
Proceedings of the
5th MiNEMA Workshop

Middleware for Network Eccentric and Mobile

Applications

11-12 September 2007, Magdeburg, Germany

We thank the European Science Foundation (ESF) for funding and supporting the
5th MiNEMA Workshop in Magdeburg

1

Contents

Table of contents 2

Foreword 4

Organisation 6

Session 1: Streaming and Multicast 8
Building multicast trees in ad-hoc networks,

Raphaël Kummer, Peter Kropf, Pascal Felber . 8
A Gambling Approach to Scalable Resource-Aware Streaming,

Mouna Allani, Benôıt Garbinato, Fernando Pedone, Marija Stamenković 14
Removing Probabilities to Improve Efficiency in Broadcast Algorithms,

Hugo Miranda, Simone Leggio, Lúıs Rodrigues, Kimmo Raatikainen 20

Session 2: P2P Systems and Overlay Networks 26
GossipKit: A Framework of Gossip Protocol Family,

Shen Lin, François Täıani, Gordon Blair . 26
Enabling Cyber Foraging for Mobile Devices,

Mads Kristensen . 32

Session 4: Publish/Subscribe 38
Strategies for implementing Peer-to-Peer Publish/Subscribe with Persistent Events in Wireless Set-

tings, Eugster Patrick, Benôıt Garbinato, Adrian Holzer, Jun Luo 38
Probabilistic Publish/Subscribe in Mobile Ad Hoc Networks,

José Mocito, José Côrte-Real, Lúıs Rodrigues . 44
Predictive Publish/Subscribe for Delay Tolerant Mobile Ad Hoc Networks,

Paolo Costa, Cecilia Mascolo, Mirco Musolesi, Gian Pietro Picco 48

Session 5: Architectures and Frameworks 54
Towards a Peer-to-peer Middleware for Context Provisioning in Spontaneous Networks,

Tuan Dung Nguyen, Siegfried Rouvrais . 54
Semantic Middleware for Designing Collaborative Applications in Mobile Environment,

Lamia Benmouffok, Jean-Michel Busca, Marc Shapiro . 58
Handling membership dynamicity in service composition for ubiquitous computing,

Jeppe Brønsted . 62

Session 6: Wireless Sensor Applications 68
End-to-end middleware for distributed sensor applications,

Nelson Matthys, Sam Michiels, Wouter Joosen, Pierre Verbaeten 68
Using COSMIC – A real world case study combining virtual and real sensors,

Michael Schulze, Sebastian Zug . 74

Index of authors 78

2

3

Foreword

On behalf of the organisation team, and the MiNEMA project, I would like to welcome you to the 5th MiNEMA
Workshop. MiNEMA is an European Science Foundation (ESF) Scientific Programme aiming to bring together
European groups from different communities working on middleware for mobile environments. The programme
intends to foster the definition and implementation of widely recognised middleware abstractions for new and
emerging mobile applications.

This year’s MiNEMA workshop again promises to be extremely interesting, with 13 accepted contribu-
tions from 12 different countries: 10 within Europe (Switzerland, Portugal, UK, Denmark, Germany, Finland,
Belgium, France, the Netherlands, and Italy), and two in North America (USA and Canada). The accep-
ted papers cover a wide range of exciting topics, from Multicast Protocols and Overlay Networks through to
Publish/Subscribe Systems and Wireless Sensor Applications.

I would like to use this place to thank warmly the Programme Committee Members for their dedicated
work, which allowed for a very smooth reviewing process. I would also like to thank the Organisation Team
in Magdeburg for their perfect logistics, with a special mention to Thomas Kiebel for his tremendous support
in all things technical, and in particular for setting up and maintaining the workshop web-site. Also thanks to
Prof. Jörg Kaiser and Prof. Lúıs Rodrigues for their advise and help in arranging the workshop programme.
Last but not least, thanks to the MiNEMA project and the European Science Foundation for providing the
funding for this event.

François Täıani
5th MiNEMA Workshop Programme coordinator

4

5

Organisation

Organisation / Registration

Thomas Kiebel, OvGU-MD, Madgeburg, Germany

Local Arrangements

Michael Schulze, OvGU-MD, Magdeburg, Germany
Sebastian Zug, OvGU-MD, Magdeburg, Germany

Programme Committee

Michael Schulze, OvGU-MD
François Täıani, Lancaster University
Jeppe Brønsted, Aarhus Universitet
Danny Hughes, Lancaster University
Nico Janssens, Katholieke Universiteit Leuven
Boris Koldehofe, Universität Stuttgart

Sam Michiels, Katholieke Universiteit Leuven
Hugo Miranda, Universidade de Lisboa
Aline Senart, Trinity College Dublin
Alexander Tyrrell, DoCoMo Euro-Labs
Kari Heikkinen, Lappeenronta Univerity

6

7

Building Multicast Trees in Ad-hoc Networks
Raphaël Kummer

raphael.kummer@unine.ch
Peter Kropf

peter.kropf@unine.ch

Computer Science Department
University of Neuchâtel

Emile-Argand 11, CP 158,CH-2009 Neuchâtel, Switzerland

Pascal Felber
pascal.felber@unine.ch

Abstract—Multicast trees are used in a variety of applications,
such as publish/subscribe systems or content distribution net-
works. Existing algorithms for ad-hoc networks typically produce
inefficient multicast trees as they require many nodes to act as
relay even though they are not part of the multicast group. In this
paper, we propose an algorithm for building efficient multicast
trees that strives to minimize the number of non-member relay
nodes and balance their degree. Our algorithm relies upon a
lightweight distributed hash table (DHT), proposed as part of
previous work, to construct and optimize the multicast trees.
We evaluate the efficiency and scalability of our algorithm by
simulations with various network configurations and sizes.

I. INTRODUCTION

Multicast communication is widely used in distributed ap-
plications for efficiently delivering data from one source to a
potentially large group of destinations. Multicast algorithms
typically create and maintain distribution trees spanning all
destinations in a way that messages are transmitted over each
link of the network only once.

In ad-hoc networks, communication between remote nodes
usually requires multiple hops via relay nodes, which com-
plicates the task of building efficient multicast trees. Most
importantly, one must minimize the number of nodes that act
as relays but are not part of the multicast group (i.e., the set
of destinations), as message relaying consumes scarce CPU
cycles and energy.

As centralized tree construction algorithms do not scale well
and offer but limited reliability, we investigate, in this paper,
decentralized strategies where nodes are organized in a peer-
to-peer (P2P) configuration. Broadly speaking, P2P overlay
networks can be divided in two main categories: structured and
unstructured ones. An ad-hoc network spontaneously forms
an unstructured network, where physical proximity defines the
neighborhood of nodes. To disseminate information to a subset
of nodes, a source can simply flood the network. One can
also use flooding to construct shortest-path spanning trees.
Yet, such trees make quite inefficient usage of the (limited)
resources as we will discuss shortly. In general, flooding is
not a good approach for designing scalable algorithms.

Superimposing a structured overlay on top of the physical
network can help to construct efficient multicast trees. This
approach has been used, for instance, by Scribe [10]: multicast
trees are rooted at “rendez-vous nodes” managed by the
underlying Pastry [9] distributed hash table (DHT). Nodes

interested in joining the multicast group route a request via
Pastry and connect to the first member reached on the way
to the rendez-vous. While this strategy is effective in wired
networks, it cannot be easily transposed to ad-hoc or mobile
networks.

In this paper we propose a novel algorithm for building
multicast trees in ad-hoc networks using a lightweight DHT
overlay [7]. The ad-hoc DHT provides efficient lookup in a
logical space by exploiting the physical proximity of peers
and the properties of the wireless broadcast communication
medium. As in Scribe, the DHT is used for localizing the
source of the multicast and one tree is created per source. We
use several techniques to connect joining nodes to an existing
member that is physically close and in the direction of the
source. We propose various extensions to reduce the number
of non-members implicated in the relaying of messages.

We have performed extensive simulations of our algorithm
using different scenarios, but without taking into account
neither mobility nor churn. Results indicate that our algorithm
does produce efficient multicast trees, with a limited number of
non-member relays, and that it scales well to large networks.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. We detail our algorithm in
Section III and present results from experimental evaluation
in Section IV. Finally, Section V concludes.

II. RELATED WORK

Several P2P approaches have been suggested for multicast
in ad-hoc networks. Some use a logical overlay substrate for
source localization while others rely on flooding. We cannot
discuss all approaches due to space limitation (see [3] for a
good survey).

Different logical structures can help tree construction in ad-
hoc networks. MZR [5] relies upon zone routing protocol [6]
to build a multicast tree. The nodes in ZRP define a zone
around them and maintain proactively routes to all nodes
within that zone. A reactive route discovery protocol is used
when the destination is outside the sender’s zone. When a
source has data to multicast, it advertises it to all the nodes
in its zone, then extends the tree to nodes at the border of
other zones. An interested node has to answer to the source
and, when the message reaches a group member, a branch
is created. While the zone structure contains the flooding

8

necessary to build the tree, it still floods the whole network
zone by zone. Its bandwidth and energy requirements are thus
significant. In addition, this protocol doesn’t provide generic
lookup facilities as it is done in our algorithm by the DHT.

XScribe [8] and Georendezvous [2] use a DHT to support
the multicast tree creation. XScribe is based on CrossROAD
[4], a cross layer DHT providing the same features as Pastry,
but based on a proactive routing protocol and with lower
bandwidth requirements. XScribe exploits the DHT routing
capacities to distribute multicast messages. Unlike in our
system, each source has to know all the members of the group
and sends the multicast messages directly to each member by
unicasting messages. Therefore, the approach does not scale
well, nor does it try to optimize resource consumption (by
minimizing the number of relay nodes).

Georendezvous relies on CHR [1], a specialized ad-hoc
DHT that groups nodes in clusters accordingly to their physical
location. The DHT is used to efficiently localize the cell
responsible for a group. The nodes in this cell manage the
membership for the group and forward the multicast to all
the members. Membership management is centralized in a
cell containing multiple nodes, which are also responsible for
distributing multicast messages. Our approach is expected to
produce more efficient multicast trees, with lower energy and
bandwidth requirements, and to offer better scalability.

III. THE TREE CONSTRUCTION ALGORITHM

In ad-hoc networks, multicasting messages to a group of
nodes can be achieved essentially in two different ways. The
first approach relies on flooding to discover a source or to build
a tree, as it is done for example in MAODV [11]. As already
mentioned, this method does not scale well and may lead to
an overload of the network due to the flooding mechanism
applied. Moreover it forces all the nodes in the network to
participate whether they are interested in the content provided
or not. The second approach uses directed search to locate
the data sources and construct the trees, as done for instance
by Scribe [10]. This method is more bandwidth and energy
efficient—two important considerations for mobile devices—
but cannot easily be applied to ad-hoc networks where com-
munication is multi-hop and physical awareness is an essential
consideration.

