a caplet channel from the primary caplet on the XScale 



  

to the target microengine. We realised the caplet channel pattern in terms of libraries provided by Intel that allow 

one to directly access a microengine’s microstore from the XScale processor. Thus no explicit caplet delegate is 

required. The component style employed by the microengine caplet is noteworthy in being strictly and severely 

constrained: components may have a maximum of one interface and one receptacle, and these furthermore may 

only support operations that accept and return a single integer. The main reason for these restrictions is that they 

enabled us to base the component style on an already-existing module convention adopted by Intel and the Netbind 

project [Campbell,02]. This considerably eased the task of developing a broad palette of functionality in terms of 

classifiers, filters, forwarders, schedulers etc. Our microengine component style extends the Intel/Netbind 

convention by incorporating an on-disc meta-data-enhanced format that supplements the bare executable with 

pointers to the corresponding IDL interfaces, and other meta-data. We actually designed two variants of the 
microengine component style: The first is a ‘basic’ version that supports only ‘singleton’ components. With this 

version, if we require, say, a pipeline of n filter components, the code of the filter needs to be loaded n times, 

which wastes scarce microstore memory. The second, more ‘advanced’, variant supports multiple instantiation of 

components. While this is more flexible, it has the corresponding disadvantage of being slightly less efficient. In 

particular, it assumes a level of indirection in bindings (cf. vtables); also, it involves separating out instance 

variables and modifying the instructions that access these, and it involves modifying inter-component calls to pass 

an instance identifier on the stack. 

We now discuss the loader and binder plug-ins that we designed for the microengine caplet. The loader is of 

interest because it provides the illusion of dynamic loading/instantiation despite the fact that the microengine 

hardware only allows modification of its microstore memory when the microengine has been stopped [Intel,04]. 

The basic capability provided by the hardware is to stop the processor, access microstore locations, and then restart 

execution at a hard-wired microstore address. To achieve transparent loading it is therefore necessary to not only 
load the new component, but also to patch the hard-wired restart address so that subsequent execution jumps to the 
point at which it left off. In addition, to avoid microstore fragmentation when components are being repeatedly 
loaded and unloaded, the loader needs to occasionally relocate components within the microstore in a transparent 
manner. The loader is also responsible for enforcing, by inspecting the meta-data attached to an on-disc component 
template, the above-mentioned component style specific restrictions on interfaces and receptacles.  

We have implemented a range of binders for the microengine caplet. The simplest of these is an intra-
microengine binder for the above-mentioned ‘basic’ component style. This uses the caplet channel to access the 
microengine memory, and implements a binding by ‘morphing’ a jump instruction in the component supporting the 
receptacle, to refer to the designated entry point of the component supporting the interface (this technique was 
pioneered in the Netbind project [Campbell,02]). The necessary entry and exit point information is obtained (via 
the kernel’s registry) from meta-data attached to the packaged component, which is transformed by the loader from 
relative to absolute offsets. The intra-microengine binder for the ‘advanced’ multi-instantiation component style 
instead uses the caplet channel to initialise a per-binding indirection table and instance variable vector. We have 
also implemented a range of cross-caplet binders that bind microengine-hosted components to i) components in 
other microengine caplets, ii) components in XScale caplets (running under Linux), and iii) components in host PC 
caplets (also running under Linux). These are considerably more complex than the intra-microengine binders 

discussed above. In particular, the latter two require stubs and skeletons to map the parameter and return values to 

PCI bus packets. The microengine-side stubs/skeletons are hand coded rather than being generated automatically 
from IDL (this is another reason for severely constraining the interfaces of microengine components).  

Finally, we have implemented a range of loaders for the XScale and PC caplet types, together with binders that 

perform intra-caplet binding within these caplet types, and a binder that operates between the two. These are 
relatively straightforward and are implemented using delegators and delegates along the lines discussed in section 
4.4.1.  

7.2.3 Overall Evaluation 

This case study offers a glimpse of the abstraction power of the OpenCom programming model, and also 
exemplifies the use of domain-specific CFs and reflective meta-models to facilitate reconfiguration and ad-hoc 
intervention at a high level of abstraction. Note particularly that the steps involved in the reconfiguration need not 

have been foreseen when the initial configuration was defined, and that they are entirely separate from the basic 
functionality of the components involved. 

The case study is also useful in clarifying the benefits of the component-based programming model in ‘taming’ 

hostile and heterogeneous deployment environments such as IXP NPs. In particular, it can be seen that: 



  

• The system programmer is completely shielded from the complex, low-level, heterogeneous and 

distributed nature of the NP-based router. Instead, she sees only components, loaders, binders, and 

caplets—all of which are operated on using standard and generic APIs. Even the presence of multiple 

caplets can be made transparent if the environment programmer has provided suitable meta-

loaders/binders. 

• Nevertheless, the implementation incurs no inherent in-band performance costs, as the component styles 

used are optimally tailored to their particular environments (e.g. the ‘basic’ microengine component style 

is based directly on that provided by Intel1), and the binders provided by the environment programmer 

employ optimal, IXP-specific, mechanisms such as address-patching and the use of nearest-neighbour 
registers.  

This case study also illustrates how the third-party nature of the programming model supports the control and 

management of the software in the primitive microengine environment. For example, from the primary caplet on 

the XScale one can incrementally load/unload microengine-based and PC-based components in a completely 

uniform manner. Similarly, bindings can be uniformly created between a microengine component and another 

component located anywhere else on the router. The uniformity is most clearly seen when we consider that a 

microengine component can equally straightforwardly initiate the loading and binding of components on the 

XScale or the host PC. Furthermore, the reflective meta-models apply uniformly to components in all three caplet 

types.  

To validate the performance of OpenCom in the NP context, we compared the throughput of our Network 

Element CF with that of standard monolithic software. In both cases an IXP2400 was configured with a simple 
‘bridging’ program that ran on a single microengine and transferred packets between two 2.5 Gbps fibre ports. In 
the ‘standard monolithic’ case, the bridge was based on IXP2400 code released by Intel. In our case, the same code 
was refactored as two pipelined components: a receiver and a sender. We used the ‘basic’ component style. 
Subsequently, we experimented with adding additional ‘null’ components between the receiver and sender, and 
with using both of the component styles and binding types referred to above (i.e. the ‘basic’ and ‘advanced’ types). 
The throughput in the Intel case was 646.34 Mbps. The results for the OpenCom case are shown in Table 3.  

Table 3: Throughput of an OpenCom-based network bridge 

Number of 

components 

‘Basic’ binder/ 

component style 

‘Advanced’ binder/ 

component style 

2 (sender/receiver) 646.34 Mbps 634.52 Mbps  

5 (i.e. 3 null) 636.51 Mbps 614.51 Mbps 

10 (i.e. 8 null) 631.68 Mbps 575.23 Mbps 

20 (i.e. 18 null) 613.90 Mbps 442.10 Mbps 

Note that the OpenCom case with the two components and the ‘basic’ binder adds zero overhead. Inevitably, 

overhead is incurred where additional components and/or the ‘advanced’ component style and binding type are 

deployed, but this appears to be well within tolerable bounds given the additional functionality. In terms of 
memory use, the per-component overhead of the null components was as follows: basic component style: 40 bits 
(i.e. one microengine instruction word); advanced component style: 120 bits (i.e. 3 instruction words). Overall, the 

results show that it is perfectly feasible in performance terms to use the OpenCom approach to build low-level 
embedded software such as NP software.  

7.3 Case Study 2: Reflective Middleware  

7.3.1 Introduction 

                                                 
1  Obviously there is an additional overhead involved in the use of the ‘advanced’ multiply-instantiable component style; but given the 

extra functionality, this is to be expected. The key point is that if one compares like with like—i.e. if one uses singleton components—

the overhead is no greater than in the Intel/ Netbind environments. 



  

Middleware is distributed systems software that sits between (distributed) applications and an underlying 

network and end-system infrastructure. Its role is to shield applications from the complexity and heterogeneity of 

the underlying infrastructure by providing them with a distributed virtual machine. Due to diversification of both 

applications and infrastructures, recent years have seen a explosion in the types of middleware being employed. 

Examples include: traditional object-based middleware such as CORBA; component-based middleware such as 

Enterprise JavaBeans or the CORBA Component Model; Web Services and Grid middleware; asynchronous 

middleware based on events, tuples or publish-subscribe; adaptive middleware for distributed real-time systems or 

mobile computing; embedded systems middleware; and sensor network middleware. This diversity makes it 

increasingly attractive to approach middleware construction using a framework approach in which tailored 

platforms can be constructed and customised in terms of a re-usable and extensible set of components and CFs. We 
have built such a framework, called OpenORB [Coulson,02], [Parlavantzas,05], and have used it to instantiate a 

number of different middleware platforms as discussed in this section. 