To construct a multicast tree, we first lookup the data source,
which acts as rendez-vous point for the multicast group. Hence
it is important that data consumers can locate efficiently the
source. As in Scribe, we use a DHT for that purpose because it
provides suitable facilities for efficient lookup (see Figure 1)
without flooding the network and because it scales well to
large number of nodes. While the DHT allows us to easily
localize the source, lookup messages in the overlay do not
follow the shortest path in the underlying ad-hoc network. As
we shall see, this extra level of indirection permits building
better multicast trees because they offer more connection
alternatives to joining nodes. As a result, the tree has less
non-member relays and the average degree remains reasonably
low.

Our algorithm strives to construct multicast trees that use
member nodes as relays. Membership is handled in a de-
centralized way as a joining node might connect to the tree
without the source knowing it. Consequently, the load on the
source is reduced and we can avoid bottlenecks. One tree
is constructed per active data source. We assume best effort
delivery for multicast messages; additional mechanisms could
be easily incorporated to implement reliable delivery.

A. The Distributed Hash Table (DHT)

The ad-hoc DHT used by our multicast tree construction
algorithm consists of a minimalist logical overlay where nodes
are organized into a ring and ordered according to their unique
identifiers. Unlike most others DHTs, we do not maintain long-
range neighbors in the logical space. Instead, long-range links
are spontaneously found during the lookup in the physical
neighborhoods of the traversed nodes.

The DHT maps keys to nodes in the P2P infrastructure and
the logically nearest node on the ring (i.e., in the identifier
space) is responsible for the key. We use this mapping facilities
to identify multicast groups and locate sources. For more
details, we refer the interested reader to [7].

B. The Connection Algorithm

The main principle of the algorithm consists in building
a multicast tree using DHT lookups, and then apply various
optimizations to improve the tree. To join the multicast tree,
a node routes a request to the identifier associated with the
source of the multicast (group identifier). When receiving a
join request on its way to the source, a node checks if it is
member of the group. If that is not the case, it simply forwards
the request to the next node towards the source (according to
the DHT lookup protocol). Otherwise, the current node also
replies to the joining node and proposes itself as parent in the
multicast tree. Thus, the joining node receives, most of the
time, several potential parents (but at least one because the
request is always routed towards the source).

To join the distribution tree as soon as possible, the requester
connects to the first parent it receives. Thereafter, if it receives
further responses from potential parents, it changes only if
(1) the distance to the new parent is shorter than to the old
parent and the new distance to the root is no more than twice
the old distance; or (2) the new parent is at the same distance
as the old one but the distance to the root has shortened. At
the end of the process, the node is connected to the multicast
tree with the node that it considers as being the best parent.

The parent selection method has been designed empirically.
The design of an optimal decision heuristic still remains an
open question.

With this straightforward algorithm, many nodes are con-
nected to the source with direct paths and many non-member
peers are located on the paths from the source to the des-
tinations. We shall now present the methods that we have
developed to improve the tree structure and to reduce the
number of non-member nodes involved in multicasting. In the
three methods presented below, the first one is used during the

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

9

lookup, while the second and third ones rely on information
added by nodes to the multicast message for reorganizing the
tree. These optimizations should be combined for increased
efficiency.

C. Opt. #1: Finding More Potential Parents

The nodes that are not involved in a communication listen
to the requests (radio communications are broadcasted) and
cache some of the gathered information. In particular, a node
listening to a join message will send a response to the requester
if it is a member of the joined multicast group. Listening
to communications is typically a cheap operation as it does
not generate extra messages, yet it often allows to improve
the structure of the tree, as we shall see in simulations. In
particular, listening to messages avoids pathological situations
where two multi-hop requests cross but do not traverse a
common node.

D. Opt. #2: Finding Better Parents

When a message is multicast, it usually traverses several
non-member nodes between a parent and a child in the logical
multicast tree. Two messages from one node to two different
nodes may traverse a certain number of common relays. In
fact, if two messages follow the same physical path, their
destinations are likely to be in the same area of the network.
Consequently, one can inform one of the nodes that the
other one is possibly a better child or parent in the multicast
tree. This optimization is interesting because, by reducing the
distance between parents and children in the tree, we also
reduce the network load.

We propose a solution where no additional messages are
needed. When a node relays a multicast message (uniquely
identified by a group and a message identifier) it memorizes
the group, the message identifier, and the destination address.
If a node receives the same message (same group and message
identifier) intended for another destination, the node adds
the previously memorized address to the message before
forwarding it. If more than one node have an address to add,
only the last one is kept in the message (space overhead is
negligible).

The receiver of a multicast checks if the address of a relay
has been added to the message. If so, the receiver sends a
message to the relay and proposes to become its parent or
its child. A reconfiguration takes place only if (1) the new
parent is better than the previous one according to the criteria
discussed above, and (2) the new parent is not a descendant of
the new child in the multicast tree. This validity check avoids
partitioning the tree and losing the connection with the source.

E. Opt. #3: Removing Redundant Parents

As connections between a node and its children in the
multicast tree are typically multi-hop, it may happen that
a node is both a member of the logical tree as well as a
relay along a multi-hop path between a node and one of its
child. Obviously, the resulting structure is sub-optimal and this

situation should be avoided, as the affected node receives the
same message from more than one parent.

To deal with this situation, a node which detects that it
receives the same message from multiple paths (both as a relay
or as a member of the tree) keeps only one connection with
the closer parent and discards the others. If the node is on
a multi-hop path from a parent to its child, it may need to
disconnect the child from its former parent and add it to its
own children, or it may need to promote itself as new inner
node of the tree along that path.

In either case, one physical path is discarded and the number
of non-member relays is reduced. Moreover, the tree better
maps to the underlying topology and multicast efficiency is
improved.

IV. EXPERIMENTATIONS

To evaluate our multicast tree construction algorithm, we
have extended the experimental system previously used for
testing our ad-hoc DHT [7]. The simulator is divided into
three layers: the routing layer, the DHT, and the multicast
layer. These layers communicate together through dedicated
methods. We assume that the routing protocol (a simplified
version of AODV) is able to process messages faster than the
upper layers and does not represent a bottleneck.

In this paper, we only simulate simple scenarios. A set of
nodes are placed randomly (according to a uniform distribu-
tion) in a rectangular area. As we study only static scenarios
(no mobility nor churn), the position of the nodes does not
change along a simulation. Two nodes are connected with
each other if they are within communication range, defined
by a given radius. We ensure, when placing nodes, that the
resulting graph is connected.

DHT identifiers are randomly assigned to nodes, and a
group identifier (mapped to a single source) is randomly
selected in the same space. We let randomly selected nodes
join that group. We first “warm up” the underlying DHT by
performing several lookups (100 in our tests); this allows the
nodes to populate their routing tables (see [7] for details).
Then, between one and three nodes join the tree at each sim-
ulation step until the desired number of members is reached.
At the same time, multicast messages are sent continuously
every one to five simulation step throughout the tree. We stop
the simulation once the tree structure stabilizes.

We experimented different configurations and network sizes:
• Network size: 1, 000; 2, 500; 5, 000; 10, 000;
• Connectivity: the average number of physical connections

of a node (network density) varies between 13 and 16;
• Multicast members: unless specified, 10% of all nodes

join the tree;
• Warm-up: 100 random lookups are performed in the DHT

before constructing the multicast trees.
Using these configurations, we have evaluated different

versions of the multicast tree construction algorithm:
• Basic: the construction algorithm with no optimizations;
• Opt. #1: during join, member nodes listen and propose

themselves as parent when applicable;

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

10

Logical path
Physical path
End of logical path
Start of logical path
Origin of the request
Destination of the request
Redirection on a cached path

Fig. 1. Path of a request routed by the DHT.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

%
 o

f p
ar

tic
ip

at
in

g
no

de
s

Degree of relays

Basic 1000
Basic 2500
Basic 5000

Opt. #3 1000
Opt. #3 2500
Opt. #3 5000

Fig. 2. Cumulative percentage of members acting as relays as a function
of their degree.

 10

 15

 20

 25

 30

 35

Opt. #3Opt. #2Opt. #1Basic

%
 o

f n
on

-m
em

be
rs

 im
pl

ic
at

ed

Variant of the algorithm

Network with 1000 nodes
Network with 2500 nodes
Network with 5000 nodes

Network with 10000 nodes

Fig. 3. Percentage of non-members implicated as relay.

 2

 4

 6

 8

 10

 12

 14

Opt. #3Opt. #2Opt. #1Basic

A
ve

ra
ge

 #
 s

te
ps

 b
et

w
ee

n
tw

o
m

em
be

rs

Variant of the algorithm

Network with 1000 nodes
Network with 2500 nodes
Network with 5000 nodes

Network with 10000 nodes

Fig. 4. Average number of physical steps separating two group members.

• Opt. #2: when sending messages, we try to identify
common sub-paths and reconnect nodes to better parents;

• Opt. #3: we prevent nodes to receive duplicate messages
when acting both as member and relay in a multicast tree.

We have also experimented with building the tree without
using the DHT. Optimizations are always cumulated in the
presented results (i.e., optimization n also incorporates opti-
mizations m < n.

We are essentially interested in evaluating the tree struc-
tures, the degree of implicated nodes, the number of non-
member nodes required to route packets, as well as the relative
distance between two members. Therefore, we did not provide
a comparative study against other algorithms that mostly focus
on packet loss and delay [8] or path length overhead and
latency [2].

A. Results

We do not study the lookup performances here as it has
been extensively done in [7]. However there is an interesting
fact to notice about the use of the DHT with our multicast
algorithm: although DHT lookups have a sense of direction
and can usually locate a node efficiently, they follow a path

Network size (#peers) 500 1,000 5,000
No-DHT 13% 16% 17.07%
DHT 10.6% 11.25% 12.65%

TABLE I
PERCENTAGE OF NON-MEMBER NODES IMPLICATED IN MULTICAST TREE.

that is longer than direct AODV-like routing and allow joining
nodes to locate better parents for connecting to the tree.
Indeed, as shown in Table I, the tree obtained when using the
DHT is systematically better than without, because it involves
less non-member nodes. Note that the path length increase
introduced by the DHT is small (Figure 1 illustrates a sample
path; refer to [7] for details).

Figure 2 shows the cumulative percentage of group mem-
bers implicated in message relaying as a function of their
degree. Clearly, in the tree produced by our basic algorithm,
less than 30% of the group members participate to the message
distribution. In other words, more than 60% are only leaves.
Moreover, some nodes have quite a high degree (most notably
the source). In contrast, when the tree structure has been

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

11

Fig. 5. Tree built by the basic algorithm. Fig. 6. Tree built by the improved algorithm.

improved by the different methods presented in Section III,
more than 50% of the member nodes help distributing content.
The degree of these relay nodes does not exceed 7 for all the
considered network sizes. Hence, our algorithm contributes to
evenly distribute the load between the nodes.

As a result of the increased number of members relaying
messages, we expect that the number of non-member nodes
acting as relay will decrease. This is confirmed by Figure 3:
we observe a significant improvement, from 23 − 33% non-
member nodes to less than 13% for all network sizes.

Our algorithm builds a tree in which nodes that are physi-
cally close can discover each other and connect by just pas-
sively gathering information as messages are multicast. Thus,
the physical path length between two consecutive members is
small, as demonstrated by Figure 4. Consequently, the tree is
closely mapped to the underlying physical topology.

The effect of our optimizations is visible in Figures 3
and 4, where we observe clear improvements on the physical
distance between group members and on the percentage of
non-members implicated. A more intuitive visualization is
given in Figures 5 and 6, which show the multicast tree
constructed from the same network without and with optimiza-
tions. Clearly, the second tree structure is much more effective
and better maps to the underlying topology.

Finally, one should note that when applying optimizations,
the physical distance between two nodes and the number of
implicated non-members relays are nearly the same for all
the considered network sizes. This supports the claim for the
scalability of our approach.

V. CONCLUSION

Although much work has been done on the problem of
multicast in ad-hoc networks, most of the solutions use some
form of flooding or centralized solutions that are not scalable.
In this paper, we presented an algorithm for the construction
of efficient multicast trees using an underlying ad-hoc DHT
overlay. Our algorithm strives to create trees that involve
as few non-member nodes as possible, with short inter-node

paths and good scalability. Simulation results indicate that our
algorithm meets these objectives in the considered network
settings.

REFERENCES

[1] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. Chr: A
distributed hash table for wireless ad hoc networks. In ICDCSW ’05:
Proceedings of the Fourth International Workshop on Distributed Event-
Based Systems (DEBS) (ICDCSW’05), pages 407–413, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] N. Carvalho, F. Araujo, and L. Rodrigues. Reducing latency in
rendezvous-based publish-subscribe systems for wireless ad hoc net-
works. In ICDCSW ’06: Proceedings of the 26th IEEE International
ConferenceWorkshops on Distributed Computing Systems, page 28,
Washington, DC, USA, 2006. IEEE Computer Society.

[3] X. Chen and J. Wu. Multicasting techniques in mobile ad hoc networks.
CRC Press, Inc., Boca Raton, FL, USA, 2003.

[4] F. Delmastro. From pastry to CrossROAD: CROSS-layer ring overlay for
AD hoc networks. In PERCOMW ’05: Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications
Workshops, pages 60–64, Washington, DC, USA, 2005. IEEE Computer
Society.

[5] V. Devarapalli and D. Sidhu. MZR: a multicast protocol for mobile ad
hoc networks. volume 3, pages 886 – 891, 2001.

[6] Z. Haas. A new routing protocol for the reconfigurable wireless
networks. In IEEE 6th International Conference on Universal Personal
Communications Record, volume 2, pages 562–566, San Diego, CA,
USA, 1997.

[7] R. Kummer, P. Kropf, and P. Felber. Distributed lookup in structured
peer-to-peer ad-hoc networks. In R. Meersman and Z. Tari, editors, On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, volume 4276 of Lecture Notes in Computer Science,
pages 1541–1554. Springer Berlin / Heidelberg, 2006.

[8] A. Passarella, F. Delmastro, and M. Conti. Xscribe: a stateless, cross-
layer approach to p2p multicast in multi-hop ad hoc networks. In
MobiShare ’06: Proceedings of the 1st international workshop on
Decentralized resource sharing in mobile computing and networking,
pages 6–11, New York, NY, USA, 2006. ACM Press.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware
2001 : IFIP/ACM International Conference on Distributed Systems
Platforms, volume 2218 of Lecture Notes in Computer Science, pages
329–350, Heidelberg, Germany, 2001. Springer Berlin / Heidelberg.

[10] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. In Net-
worked Group Communication, pages 30–43, 2001.

[11] E. M. Royer and C. E. Perkins. Multicast operation of the ad-
hoc on-demand distance vector routing protocol. In MobiCom ’99:
Proceedings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking, pages 207–218, New York, NY,
USA, 1999. ACM Press.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

12

X13X

A Gambling Approach to

Scalable Resource-Aware Streaming∗

Mouna Allani† Benôıt Garbinato† Fernando Pedone‡ Marija Stamenković‡

†University of Lausanne ‡University of Lugano

Abstract

In this paper, we propose a resource-aware solu-
tion to achieve reliable and scalable stream diffu-
sion in a unreliable environment. Our solution is
resource-aware in the sense that it limits the mem-
ory consumption (by strictly scoping the knowledge
each process has about the system) and the band-
width available to each process (by assigning a fixed
quota of messages to each process). The underly-
ing stream diffusion algorithm is based on a tree-
construction technique that dynamically distributes
the load of forwarding stream packets among pro-
cesses, based on their respective available band-
widths.
Keywords: large-scale systems, reliable stream-
ing, resource awareness.

1 Introduction
Reliable stream diffusion under constrained envi-
ronment conditions is a fundamental problem in
large-scale distributed computing. Many internet
systems rely on streaming multicast; consequently,
their performace depends on the performance of
the underlying streaming mechanism. Environment
conditions are constrained by the reliability and
the capacity (usually limited) of its components
(nodes and links). Nodes and communication links
can fail, unexpectedly ceasing their operation and
dropping messages, respectively. Moreover, real-
world deployment does not offer nodes and links
infinite memory nor infinite bandwidth. There-
fore, realistic solutions should use local storage and
inter-node communication sparingly, and account
for node crashes and message losses.

In this paper, we investigate the problem of reli-
able stream diffusion in unreliable and constrained
environment from a novel angle. Our approach is
probabilistic: with high probability, all consumers

∗This research is partly funded by the Swiss National Sci-
ence Foundation, in the context of Project number 200021-
108191.

will be reached. The key idea of our solution is to
diffuse streams according to a global propagation
graph. This graph approximates a global tree aim-
ing at the maximum probability of reaching all pro-
cesses and efficient use of the available bandwidth.
The approach is completely decentralized: nodes
build propagation trees, which we call Maximum
Probability Trees (MPTs), autonomously. Sev-
eral MPTs are dynamically composed to achieve a
global graph reaching most (hopefully all) consumer
nodes.

2 Model definition and
Problem statement

We consider an asynchronous distributed system
composed of processes (nodes) that communicate
by message passing. Our model is probabilistic in
the sense that processes can crash and links can lose
messages with a certain probability. More formally,
we model the system’s topology as a graph G =
(Π,Λ), where Π = {p1, p2, ..., pn} is a set of n pro-
cesses and Λ = {l1, l2, ...} ⊆ Π×Π is a set of bidirec-
tional communication links.1 Process crash prob-
abilities and message loss probabilities are mod-
eled as failure configuration C = (P1, P2, ..., Pn, L1,
L2, ..., L|Λ|), where Pi is the probability that pro-
cess pi crashes during one computation step and Lj

as the probability that link lj loses a message during
one communication step.

Given this probabilistic model, the main question
addressed in this paper is the following: how can
we make stream messages reach all consumers with
a high probability, in spite of unreliable processes
and links, and the limited bandwidth and memory
available to each process?

Formally, the limited bandwidth constraint is
modeled as Q = (q1, q2, ..., qn), the set of individ-
ual quotas of messages qi at disposal of each pro-
cess pi to forward one single stream packet. By
defining the different aspects of our model formally,

1That is, we have V (G) = Π and E(G) = Λ; we only
consider systems with a connected graph topology.

1

X14X

we then can say that the tuple S = (Π,Λ, C,Q)
completely defines the system considered in this
paper. In order to take into account the limited
memory constraint, we further assume that each
process has only a partial view of the system rep-
resenting its neighborhood 2. Formally, the lim-
ited knowledge of process pi is modeled with dis-
tance di, which is the maximum number of links
in the shortest path separating pi from any other
node in its known subgraph. That is, distance di

implicitly defines the partial knowledge of pi as
scope si = (Πi,Λi, Ci, Qi). We can now restate
more formally the problem we address in this pa-
per: given its limited scope si, how should process pi

use its quota qi in order to contribute to reach all
consumers with a high probability?

3 A Gambling Approach

Our solution is based on the four-layer architec-
ture pictured in Figure 1. The top layer executes
the Scalable Streaming Algorithm (SSA), which is
responsible for breaking the outgoing stream into
a sequence of messages on the producer side, and
for assembling these messages back into an incom-
ing stream on the consumer side. For multicasting
and delivering a stream packet respectively on the
producer and consumer sides, the SSA layer relies
on the Packet Routing Algorithm (PRA), which is
responsible for routing stream messages through a
propagation graph covering the whole system. This
propagation graph results from the spontaneous ag-
gregation of various propagation trees concurrently
computed by intermediate routing processes. Both
producers and consumers execute the SSA and PRA
layers, while pure routing processes only execute
the PRA layer.

The responsibility for building propagation trees
is delegated to the Propagation Tree Algorithm
(PTA), which in turn relies on the partial view de-
livered by the Environment Modeling Layer (EML).
The latter approximates the environment within
distance di of each process pi. Explaining how envi-
ronment modeling actually works goes beyond the
scope of this paper and can be found in [4]. Finally,
the Unreliable Link Layer (ULL) allows each pro-
cess pi to send messages to its direct neighbors in a
probabilistically unreliable manner.

2This limited view could be quickly approximated with
the environment modeling method presented in [4].

3.1 Packet Routing Algorithm
The packet routing solution, presented in Algo-
rithm 1, consists in disseminating stream messages
through a propagation graph generated in a fully
decentralized manner. This propagation graph re-
sults from the spontaneous aggregation of several
propagation trees. Each propagation tree is in turn
the result of an incremental building process carried
out along the paths from the producer to the con-
sumers. It is important to note however that the
propagation graph itself might well not be a tree.

1: uses: PTA, ULL and EML
2: initialization:
3: r ← ...