7.3.2 Programmer Role Considerations 

System Programmer Role The system programmer is responsible for creating the OpenORB framework and 

populating it with a suitable set of CFs that can be combined by the user to build a variety of configurable and run-

time reconfigurable middleware platforms. OpenORB (see figure 7) is structured as a top-level CF (‘Top’) that is 

itself composed of three layers called the Resource Layer, the Communications Layer, and the Binding Layer. 

Each of these layers can itself contain a potentially-extensible set of second-level CFs. The Top CF enforces the 

three layer structure by ensuring that each plugged-in CF (and its components) only has access to interfaces offered 

by components in the same or lower layers. Furthermore, it imposes policies concerning layer composition and 

dynamic changes in layer composition. The plugged-in CFs address more focused sub-domains of middleware 
functionality (e.g., binding establishment and thread management), and enforce appropriate sub-domain specific 
policies.  

The Resource Layer CFs respectively handle buffers (the Buffer Management CF takes pluggable buffer 
allocation policies), transport connections (the Transport Management CF takes pluggable transport protocols), 
and thread management (the Thread Management CF takes pluggable user-level thread scheduling policies). Next, 
the Communications Layer contains Protocol and Media Stream CFs. The former accepts plug-in protocol 
components (e.g. GIOP or SOAP) which can be organised into stacks, and the latter accepts software codecs. 
Finally, the Binding Layer contains a Binding CF [Parlavantzas,03] that accepts binding type (BT) 
implementations (e.g., remote object invocation, streaming connections, publish/subscribe etc.). The Binding CF is 
the most complex of the CFs and is a crucial part of the OpenORB architecture because it determines the 
programming model offered to middleware users (e.g. standard CORBA or Web Services).  

The OpenORB architecture fosters a considerable degree of component sharing across multiple middleware 
platforms. In particular, the Resource Layer provides buffer management, transport and thread scheduling 
components that can potentially be used by many platforms including diverse ones such as CORBA, Web Services 
and event based middleware. The layer composition policies in the Top CF determine exactly which plug-ins are to 
be applied. The typical level of re-use, however, tends to diminish in the higher layers. 

Overall, the OpenORB implementation consists of about 50,000 lines of C++ divided into five CFs and around 
thirty components. We have used this to build a standard CORBA environment [Coulson,02], a platform for 

mobile computing [Grace,03] (which employs a Web Services API and a Dynamic Service Discovery CF in the 

Binding Layer) and a platform for Grid computing [Grace,05]. Full details of the overall OpenORB approach are 
available in [Parlavantzas,05]. 

Environment Programmer Role Unlike the programmable networking case study, OpenORB does not need 
to employ a large and complex set of caplets, loaders, and binders. This is because (with the exception of 
embedded and sensor network middleware) the underlying infrastructure tends to be accessed via relatively high-

level OS APIs. However, this case study does require the OpenCom kernel to be ported to a range of end-systems 
running a range of OSs. Because of the size and simplicity of the kernel, this has proved straightforward: we have 

easily ported the kernel to a range of PCs and PDAs running both Windows (including CE) and a variety of Unix 
flavours. The main requirement in terms of caplets has been to support both native and interpreted component 

styles. Therefore, we have Java-based caplets to go with native kernels and vice versa. We employ straightforward 
OS mechanisms (e.g. Java class loaders and IPC mechanisms such as pipes) to implement suitable loaders and 



  

cross-caplet binders that work within a single machine environment. We then build inter-machine communication 

in terms of middleware-level communications CFs that include RPC protocols etc. 
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Fig. 7: The generic OpenORB architecture 

 

7.3.3 Overall Evaluation 

Unlike the programmable networking case study, the OpenORB case study emphasises the system programmer 
role more than the environment role; it demonstrates the practicability of using OpenCom to develop a large and 
complex system which has evolved over a number of years and been worked on by a significant number of people. 
It also validates the usefulness and practicality of the CF approach to building systems. 

In terms of overhead, we have compared the performance of our OpenORB-based CORBA implementation 
with standard CORBA object request broker (ORB) implementations. The objective here is to evaluate the degree 
to which componentisation impacts performance. The ORBs chosen for comparison were Orbacus 3.3.4 and GOPI 
v1.2 (GOPI [Coulson,02a] is a non-component based CORBA implementation that we previously developed). All 
three ORBs employed CORBA GIOP v1.2. Orbacus is well known as one of the fastest and most mature CORBA-
compliant commercial ORBs available and therefore represents the state of the art in CORBA performance. A 
comparison with GOPI, on the other hand, yields insight into the overhead of componentisation as the GOPI code 
was extensively re-used in our later component-based OpenORB implementation.  