4: procedure multicast(m)
5: pt← PTA.incrementPT(({pi}, ∅, {Pi}, {qi}))
6: ~m← optimize(pt)
7: propagate(m, pt, pi, ~m)

8: upon ULL.receive(m, pk, pt, ~m) do
9: if EML.distance(pk, pi) ≥ r then

10: pt← PTA. incrementPT(pt)
11: ~m← optimize(pt)
12: propagate(m, pt, pi, ~m)
13: else
14: propagate(m, pt, pk, ~m)
15: if pi is interested in m then
16: SSA.deliver(m)

17: procedure propagate(m, pt, pk, ~m)
18: for all pj such that link (pi, pj) ∈ E(pt) do
19: repeat ~m[j] times :
20: ULL.send(m, pk, pt, ~m) to pj

Algorithm 1: PRA at pi

On the producer. The routing process starts
with producer pi calling the multicast() primi-
tive (line 4). As a first step, pi asks the PTA
layer to build a first propagation tree pt, using the
incrementPT () primitive (line 5). This primitive is
responsible for incrementing the propagation tree
passed as argument, using the scope of the pro-
cess executing it (here pi). Since pi is the pro-
ducer, the initial propagation tree passed as argu-
ment is simply composed of pi and its associated
information (failure probability Pi and quota qi).
As discussed in Section 3.2, the returned propa-
gation tree pt maximizes the probability to reach
everybody in scope si, based on available quotas.
Process pi then calls the optimize() primitive, pass-
ing it pt (line 6). This primitive is discussed in
details in Section 3.3. At this point, all we need
to know is that it returns a propagation vector ~m
indicating, for each link in pt, the number of mes-
sages that should be sent through that link in order

2

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X15X

to maximize the probability to reach everybody in
scope si. Finally, pi calls the propagate() primi-
tive (line 7), which simply follows the forwarding
instructions computed by optimize(). That is, it
sends stream message m, together with some ad-
ditional information, to the direct neighbors of pi.
As we shall see below, this additional information
is used throughout the routing process to build up
the propagation graph.
On the consumer. When a consumer pi receives
message m, together with the aforementioned in-
formation (line 8), it has first to decide whether to
increment pt before further propagating m (lines 10
to 12), or to simply follow the propagation tree pt
it just received (line 14). The propagation tree pt
should be incremented if and only if the distance
that separates pi from pk, the process that last in-
cremented pt, is greater or equal to r, the incre-
mentation rate. Intuitively, r defines how often a
propagation tree should be incremented as it trav-
els through the propagation graph. The latter then
spontaneously results from the concurrent and un-
coordinated incrementations of propagation trees
finding their ways to the consumers. Finally, pro-
cess pi delivers message m to the SSA layer only if
it is interested in it (lines 15 and 16). If this is not
the case, process pi is merely a router node.

incoming stream

Scalable Streaming Algorithm (SSA)

Environment Modeling Layer (EML)

Propagation Tree Algorithm (PTA)

consumer node

m1
m2
m3

Packet Routing Algorithm (PRA)

getScope()

send(mi)

receive(mi)

deliver(mi)

incrementPT()

Unreliable Link Layer (ULL)

outgoing stream

Scalable Streaming Algorithm (SSA)

Environment Modeling Layer (EML)

Packet Routing Algorithm (PRA)

Propagation Tree Algorithm (PTA)

producer node

m3
m2
m1

Unreliable Link Layer (ULL)

getScope()

multicast(mi)

send(mi)

incrementPT()

Figure 1: Scalable Streaming Architecture

3.2 Propagation Tree Algorithm
The solution to increment propagation trees is en-
capsulated in the incrementPT () primitive, pre-
sented in Algorithm 2. This primitive takes a prop-
agation tree pt as argument and increments it if
needed, i.e., if something changed in the scope of pi

or if pt is different from the propagation tree that
was last incremented (line 6).3 To get an up-to-date

3The conditional nature of this incrementation is moti-
vated by performance concerns: during stable periods of the
system, propagation trees remain unchanged, cutting down
the processing load of incrementing nodes.

view of its scope, pi calls the getScope() primitive
provided by EML (line 5). In order to increment pt,
process pi then builds a local propagation tree lpti,
based on its most up-to-date scope si (lines 7 to 10),
and finally merges lpti with pt (line 11).

To build local tree lpti, process pi first builds a
Maximum Probability Tree (MPT), using the mpt()
primitive (line 9) detailed in Section 3.3. Note that
primitive mpt() increments pt as a whole tree, with
the best branches in scope si, even if some of these
branches are not descendant from pi. Whereas Al-
gorithm 2 is only interested in the subtree rooted
at pi (line 10). This subtree is precisely the lo-
cal tree lpti. Process pi has indeed no way to in-

1: uses: EML
2: initialization:
3: lpti, pti, si ← ∅, ∅, ∅

4: function incrementPT (pt)
5: s← EML.getScope()
6: if pti 6= pt ∨ si 6= s then
7: pti ← pt
8: si ← s
9: mpt← mpt(si, pti)

10: lpti ← subtree of mpt with pi as root
11: return pt ∪ lpti

Algorithm 2: PTA executed by pi

form processes that are not its descendants about
its incrementing decisions, and has no guarantee
that concurrent trees will be incremented coher-
ently with respect to each others. This materializes
the gambling risk taken during the construction of
the propagation graph.

Execution example. Figure 2 illustrates the
propagation tree incrementation process. In this
scenario, the distance defining the scope and the
incrementation rate r are the same for all processes
and equal to 2. Process p1, the producer, builds a
first propagation tree pt1 covering its scope s1; this
tree is pictured in Figure 2 (a) using black links. All
nodes in pt1 that are at a distance r = 2 from p1

have to increment pt1 when they receive it. Pro-
cess p3 being such a node, it calls the mpt() func-
tion, passing it pt1 and its scope s3. This func-
tion adds the gray links pictured in Figure 2 (a)
to pt1 and returns the resulting Maximum Prob-
ability Tree (MPT); this MPT contains the local
propagation tree rooted at p3, i.e., lpt3. The lat-
ter is then extracted from the MPT, merged with
the initial propagation tree pt1 and returned. Fig-
ure 2 (b) pictures the new propagation tree resulting
from the above incrementation process.

3

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X16X

p2 p3 p6 p7

p8p5p4

p1

s1 s3
lpt3

(a) before the return statement

p2 p3 p6 p7

p8p5p4

p1

s1 s3

(b) returned propagation tree

consumersincrementing nodes producer

links added by mtp()propagation tree

Figure 2: Propagation tree incrementation

3.3 Maximum Probability Tree

The concept of Maximum Probability Tree (MPT)
is at the heart of our approach. Intuitively, an
MPT maximizes the probability to reach all pro-
cesses within a scope by using the quotas of these
processes. Before describing how the mpt() function
given in Algorithm 3 builds up an MPT, we first
need to introduce the notions of reachability prob-
ability and reachability functionborrowed from [4].

Reachability probability. The reachability
function, noted R(), computes the probability to
reach all processes in some propagation tree T ,
given a vector ~m defining the number of messages
that should transit through each link of T . We
then define the probability returned by R() as T ’s
reachability probability. Equation 1 below proposes
a simplified version of the reachability function
borrowed from [4]. This version assumes that only
links can fail by losing messages, whereas processes
are assumed to be reliable.4

R(T, ~m) =
|~m|∏
j=1

1− L
m[j]
j with Lj ∈ C(T) (1)

Using R(), we then define the maxR() function
presented in Algorithm 3 (lines 8 to 10), which re-
turns the maximum reachability probability for T .
To achieve this, maxR() first calls the optimize()
function in order to obtain a vector ~m that dis-
tributes the quotas at disposal of processes in T
in order to maximize the latter reachability proba-
bility. It then passes this vector, together with T ,
to R() and returns the corresponding reachability

4Note that this simplification causes no loss of generality;
see [4] for details.

probability.

1: function mpt(S, T)
2: while V (S) 6⊆ V (T) do
3: O ← {lj,k | lj,k ∈ E(S) ∧ pj ∈ V (T) ∧ pk ∈

V (S)− V (T)}
4: let lu,v ∈ O such that ∀lr,s ∈ O :
5: maxR(T ∪ lu,v) ≥ maxR(T ∪ lr,s)
6: T ← T ∪ lu,v

7: return T

8: function maxR(T)
9: ~m← optimize(T)

10: return R(T, ~m)

11: function optimize(T)
12: let ~m : ∀lj ∈ E(T), ~m[j] is the number of

messages to be sent through link lj
13: ~m← (1, 1, · · · , 1)
14: for all ps ∈ V (T) do
15: let Λs ⊂ E(T) : lk ∈ Λs ⇒ (ps, pk) ∈ E(T)
16: if | Λs | > qs then
17: return (0, 0, · · · , 0)
18: while

P
lk∈Λs

~m[k] < qs do
19: let ~mu : (lu ∈ Λs) ∧
20: (∀t6=u ~mu[t] = ~m[t]) ∧
21: (~mu[u] = ~m[u] + 1) ∧
22: (R(T, ~mu)−R(T, ~m) is max)
23: ~m← ~mu

24: return ~m

Algorithm 3: MPT | Building Process

The optimize() function iterates through each
process ps in T and divides individual quota qs

5

in a way that maximizes the probability to reach
direct children of ps (line 14 to 23). For this, func-
tion optimize() allots messages of qs one by one, un-
til all messages have been allocated (line 18 to 23).
That is, in each iteration step it chooses the outgo-
ing link lu from ps that maximizes the gain in prob-
ability to reach all ps’s children in T , when sending
one more message through lu (line 22). When all in-
dividual quotas have been allocated, optimize() re-
turns a vector ~m that provides the maximum reach-
ability probability when associated with T .

MPT building process. The MPT building
process carried out by mpt(), given a scope S and
an initial propagation tree T . This function sim-
ply iterates until all processes in S but not in T
have been linked to T (line 2 to 6). In each it-
eration step, the mpt() function adds the link that
produces a new tree exhibiting the maximum reach-
ability probability (line 5).

5When qs is sufficient to reach all ps’s children in T .

4

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X17X

Execution example. Figure 3 illustrates the
MPT building process on a simple example. In this
example, the initial tree T is composed of only pro-
cess p1. The pictured graph represents s1. During
the first iteration, the algorithm simply chooses the
most reliable outgoing link, i.e., link l1,2 with fail-
ure probability L1,2 = 0.2. At this point, it means
that the entirety of p1’s quota has been allocated
to reach p2. In this example, the quota is identical
for all processes and equal to 3, i.e., ∀pi : qi = 3.
At the beginning of the second step, the algorithm
faces two alternatives: either adding link l1,3 and
splitting the quota of p1 between links l1,2 and l1,3,
or adding link l2,4 and using the entirety of q2, the
quota of p2, to reach p4. These two alternatives
are pictured in Figure 3 as trees T ′ and T ′′ respec-
tively. Based on the result of function maxR(),

0.70.6

0.2

m1,3 = 2

m1,2 = 1
 p2 p1

 p3 p4

 p6 p5 p8

 p7T' =

maxR(T ′) = (1− L
m1,2
1,2)× (1− L

m1,3
1,3) = 0.512

0.70.6

0.2

m2,4 = 3m1,2 = 3
 p2 p1

 p3 p4

 p6 p5 p8

 p7T'' =

maxR(T ′′) = (1− L
m1,2
1,2)× (1− L

m2,4
2,4) = 0.651

Figure 3: Alternative trees of the second iteration

the algorithm chooses to keep T ′′, since it is the
tree that offers the maximum probability to reach
everybody. Note however that this decision implies
adding link l2,4 rather than link l1,2, although the
latter is more reliable.

3.4 Fine tuning via scope di and in-
crementation rate r

Then, since by definition we have that r ≤ di, the
scope of pi, we can say that r and di determine the
tradeoff between memory and computation load.
We already know that as di increases, so does the
memory required by pi to store its scope si. On the
other hand, as r decreases, the computation load
increases because more processes turn out to be in-
crementing nodes. However, a big di also allows for
a big r, meaning that we are trading off computa-
tion load for memory.

4 Final remarks
Several application-level multicast systems based on
a tree have been proposed in the literature. Some
of them define a multicast tree that aims at opti-

mizing the bandwidth use [3, 5]. Others, also deal
with scalability by limiting the knowledge each pro-
cess has about the system [2, 6]. Yet, other systems
aim at increasing robustness with respect to packet
loss [1, 7]. Our approach differs from these systems
in that it targets the three goals simultaneously.
Our propagation structure is build collaboratively
by distributed processes using their respective par-
tial views of system. Reliability is accounted for by
each process when building its local tree. Finally,
bandwidth constraints are considered when defin-
ing how to forward packets along the propagation
graph. Our strategy shares some design goals with
broadcast protocols such as [4]. Both rely on the
definition of a criteria for selecting the multicast-
ing graph. In our strategy, however, we strive to
both decrease packet loss and balance the forward-
ing load.

Differently from more traditional approaches, we
resort to a “gambling approach,” which deliberately
penalizes a few consumers in rare cases, in order
to benefit most consumers in common cases. We
believe that this main open up new directions for
future work on large-scale data dissemination pro-
tocols. Our current work is investigating alternative
gambling algorithms.

References

[1] J. G. Apostolopoulos and S. J. Wee. Unbal-
anced multiple description video communication us-
ing path diversity. In IEEE International Confer-
ence on Image Processing, 2001.

[2] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-
bandwidth multicast in cooperative environments.
In Proceedings of ACM SOP, 2003.

[3] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM Sigmetrics, 2000.

[4] B. Garbinato, F. Pedone, and R. Schmidt. An adap-
tive algorithm for efficient message diffusion in un-
reliable environments. In Proceedings of IEEE DSN,
2004.

[5] J. Jannotti, David K. Gifford, Kirk L. Johnson,
M. Frans Kaashoek, and Jr James W. O’Toole.
Overcast: Reliable multicasting with an overlay net-
work. In Proceedings of OSDI, 2000.

[6] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud,
and A. Vahdat. Using random subsets to build scal-
able network services. In Proceedings of USITS,
2003.

[7] T. Nguyen and A. Zakhor. Distributed video
streaming with forward error correction. In Packet
Video Workshop, 2002.

5

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X18X

X19X

Removing Probabilities to Improve Efficiency in Broadcast Algorithms∗†

Hugo Miranda
University of Lisbon

Simone Leggio
University of Helsinki

Luı́s Rodrigues
University of Lisbon

Kimmo Raatikainen
University of Helsinki

Abstract

The broadcast of a message in Mobile Ad Hoc Networks
requires its retransmission by multiple devices, consuming
both bandwidth and power. In general, broadcast algo-
rithms limit the number of retransmissions but randomly
select the nodes that retransmit. This may adversely af-
fect their performance. This paper presents an alterna-
tive mechanism for node selection in broadcast algorithms.
Evaluation results show that our mechanism can improve
both the cost and the coverage of broadcast operations.

1. Introduction

Due to the decentralised nature of Mobile Ad Hoc
Networks (MANETs), many services, like route discov-
ery [6, 9], reputation systems [8] or code propagation for
sensors [7], require the delivery of some messages to every
node. This operation is commonly referred as a broadcast.
In some cases, the underlying infrastructure may provide
tools to efficiently broadcast messages. This is the case,
for example, of spanning trees provided by multicast rout-
ing protocols for ad hoc networks. This paper will focus on
networks where these tools are not available.

The most common implementation of broadcast is by
flooding the network. In flooding, all nodes retransmit
a broadcast message after receiving it for the first time.
Flooding creates a large number of redundant transmis-
sions. Many nodes receive multiple copies of the message,
each transmitted by a different node. Therefore, it wastes a
non-negligible amount of bandwidth and power. Indepen-
dently of the contribution of each retransmission, it con-
sumes resources at the sender-side. Furthermore, receivers
also spend a non-negligible amount of energy at the recep-

∗The work described in this paper was partially supported by the ESF
under the MINEMA project and by Fundação para a Cîencia e Tecnolo-
gia (FCT) and FEDER under project Probabilistically-Structured Overlay
Networks (P-SON), POSC/EIA/60941/2004.

†An extented version of this paper appeared in the Procs. of the
17th Int’l Symp. on Personal, Indoor and Mobile Radio Communications
(PIMRC’06)

tion [3] and CPU to decide if the message should be retrans-
mitted.

Although the redundant reception of messages cannot be
completely avoided, not all participants should be required
to retransmit. The minimal number of nodes required to
retransmit a broadcast message depends on factors outside
the control of any broadcast algorithm, like the transmission
range of the devices, the location of the source, the size of
the region covered by the nodes or their geographical dis-
tribution. The role of broadcast algorithms is to devise a
subset of nodes to retransmit that simultaneously:i) is min-
imal andii) provides the largest coverage, measured by the
proportion of nodes that receive the message. This paper
describes a broadcast algorithm that uses a novel scheme
for node selection based on the received signal strength in-
dication (RSSI) of the first retransmissions heard by each
node. Evaluation shows that in comparison with algorithms
that perform a random selection of the nodes, our algorithm
either requires a smaller number of nodes to retransmit or
achieves a bigger coverage.

The paper is organised as follows. Section 2 describes
previous work and shows the motivation for the develop-
ment of an alternative algorithm. Our algorithm is described
in Sec. 3. The results of simulations are presented in Sec. 4.
Finally, Sec. 5 summarises the results described in the paper
and highlights some future work.

2. Related Work

Reducing the number of nodes required to retransmit a
broadcast message in a Mobile Ad Hoc Network (MANET)
is not a new subject. In the majority of the algorithms, after
receiving a message for the first time, nodes wait for a small
period of time, hereafter named the “hold period”. The hold
period is used by nodes to collect information about the
propagation of the message. When the timer expires, some
function decides if the node should retransmit, based on the
information collected.

The most simple implementation of this generic algo-
rithm is GOSSIP1(p) [4]. In this algorithm, nodes do not
collect any additional information. Instead, the decisionto
retransmit is solely dictated by a probabilityp, p < 1. A

1

X20X

fundamental limitation of GOSSIP1(p) is that the selection
of an adequate value forp depends of the node’s density: in
regions with a small number of neighbours, message propa-
gation can only be achieved ifp is high. On the other hand, a
high value ofp will result in an excessive number of retrans-
missions when the number of nodes in some neighbourhood
is also high.

To address this problem, different variations of
GOSSIP1(p) have been proposed. In some, all nodes re-
transmit at the early stages of the message dissemination
while in others, nodes increase their probability of retrans-
mission when the number of neighbours is small [4, 2]. We
name all these variations as “probabilistic algorithms”.

The coverage of a transmission is dictated by the trans-
mission power and is independent of the number of re-
ceivers. In “counter-based algorithms”, the primary deci-
sion criterion is the number of retransmissions heard. That
is, nodes use the hold period for counting the retransmis-
sions. The function then decides to retransmit if the number
of retransmissions listened was not sufficient to ensure the
successful propagation of the message. In a popular combi-
nation of the features of “probabilistic” and “counter-based”
algorithms [4, 2], the first decision to retransmit is taken us-
ing a probabilityp. Nodes that decided not to retransmit
enter a second hold period. When this second timer expires,
nodes retransmit if a sufficient number of retransmissions
has not been heard.

Section 4 compares our proposal with two counter-based
algorithms, which, for self-containment, are briefly de-
scribed here. In the “counter-based scheme” [10], after re-
ceiving the first copy of a message, nodes randomly select
the duration of their hold period, during which they count
the number of retransmissions they listen. Nodes decide to
retransmit if the number of retransmissions is below some
predefined thresholdn. A timer for a random delay is also
set in the “Hop Count-Aided Broadcasting” (HCAB) algo-
rithm [5] when the first copy of the message is received.
In HCAB, messages carry an hop count field (HC), incre-
mented at every retransmission. Nodes decide to retransmit
if no retransmission with an HC field higher than the initial
was received.

If all nodes transmit with equal power, a retransmission
can increase between 0% and 61% the space covered by the
previous transmission [10]. The gain increases with the dis-
tance between the two transmitting nodes. Although there
are some variations, all the algorithms surveyed use ran-
domisation to select the nodes that will perform the retrans-
mission. The random selection may be explicit, like in the
“probabilistic algorithms”, or implicit, as in “counter-based
algorithms”. In these algorithms, after receiving a message,
each node chooses a random delay, and decides to retrans-
mit at the end of the delay if some criteria has not been sat-
isfied by previous retransmissions. Therefore, a node that

r r rrr

G S A B C D EF

Figure 1. Deployment and transmission
range of some nodes

randomly selected a smaller delay is more likely to be re-
quired to retransmit.

An important factor to improve the performance of
broadcast algorithms for MANETs and which has been
previously neglected in the literature is the location of
the nodes performing a retransmission with respect to the
source of the previous transmissions. We provide a simple
case study supporting this claim.

Figure 1 represents a region of a MANET with a source
S of a broadcast message and its neighbours. It is assumed
that all nodes transmit with the same power and are capable
of receiving a message if the signal strength at the receiver
is above some minimum threshold. In the figure it is as-
sumed that the transmission range of all nodes isr. The
transmission range of nodesS,B,C andF is represented
by circles.