All three ORBs were tested on a Dell Precision 410MT workstation equipped with 256MB RAM and an Intel 
Pentium III processor rated at 550Mhz. The operating system used was Microsoft XP and the compiler was 
Microsoft’s cl.exe version 12.00.8804 with flags /MD /W3 /GX /FD /O2. Our tests measured method invocations 

per second over the PC’s loopback interface. A minimal IDL interface was employed that supported a single 
operation that took as its argument an array of octets and returned a different array of the same size. The 
implementation of this method at the server side was null.  

The results of timing a large number of round-trip invocations using the above setup are shown in figure 8. It 
can be seen that for packets smaller than 1024 octets, OpenORB performs about the same as Orbacus, with GOPI 
running around 10% faster. As might be expected, there is a diminishing difference between all three systems as 

packet size increases; this is presumably due to the fact that the overhead of data copying begins to outweigh the 
cost of call processing. The relative overhead of OpenORB compared to GOPI can be attributed to the former’s 
increased use of indirection (i.e. through bindings). In our test configuration the data path for each GIOP 

invocation involved 67 bindings, 32 on the client side and 35 on the server side. Despite this additional work, it 
can be seen that the performance of OpenORB is entirely comparable to that of the non-componentised ORBs. 

This demonstrates that structuring middleware platforms in terms of dynamically-composable components does not 
necessarily incur a significant overhead. 
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Fig. 8: Performance of OpenORB versus GOPI and Orbacus 

Finally, based on our experience with both OpenORB and the non-component-based GOPI, we briefly 
comment on the relative development benefits of using a generic component model to build middleware. Although 
GOPI was already structured in a ‘modular’ fashion, the informality of the module interfaces was, as usual, a 
limiting factor in fostering reuse and independent development. In contrast, we found that the greater rigor imposed 
by OpenCom—and especially by the use of receptacles and language independent interfaces—considerably 
enhanced these factors as well as leading to, if anything, faster development time. In addition, we automatically 
benefited from the ability to mix programming languages, as well as to reconfigure component configurations 
dynamically. 

8. Related Work 

OpenCom can usefully be positioned against three areas of related work: i) application-level component 
models, ii) systems-level component models that are narrowly targeted at specific target domains and/or 
deployment environments, and iii) generic systems-level component models.  

In terms of a comparison with application-level component models, OpenCom substantially differs from 
designs such as EJB [Sun,05], the CORBA Component Model [OMG,99], Microsoft’s COM or .NET 

[Microsoft,05], and ICENI [Furmento,02], in being far more lightweight. OpenCom’s capsule concept is 
superficially related to the ‘container’ concept espoused by many of these models, but the latter is far more 
complex and provides correspondingly richer functionality—e.g. in terms of policy specification for security, 

event-handling, transactions, and persistence. In contrast, OpenCom capsules—due to our goals of genericity, 

resource parsimony, and performance—are policy free and embody only minimal, low-level, functionality (i.e., 
loading-, binding-, and registry-related). OpenCom shares with these models an emphasis on third-party 
deployability of components. However, whereas software re-use is the primary reason for most of these systems to 

espouse third-party deployability, the main reason for third-party deployability in OpenCom is to facilitate system 
configurability and reconfigurability, and to enable primitive components in extension caplets to function as first-
class players in the computational model (cf. the programmable networking case study). OpenCom also differs 

from EJB and ICENI in being language independent.  

We now turn to component models which aspire to support the development of low-level systems, but which 

cannot reasonably be designated as generic. Here, we restrict our remarks primarily to arguing why these systems 
cannot be so designated. In the embedded systems area we have a wide range of component models such as Pebble 

[Magoutis,00], PECOS [Winter,02], PBO [Stewart,93], SaveCCM [Hansson,04] and Koala [Ommering,00]. Most 
of these are build-time only technologies—components are not visible at run time and therefore these systems do 



  

not support dynamic reconfiguration. One area that some of these systems (i.e. PECOS and PECT) do support, 

however, that OpenCom does not natively support, is the specification (at build-time) of real-time constraints such 

as cycle time or worst case execution time. Such facilities are clearly important in certain real-time-critical areas. 