In this example, retransmissions should be ideally per-
formed by nodesC andF . This subset provides full cover-
age and presents a minimal number of retransmissions: the
message is delivered to nodesA,B,C andF by the first
transmission and nodesC andF could retransmit to deliver
it respectively toD andE, andG. We emphasise that, in
runtime, nodes do not have access to the information re-
quired for following the same rationale presented above.

Applying the algorithms surveyed in the related work to
the scenario depicted in Fig. 1 shows that for all algorithms
the random selection of the nodes may result in either ad-
ditional retransmissions or incomplete coverage. For exam-
ple, note that a retransmission performed by nodeB will not
deliver the message to nodeE. This can only be achieved
with an additional retransmission, to be performed by node
D. Also as an example, we note that nodeE would not re-
ceive the message in the counter-based scheme if nodes are
configured with a threshold of two and nodesA andB are
the first to retransmit.

3. A Power-Aware Broadcasting Algorithm

In this section, we propose a novel algorithm to reduce
the resources consumed by the nodes and the bandwidth re-
quired by broadcasts in MANETs. This is a challenging

2

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X21X

problem because we want to minimise the signalling over-
head and we do not want to enforce the use of special hard-
ware (e.g. nodes are not required to use a GPS receiver to
become aware of their location). Our algorithm only as-
sumes that nodes are able to retrieve the power with which
each message is received. The algorithm, named Power-
Aware Message Propagation Algorithm (Pampa) is distin-
guished from the previous proposals by removing the ran-
domness associated with the decision on the nodes that will
retransmit a message.

3.1. Pampa

The key idea of Pampa is to run a fully distributed al-
gorithm that makes nodes more distant to the source to re-
transmit first, instead of relying on a random selection. In
an ideal environment, and independently of the node’s dis-
tribution, this would ensure that each retransmission would
be providing the highest additional coverage possible, what
would be achieved by the other algorithms only in the frac-
tion of the cases where the more distant node is randomly
selected for retransmission.

In Pampa, when receiving a message for the first time,
nodes store the message and set a timer for a delayd, given
by a functiondelayto be addressed later. During this period,
the node counts the number of retransmissions listened. The
message is transmitted if, when the timer expires, the node
did not listen to a sufficient number of retransmissions.

Central to Pampa is a functiondelaywhich gets the Re-
ceived Signal Strength Indication (RSSI) of a transmission
and outputs a delay. This function is expected to map an in-
creasing distance to the source (corresponding to a smaller
RSSI) in a smaller return value. Because the RSSI will be
different for each node, the functiondelaywill return a dif-
ferent value for each node receiving the same transmission.
Implicitly, the function orders the nodes according to the
distance to the source, with nodes more distant to the source
expiring their timers first. It should be noted that the func-
tion is fully distributed: the algorithm is triggered exclu-
sively by the transmission of the broadcast message and it
does not require any coordination between the nodes. Like
in the “counter-based scheme” [10], the algorithm prevents
excessive redundancy by having nodes to count the number
of retransmissions listened. However, Pampa bias the delay
such that the nodes refraining from transmitting are usually
those that are closer to the source.

Delay Assignment. The selection of a gooddelay func-
tion is key to the performance of Pampa. We estimate that a
delay function that varies linearly with the distance to the
source would provide the best results. However, such a
function would require complex computations unsuitable to
be performed by mobile devices for each received message.

 0

 2

 4

 6

 8

 10

 12

 80 100 120 140 160 180 200 220 240 260

D
el

ay
 (

s)

Distance to the source (m)

delay(rssi)

Figure 2. Function delay

In our tests, we defined a simplerdelay function that
multiply the RSSI by a constantk to return the number
of seconds that the node should wait before retransmitting.
The most adequate value ofk is likely to depend of the
execution scenario. For our simulation environment (Two
Ray Ground propagation model as defined in thens–2net-
work simulator version 2.28) we have found300 × 106 to
be an adequate value for obtaining distinct wait times for
nodes close to each other. The behaviour of the function
delay(rssi) = 300× 106 × rssi is presented in Fig. 2.

As expected, the function follows the logarithmic decay
of the reception power of a message. For short distances,
the function returns excessively large delay values. How-
ever, nodes at these distances from the source have a large
probability of not being required to retransmit. A careful
implementation of the algorithm can free the resources con-
sumed by the messages on hold as soon as the threshold
number of retransmissions is heard.

3.2. Comparison with Related Work

In Pampa, the instant at which each node forwards a mes-
sage is locally determined from its distance to the sender. In
the absence of abnormal effects on the signal propagation,
Pampa assures that the first nodes to perform a retransmis-
sion are those that provide the higher possible additional
coverage. In the example presented in Fig. 1, nodeC would
be the first to retransmit, delivering the message to both
nodesD and E. Although slightly later, nodeF would
also be required to retransmit and therefore, guarantee the
coverage of nodeG. In this example, Pampa requires the
minimal three transmissions for delivering the message to
every node. In addition, nodeE is more likely to receive
the message given that the first retransmission is performed
by the node more distant from the source.

3

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X22X

4. Evaluation

We have implemented the “counter-based scheme” [10],
HCAB [5] and Pampa algorithms in thens–2network sim-
ulator v. 2.28. For the “counter-based” and Pampa, we
tested different thresholds for the number of times that the
same message is received after which a retransmission is
discarded. This threshold is shown as the number following
the name of each algorithm in the captions of the figures.

Each algorithm had some parameters immutable for
all simulations. The maximum random delay used by
the “counter-based scheme” and HCAB was set to0.75s.
Pampa multiplies the RSSI by300× 106.

All simulations are run with 100 nodes. Different node
densities have been experimented by changing the size of
the simulated space. Eight simulated regions were tested
from 250m×250m to2000m×2000m, providing ratios be-
tween625m2/node and40000m2/node. Nodes were con-
figured to emulate a 914MHz Lucent WaveLAN DSSS ra-
dio interface running an IEEE802.11 protocol at 2Mb/s.
Network cards present a transmission range of 250m using
the Two Ray Ground propagation model.

At the beginning of each test, nodes are uniformly de-
ployed over the simulated region. In one set of tests, nodes
do not move for the entire duration of the simulation. These
tests have been named “Speed 0”. In the remaining set,
nodes move using the Random Waypoint Movement Model.
The minimum and maximum speeds are9m/s and11m/s.
Nodes never stop. This set was named “Speed 10”.

For each simulated region and speed, 100 different tests
were defined and experimented with each of the algorithms.
Each test combines different traffic sources and movement
of the nodes. Traffic in each test is composed of 1000 mes-
sages, generated at a pace of one message per second. The
source of each message is selected at random. The size of
each message is 1000 bytes. Each point in the figures pre-
sented below averages the result of the 100 runs.

4.1. Coverage

To compare the efficiency of the algorithms we use
the average of the proportion of the nodes that receive
each message. Figure 3 compares the performance of
the “counter-based scheme” and HCAB algorithms with
Pampa. A comparison between the two plots of the figure
shows that the performance of all algorithms improves with
the movement of the nodes. This behaviour is attributed
to a reduced number of partitions, which results from the
concentration of nodes at the centre of the simulated space,
a well-known effect of the random way-point movement
model [1].

The figure shows that for high densities, all the algo-
rithms are capable of delivering every message to all nodes.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2

count, 1
count, 2

HCAB

(a) Speed 0

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2

count, 1
count, 2

HCAB

(b) Speed 10

Figure 3. Delivery Ratio

As the area of the simulation increases, so does the av-
erage distance between the nodes and the gains provided
by Pampa become more clear. This becomes more evi-
dent in the cases where the message threshold is lower.
For a threshold of one message, the delivery ratio of the
“counter-based scheme” begins to decay at a much faster
pace than Pampa. We attribute this behaviour to the ran-
domness associated with the node selection in the “counter-
based scheme”. In Pampa, the nodes forwarding the mes-
sage have a higher probability of reaching more distant lo-
cations. When the simulated space is of2000m × 2000m
(40000m2/node) network partitions begin to affect mes-
sage dissemination. The benefits of using Pampa can be
more clearly observed in these extreme conditions: for the
same thresholds, Pampa always presents a higher delivery
ratio. The unique node selection criteria of Pampa helps to
have the messages delivered to distant nodes improving its
delivery ratio. HCAB presents a delivery ratio comparable
to the “counter-based scheme” with threshold one.

4.2. Retransmissions

The proportion of nodes that retransmit each broad-
cast message is depicted in Fig. 4. For high densities,

4

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X23X

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
es

sa
ge

s
se

nt
/N

od
e/

B
ro

ad
ca

st

m2/node

pampa, 1
pampa, 2

count, 1
count, 2

HCAB

(a) Speed 0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
es

sa
ge

s
se

nt
/N

od
e/

B
ro

ad
ca

st

m2/node

pampa, 1
pampa, 2

count, 1
count, 2

HCAB

(b) Speed 10

Figure 4. Number of Retransmissions

Pampa does not require more retransmissions than the
count-based scheme with the same threshold. This confirms
that when nodes are closer, the location of the retransmit-
ting nodes loses relevance. For lower densities, Pampa in
general requires more retransmissions than the remaining.
This is justified by the additional coverage it achieves. It
should be noted that in the most advantageous cases, (e.g.
10000m2/node, Speed 0, threshold 1 and20000m2/node,
Speed 0, threshold 2), the additional coverage is achieved
with a similar number of retransmissions.

5. Conclusions

In Mobile Ad Hoc Networks, broadcasting a message to
every node is an operation that consumes a non-negligible
amount of resources at all participants. However, broadcast
is a basic mechanism often required by protocols at different
levels of the network stack. The most simple implementa-
tion of broadcast consists in having each node to retransmit
each message after receiving it for the first time. This im-
plementation, usually referred as flooding, creates a large
redundancy of messages in the network and unnecessarily
wastes resources at the participating nodes.

This paper presented a new algorithm that uses informa-
tion locally available at each node to reduce the redundancy
of the broadcast operation. The novelty of the algorithm,
named Pampa, is the ranking of the nodes according to their
distance to the source. Pampa does not require the exchange
of control messages or specialised hardware.

The algorithm was compared with previous proposals
and it was shown to improve their performance, particularly
in more adverse conditions like sparse networks. In the fu-
ture, we plan to deploy and evaluate Pampa in real wireless
networks to confirm Pampa’s usability in more adverse con-
ditions, for example with the influence of the environment
on the signal strength perceived by each node.

References

[1] C. Bettstetter, G. Resta, and P. Santi. The node distribu-
tion of the random waypoint mobility model for wireless ad
hoc networks.IEEE Trans. on Mobile Computing, 2(3):257–
269, 2003.