Our approach to providing such facilities, where needed, would be to provide a suitable ‘real-time systems’ CF 

rather than building-in real-time properties into the programming model itself. A further observation is that many 

of these embedded systems technologies (e.g. PBO, SaveCCM, and Koala) are tightly coupled to an specific 

underlying OS environment and/or are programming language specific. In the OS building area we have systems 

such as THINK [Fassino,02], OSKit [Ford,97] and MMLITE [Helander,98]. THINK has a similar component-

based programming model to OpenCom and also employs the notion of plug-in bindings. However, it does not 

share OpenCom’s ‘kernel-style’ architecture and it lacks any equivalent of OpenCom’s other platform extension 
facilities (i.e. caplets and loaders) and so is unable to abstract over as broad a range of deployment environments. It 

also lacks OpenCom’s reflective capabilities and has so far only been used to develop OSs in standard PC 

environments. OSKit is a Knit-based toolkit that consists specifically of OS related components. Thus it is Knit 

(see below) rather than OSKit itself that is the ‘generic’ model. MMLITE was an early attempt to adapt and apply 

Microsoft’s COM as a vehicle for building operating systems. Although it did support a degree of reconfiguration, 

MMLITE had no specific support (e.g. in terms of reflection and CFs) to control and manage this; in addition, due 

to its reliance on COM, it was not suitable for primitive deployment environments. In the programmable 

networking environments area we have a wide range of component systems that might be exemplified by VERA 

[Karlin,01], MicroACE [Johnson,03], and Netbind [Campbell,02]. Many of these systems are targeted at primitive 

deployment environments; but they largely achieve this by defining very limited and specific component models. 

VERA, for example, is more a component framework than a generic component model in that it supports plug-in 

components only at pre-designated ‘hot spots’. Similarly, MicroACE is specifically designed for Intel IXP network 

processors—its notion of ‘component’ is inherently ‘split’ so that a part of a component exists on a microengine 
and part on the control processor. Apart from the fact that MicroACE does not support run-time reconfiguration, 
this architecture is clearly inapplicable to other types of deployment environment. Again, Netbind, on which we 
have built our own programmable networking research (see section 7.2), is barely a component model—it deals 
with informal ‘modules’ rather than components and its binding mechanism is intimately tied to the IXP 
deployment environment. Finally, in the middleware platforms area we have systems such as LegORB 
[Roman,00], k-Components [Dowling,01] and various JavaBeans-based approaches (e.g. [Bruneton,00] and 
[Joergensen,00]). These systems tend to be flexible in terms of their support for dynamic reconfiguration, but none 
of them are suitable for deployment environments other than standard PC environments (or at best PDAs running a 
standard OS such as Windows CE). 

Turning now to purportedly generic systems-level component models, we observe that as mentioned in the 
introduction, only a limited amount of work has so far been carried out on exploiting the component paradigm as a 
generic systems-building approach. The other main players in the field are Knit [Reid,00] and Fractal 
[Bruneton,04]. Knit was initially targeted primarily at operating systems (e.g. the OSKit system mentioned above), 
but it has also been successfully used to build software routers, although only in conventional PC environments. 
The main limitation of Knit is that it addresses purely build-time concerns: the component model is not visible at 
run time so there is no systematic support for dynamic component loading, still less managed reconfiguration. 
Fractal is much closer to OpenCom in its goals and approach. Like OpenCom, it supports bindings between 
interfaces as first class objects, and it takes seriously the need for dynamic reconfiguration. However, although 

Fractal is designed to be abstract and generic, it seems to lack some of the flexibility of OpenCom, which 

potentially limits its applicability. In particular, it mandates a specific component style that provides quite rich (and 
therefore costly) behaviour in several areas—i.e. it supports composite components, has an architecture that 
describes how components can be built in terms of multiple Java classes (or C files), and its components need to 

include a ‘controller’ part for lifecycle management. It is difficult to see how this relatively complex component 
style could, for example, be deployed in very primitive environments like network processor microengines or 
sensor motes. Like OpenCom, Fractal supports reflection. This is primarily architectural reflection which employs 

an XML-based architectural description language that is available at run time. OpenCom, on the other hand, 
supports an extensible range of reflective facilities, and leaves the choice of specific facilities to the environment 

programmer. 