[2] V. Drabkin, R. Friedman, G. Kliot, and M. Segal. RAPID:
Reliable probabilistic dissemination in wireless ad-hoc net-
works. Technical Report CS-2006-19, Computer Science
Department, Technion - Israel Institute of Technology, 2006.

[3] L. M. Feeney and M. Nilsson. Investigating the energy con-
sumption of a wireless network interface in an ad hoc net-
working environment. InProcs. of the 20th Annual Joint
Conf. of the IEEE Computer and Communications Societies
(INFOCOM 2001), pages 1548–1557, 2001.

[4] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc
routing. In Procs. of the 21st Annual Joint Conf. of the
IEEE Computer and Communications Societies (INFOCOM
2002), pages 1707–1716, 2002.

[5] Q. Huang, Y. Bai, and L. Chen. Efficient lightweight broad-
casting protocols for multi-hop ad hoc networks. InProcs. of
the 17th Annual IEEE Int’l Symp. on Personal, Indoor and
Mobile Radio Communications (PIMRC’06), 2006.

[6] D. B. Johnson, D. A. Maltz, and J. Broch.Ad Hoc Network-
ing, chapter DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks, pages 139–172.
Addison-Wesley, 2001.

[7] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and main-
tenance in wireless sensor networks. InProcs. of the 1st
USENIX/ACM Symp. on Networked Systems Design and Im-
plementation (NSDI 2004), 2004.

[8] F. Perich, J. Undercoffer, L. Kagal, A. Joshi, T. Finin, and
Y. Yesha. In reputation we believe: query processing in mo-
bile ad-hoc networks. InProcs. of the 1st Annual Int’l Conf.
on Mobile and Ubiquitous Systems: Networking and Ser-
vices (MOBIQUITOUS 2004), pages 326–334, 2004.

[9] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance
vector routing. InProcs. of the 2nd IEEE Work. on Mobile
Computing Systems and Applications, pages 90–100, 1999.

[10] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. The broad-
cast storm problem in a mobile ad hoc network.Wireless
Networks, 8(2/3):153–167, 2002.

5

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X24X

X25X

GossipKit: A Framework of Gossip Protocol Family
Shen Lin, François Taı̈ani, Gordon S. Blair

Computing Department
Lancaster University

Lancaster LA1 4YR, UK
(s.lin6, f.taiani, gordon)@comp.lancs.ac.uk

Abstract—A large number of gossip protocols have been developed in
the last few years to address a wide range of functionalities. So far,
however, very few software frameworks have been proposed to ease
the development and deployment of these gossip protocols. To address
this issue, this paper presents GossipKit, an event-driven framework
that provides a generic and extensible architecture for the development
of (re)configurable gossip-oriented middleware. GossipKit is based on
a generic interaction model for gossip protocols and relies on a fine-
grained event mechanism to facilitate configuration and reconfiguration
and promote code reuse.

1. INTRODUCTION AND PROBLEM STATEMENT

Gossip-based algorithms have recently become extremely popular.
The underlying concept of these algorithms is that individual nodes
repeatedly exchange data with some randomly selected neighbours,
causing information to eventually spread through the system in
a “rumour-like” fashion. Gossip-based protocols offer several key
advantages over more traditional systems: 1) they provide a scalable
approach to communication in very large systems; 2) thanks to the
randomised and periodic exchange of information, they offer self-
healing capacities and robustness to failures; and 3) they are simple
to implement. Because of these benefits, gossip-based protocols have
been applied to a wide range of contexts such as peer sampling
[9], [17], ad-hoc routing [14], reliable multicast [1], [2], database
replication [10], failure detection [11], and data aggregation [12].

Unfortunately, past research has mainly focused on the develop-
ment and evaluation of new gossip protocols. In particular very few
attempts have been made at developing (re)configurable middleware
architectures to support gossip-based systems. T-Man [5] and the
recent work at Bologna [6] are two of the early gossip-dedicated
frameworks that have been proposed in this area. They both rely
on a common periodic gossip pattern to support a variety of gossip
protocols. Although these frameworks can help develop gossip-based
systems to a significant extent, we contend that they only partially ad-
dress the issues faced by the developers of gossip-based applications.
First, the common periodic gossip pattern they rely on only captures
the features of proactive gossip protocols. As such, it does not support
reactive gossip algorithms. Second, these frameworks tend to be
monolithic and as such do not provide a flexible architecture that
is easily extensible. Third, these frameworks do not support runtime
reconfiguration.

This paper introduces GossipKit, a fine-grained event-driven frame-
work we have developed to ease the development of (re)configurable
gossip-based systems that operate in heterogeneous networks such as
IP-based networks and mobile ad-hoc networks. The goal of Gossip-
Kit is to provide a middleware toolkit that helps programmers and
system designers develop, deploy, and maintain distributed gossip-
oriented applications. GossipKit has a component-based architecture
that promotes code reuse and facilitates the development of new
protocols. By enforcing the same structure across multiple and
possibly co-existing protocols, GossipKit simplifies the deployment
and configuration of multiple protocol instances. Finally, at runtime,

GossipKit allows multiple protocol instances to be dynamically
loaded, operate concurrently, and collaborate with each other in order
to achieve more sophisticated operations.

The contributions of this paper are threefold. First, we identify a
generic and modular interaction pattern that most gossip protocols
follow. Second, we propose an event-driven architecture based on
this pattern that can be easily extended to cover a wider range of
gossip protocols. Third, we briefly evaluate how our event-driven
architecture provides a fine-grained mechanism to compose gossip
protocols within the GossipKit framework.

The remainder of the paper is organised as follows. Section 2
discusses related work. Section 3 presents a study of existing gossip
protocols and explains how this study informed the key design
choices of GossipKit. Section 4 gives an overview of GossipKit’s
architecture. Section 5 describes the current implementation of the
GossipKit framework, while an early evaluation is provided in Section
6. Finally, Section 7 concludes the paper and points out future work.

2. RELATED WORK

Two categories of communication frameworks have been proposed
to support gossip protocols: Gossip Frameworks, which explicitly and
directly support gossip-based systems, and Event-driven communica-
tion systems, which tend to be more generic and more flexible. In
this section we analyse the strengths and weaknesses of both of them
from the viewpoint of gossip protocol development.

Gossip frameworks are specifically designed to support gossip
protocols. Typical examples of such framework are T-Man [5] and
the recent work on this topic at Bologna [6]. These two frameworks
assume that most gossip protocols adopt a common proactive gossip
pattern. In this gossip pattern, a peer P maintains two threads. One
is an active thread, which periodically pushes the local state SP to a
randomly selected peer Q or pulls for Q’s local state SQ. The other
is passive, which listens to push or pull messages from other peers.
If the received message is pull, P replies with SP ; if the received
message is push, P updates SP with the state in the message.

To develop a new gossip protocol within this common proactive
gossip pattern, one only needs to define a state S, a method of peer
selection, an interaction style (i.e. pull, push or pull-push), and a
state update method. Many proactive gossip protocols such as peer
sampling service, data aggregation, and topologic maintenance have
been implemented in such Gossip frameworks.

However, the monolithic design of these Gossip frameworks makes
them inadapted to protocols that use a reactive gossip pattern (e.g.
SCAMP [9]) or those implementing sophisticated optimisations such
as feedback based dissemination decision [13] and premature gossip
death prevention [14]. Furthermore, these Gossip frameworks neither
support reconfiguration nor concurrent operation of multiple gossip
protocols at runtime.

Event-driven communication systems aim to provide a flexi-
ble composition model based on event-driven execution. They are

26

developed to support general-purpose communication and but not
specifically for gossip protocols. Examples of such communication
systems are Ensemble [3], Cactus [4] and their predecessors Isis
[7] and Coyote [8]. In these environments, a configurable service
(e.g. a Configurable Transport Protocol) is viewed as a composition
of several functional properties (e.g. reliability, flow control, and
ordering). Each functional property is then implemented as a micro-
protocol that consists of a collection of event handlers. Multiple event
handlers may be bound to a particular event and when this event
occurs, all bounded event handlers are executed.

Event-driven communication systems offer a number of benefits for
developing gossip protocols. First, individual micro-protocols can be
reused to construct families of related gossip protocols (implemented
as services) for different applications instead of implementing a new
service from scratch for each protocol. Second, reconfigurability can
be achieved by dynamically loading micro-protocols and rebinding
event handlers to appropriate events. Finally, the use of event handlers
present a fine-grained decomposition of protocols.

However, event-driven frameworks are known to be notoriously
difficult to program and configure as argued in [16]. In large part,
this is because these frameworks do not by themselves include
any domain-specific features (e.g. interaction patterns and common
structure) for individual protocol types.

In order to address the major shortcomings discussed in this
section, GossipKit adopts a hybrid approach that combines domain-
specific abstraction and the strengths of event-driven architecture.
The remaining sections of this paper present its design and prototype
implementation.

3. GOSSIPKIT’S KEY DESIGN CHOICES

To design GossipKit, we first investigated a number of existing
gossip-based protocols and identified similarities and differences
amongst them. In this section, we report on the results of this study
and present the key design choices we made for GossipKit based
on these results. More precisely we look at three aspects of gossip
protocols: Section 3.1 explains the reason of using domain-specific
interfaces for different types of gossip protocol to interface with
external applications. Section 3.2 presents the common interaction
pattern of gossip protocols that we have observed, and finally Section
3.3 argues the benefits of adopting an event-driven architecture for
our gossip protocol framework.

3.1 Application-dependent Interfaces

As mentioned previously, gossip-based solutions have been pro-
posed for a wide range of distributed applications. Different types
of gossip protocol interact with the external world distinctively. For
instance, a gossip-based routing protocol must provide an interface
for external application systems to trigger the route request that
will be gossiped, whilst a gossip protocol for peer sampling service
needs to provide access to the collected peer samples. From our
experience and analysis, it is unlikely to identify a common generic
interface that can separate gossip protocols from the applications that
utilise them. Instead we proposed to identify a set of generic but
domain-specific interfaces that can each support a family of gossip
protocols in a particular application domain. In order to do so, we
have classified gossip protocols into categories in accordance with
their functionality. This has enabled us to identify a common interface
for gossip protocols within each category that can be used to interact
with their external applications. Through domain-specific common
interfaces, external applications can access various types of gossip
protocols that operate in a single framework. Section 4.1 will describe

the mapping between these domain-specific interfaces and control
logic in detail.