Finally, it is instructive to briefly compare OpenCom’s kernel with the common notion of OS microkernels 
(see, e.g., [Rashid,89]). While there is an apparent similarity between the architecture diagram in figure 2 and that 
of a typical microkernel OS, it can easily be shown that the resemblance is only superficial: microkernels are 

responsible for such in-band tasks as interrupt handling, thread scheduling, message passing and paging. The 



  

OpenCom kernel, on the other hand, only supports simple compositional functionality—i.e. loading and binding. 

The distinction is perhaps most clearly evident when one considers that it is straightforward to unload the kernel 

itself to save space (as long as no subsequent system reconfiguration is required). 

9. Conclusions  

We have presented a generic component-based approach to the construction of systems software, and have 

argued that this generic approach has significant advantages over the current crop of narrowly-targeted systems-

building components models. In particular, we argue that our approach maximises the genericity and abstraction 

level of the component based programming model while at the same time supporting a principled approach to the 
support of a wide range of target domains and deployment environments. OpenCom offers a flexible, extensible 

and language-independent architecture that is based on a minimal component run-time kernel. Due to its simplicity, 

the OpenCom kernel can easily be deployed in a wide range of deployment environments and used to underpin the 

construction of both dynamic and static systems (in the latter case the kernel can, as mentioned above, be viewed 

simply as a highly flexible and configurable loader that is discarded once the system has booted).  

On top of the kernel, the platform extensions layer adds the generic abstractions of caplets, loaders and 

binders. These are instrumental in adapting OpenCom to heterogeneous deployment environments and in ‘taming’ 

the idiosyncrasies of the deployment environment without over-abstraction (which would lead to poor performance 

and lack of accessibility to useful deployment-environment-specific features). As shown in section 7, a wide range 

of deployment environment idiosyncrasies can be exposed in a consistent and efficient manner through these 

abstractions. The result is a standard and general approach to system construction and reconfiguration based on a 

uniform model of third-party loading and binding (this is particularly well illustrated by the programmable 
networking case study). Another important element of our platform extensions design is the notion of differentiated 
programmer roles: environment programmers populate a given deployment environment with suitable caplets, 
loaders, and binders; and system programmers construct the target system in terms of these. This differentiation 
structures the development of systems and provides a principled approach to the task of bridging the 
“implementation gap” between an abstract programming model and a concrete deployment environment. Also in 
the extensions layer, the reflective meta-models provide principled means of reconfiguring systems in terms of 
inspection, adaptation and extension. Again, it is for the environment programmer to choose which of an 
(extensible) set of reflective meta-models should be made available in any given installation. 

Component styles and component frameworks are two further features of our approach that strongly foster 
genericity. The ability (through caplets) to support an extensible set of component styles means that the component 
notion can be instantiated in almost any conceivable programming language and deployment environment 
(including microengines and sensor motes). Nevertheless, thanks to third-party loading and binding, the 
idiosyncrasies of different component styles are only visible to the developers who write components using some 
particular style. Other developers who compose (and reconfigure) systems in terms of these components can 
choose to remain oblivious to their internal heterogeneity. Our architecture is similarly agnostic in the area of 
component frameworks. Unlike, say, Fractal, which supports a particular instantiation of the CF concept (which 
employs an associated XML-based architecture description language), OpenCom fosters generality by leaving the 

CF notion loosely specified as an architectural ‘pattern’. Nevertheless, this does not preclude the use of specific 
‘meta-frameworks’ that can be used as optional extensions to generate CFs. For example, we have developed a 
meta-framework called ‘Plastik’ that employs an ADL to formally specify constraints on OpenCom CFs and 

automatically generates checking code to police these constraints at run time [Joolia,05]. 

In our present and future work we are continuing both to develop OpenCom and to evaluate it by building 
target systems in a wide variety of target domains and deployment environments. For example, a current EU-

funded collaborative project is focusing on the use of an OpenCom-like component model in the development of 
real-time and embedded systems [Costa,07]. This project is also investigating the provision of fundamental support 
for security in OpenCom-like systems. The approach we are taking here is to provide a ‘security mediator’ in the 

extensions layer that offers a minimal Trusted Computing Base, and then to provide higher level mechanisms and 
policies in terms of CFs. We are also working on an extension of the above-mentioned Plastik meta-framework CF 

for the specification and policing of real-time properties. Finally, we are investigating the potential of aspect 
oriented systems development techniques in OpenCom-based real-time embedded environments as a more design-

oriented approach to complex system configuration and reconfiguration. 
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