3.2 Common Interaction Pattern

Although different types of gossip protocols provide divergent
interfaces to external applications, we have found that, internally,
they all follow the same interaction pattern. This common interaction
pattern can be captured using a modular approach and combines the
proactive gossip pattern that has been identified in [5] and [6], with
the reactive gossip patterns observed on gossip protocols such as [9]
and [14]. This common interaction model is shown in Fig. 1. In this
figure, the modules involved in the interaction are presented as boxes,
and interactions between modules as arrowed lines. The direction of
the arrows indicates which module initiates the interaction, and the
labels show in which sequence these interactions take place.

Fig. 1. Common Interaction Model

Initially, a gossip dissemination can either be raised periodically
(e.g. a periodic pull or push of gossip message), or upon a receipt
of an external request (e.g. an ad-hoc routing protocol requesting a
reactive gossip protocol such as [14] to gossip a route request). These
two interactions are represented as 1a and 1b in Fig. 1, respectively.

The second phase prepares the gossip action. Some gossip pro-
tocols may use various policies to decide whether to gossip at the
current situation (2a). For instance, a reactive gossip protocol may
decide not to gossip the same message twice or forward the message
with a given probability. If a decision is made to forward the gossip
message, the protocol instance must then select the peers it wishes
to gossip with (2b). In addition, many gossip protocols will need to
decide which content is to be gossiped (2c). In particular, a proactive
gossip protocol typically requires to retrieve the gossip content from
its local state if it needs to send periodically its state (push-style
gossip) or reply to a request of its state (pull-style gossip). An
example of gossip content could be the temperature sensed by each
peer.

The third phase is gossip dissemination. It utilises the underlying
network to send gossip messages to the selected peers (3).

Finally, on receipt of a gossip message from the network, a gossip
protocol may react in three different ways, depending on the type of
the received message: 1) it might forward the message to peers that
it knows (4a) and this may involve the interactions in phase 2 (2a, 2b
and 2c); 2) it might respond with its own state (4b) and similarly this
can involve the interactions in phase 2; and 3) it might extract the
state contained in the message and merges with its own state (4c).

Note that this overall interaction model can be invoked recursively
— each module presented in Fig. 1 can itself be implemented as a
gossip protocol that follows the interaction model. For instance, the
Peer Selection module can be a gossip-based peer sampling service
protocol.

In practice, various gossip protocols may be composed from
completely different implementations of modules in Fig. 1, and these

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

27

coarse-grained modules can hardly be reused. In order to enable
optimal reuse, the framework allows each module to be composed
from a variety of finer-grained micro-modules.

More precisely, we have noticed that five modules (Gossip, Peer
Selection, Gossip Decision, Gossip Content, and State) in Fig. 1 can
often be decomposed into finer-grained and reusable micro-modules.
Each individual micro-module implements a distinct algorithm, and
different combinations of these micro-modules can form modules
with more sophisticated behaviours. Consider the example presented
in Fig. 2. This example shows three gossip-decision policies used in a
gossip-based ad-hoc routing protocols (Gossip1(p), Gossip2(p, k),
and Gossip3(p, k, p1, n)) [14]. Instead of being implemented as
independent coarse-grained decision modules, these three decision
strategies can reuse the same three fine-grained micro-modules.

Fig. 2. Various Gossip Decision modules realised by different composition
of micro-modules

More precisely, Gossip1, Gossip2, and Gossip3 differ by how
they decide whether to forward the received routing request message
(i.e. they require different versions of the Gossip Decision module):
Gossip1 forwards the message with probability p; Gossip2 is the
same as Gossip1 except that it forwards the message with probability
1 in the fist k hops; and Gossip3 is the same as Gossip2 except
that it forwards message with probability p1 > p if it has less than
n neighbouring peers.

These three different gossip decision strategies can be implemented
by different combination of the three fine-grained Gossip Decision
micro-modules shown on Fig. 2. Gossip1 can directly use micro-
module A as its Gossip Decision module; Gossip2’s Gossip Decision
module can be viewed as a composition of micro-module A and B by
evaluating the return values of these two micro-module using boolean
operation OR to obtain the decision for forwarding the message; and
Gossip3’s Gossip Decision module can be composed from micro-
module A, B, and C in the same way as Gossip2 does.

3.3 Event-driven Architecture

The common interaction pattern of gossip protocols we have just
presented serves as the basis for our architecture design. Based on the
study of gossip protocols, it is clear that a generic system architecture
should satisfy the following two criteria.

First, our architecture should allow micro-modules to be easily
configured and implement the various modules found in our com-
mon interaction pattern. This requirement can be fulfilled using
event-driven frameworks such as Ensemble and Cactus. In these
frameworks, micro-modules (e.g. Gossip Decision micro-modules
shown in Fig. 2) can be viewed as event handlers that are bound to
certain events, and the arbitrary composition of micro-modules can
be simplified to uniform event-bindings. For instance, to compose
a Gossip Decision module, Gossip Decision micro-modules can be

bound to events raised by Gossip modules (Gossip Decision module
is invoked by Gossip module as shown in Fig. 1). The Gossip module
then evaluates the return values of the invoked Gossip Decision
micro-modules using boolean operation OR, so as to obtain the
decision for forwarding the message. Furthermore, one can simply
change the event-bindings to obtain a different composition of micro-
modules.

Second, the architecture should be easily extensible to support
new gossip protocols on the basis of the common interaction pattern
shown in Fig. 1. This is because our interaction pattern is based on
the study of typical and representative gossip protocols. It does not
cover however all existing gossip algorithms. New gossip protocols
may require extra modules and interactions beyond the common
interaction pattern. Therefore, it is important that the system archi-
tecture allows new modules and interactions to be added onto the
pattern. This issue can be addressed by using event-driven systems.
In an event-driven system, interactions between event handlers can
be achieved through passing events and hence, minimises the explicit
references between modules as argued in [8]. As a consequence, our
framework can be easily extended by plugging in new micro-modules
(i.e. event handlers) and reconfiguring the event binding to support
new interaction patterns.

From the above analysis, we have therefore chosen an event-
driven architecture for our framework in order to easily configure
the composition of micro-modules and to improve extensibility of
the common interaction model in Fig. 1. The details of the resulting
architecture are presented in Section 4.

4. GOSSIPKIT’S ARCHITECTURAL OVERVIEW

Our architecture consists of five components as shown in Fig. 3.
In the figure, an interaction between two components is represented
as a pair of connected interface and receptacle. The API components
implement the domain-specific interfaces described in Section 3.1.
The remaining components realise the common interaction pattern
described in Section 3.2. The remainder of this section discusses
these components and their interactions in detail.

Fig. 3. GossipKit Architecture

4.1 API Components

API components aim to uncouple the gossip protocols implemented
by the framework from external applications. Each type of API
component provides a generic interface for external applications to
access a particular category of gossip protocols. When an interface of
an API component is triggered by the connected external application,
it raises an event to the event handler registry. Fig. 4 provides an
example of how API component interacts with external applications.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

28

Fig. 4. Interaction of API Component with External Application

This figure shows the API component for peer sampling service
protocols. This API component provides an IGetPeers interface
for external application or other API components to retrieve peer
information collected by the local peer. When IGetPeers is invoked
(operation 1 in Fig. 4), the API component generates a GetPeers event
to the event handler registry (operation 2). On receiving this event,
the registry executes the proper event handler to handle the GetPeers
event (operation 3, see section 4.3 below). The event handler then
retrieves the peer sampling information stored locally, and returns
the information to the API component as the event handling result
(operation 4 and 5). Finally, the API component provides the peer
sampling information to the external application as the return value
of the IGetPeers interface (operation 6).

4.2 Periodic Trigger Component

The periodic trigger component is optional in the framework. It is
only loaded when the framework is used to support proactive gossip
protocols. This component periodically dispatches events to trigger
specific event handlers that perform different styles of gossiping,
such as pull, push or pull-push. The event-dispatching period (the
gossip frequency) is predetermined at deployment phase, and can be
reconfigured at runtime.

4.3 Event Handler Registry

The event handler registry serves as a broker between event
handlers and event producers (components that raise events). The
event handler registry maintains a table that records event handler
IDs with their associated events (i.e. events that an event handler
can handle). When an event handler’s IHandleEvent interface is
connected to the registry, the registry’s table records the events bound
to the event handler. The event handler registry also provides an
IHandleEvent interface to event producers to trigger the events. On
the invocation of an event, the event registry finds and executes the
registered event handlers that are bound to this particular event type.

It is worth pointing out that the IHandleEvent interface can
also be used by the event handlers themselves. This allows events
raised internally within an event handler to be handled by others,
thus providing a consistent event-based environment and facilitating
interoperability between different gossip protocols.

4.4 Event Handler Plugins

As mentioned in Section 3.3, we considered modules that can
be further decomposed to finer-grained micro-modules (i.e. Gossip,
Peers Selection, Gossip Decision, Gossip Content, and State in Fig.
1) to be developed as a collection of event handlers. This is reflected
by the event handler plugins in Fig. 3. In the figure, multiple
micro-modules belonging to each particular module are designed
as event handler plugins that are contained in the event handler
plugin collection. Micro-modules for the Gossip module and the State
module can be invoked by the event handler registry to handle events
generated by the periodic trigger component, the API components,
and the network component (see below). Micro-modules for the

Gossip module can also send messages using the interface provided
by the network component. Furthermore, each micro-module can
invoke the IHandleEvent interface provided by the event handle
registry to interoperate with other micro-modules.

4.5 Network Component

This component provides network level communication to other
components, and as such is responsible both for sending messages
generated by the Gossip module and for delivering message events
received from the network to the event handler registry. Through this
component, gossip protocols within the GossipKit framework can
operate on transport layers such as UDP, TCP, or ad-hoc routing.
The network component can also operate on virtual transport layers
in order to utilise the features provided by various component-based
virtual overlays such as GridKit [19].

5. IMPLEMENTATION

GossipKit’s prototype implementation is based on the Java version
of OpenCom [15], a lightweight, efficient and reflective component
model. Java’s portability enables GossipKit to operate on various
platforms, from desktop computers through to PDA. We implemented
the micro-modules and event handler plugins shown in Fig. 3 as
individual OpenCom components, while we realised events with a
normal Java class. This class contains: (i) a header that identifies the
type of the event, (ii) a body containing data to be handled by the
corresponding event handlers, (iii) a source ID identifying the peer
that generated the event, and (iv) a target ID that defines the target
peer that should receive the event.

It is worth emphasising the implementation of the periodic trigger
component, which can be viewed as a task scheduler that can be
utilised by multiple protocols to perform periodic gossiping with
different frequencies. Its implementation only requires a single Java
thread rather than spawning one thread for each proactive gossip
protocol. If multiple proactive gossip protocols operate concurrently
at runtime, the resource utilisation of the system can be signif-
icantly improved by minimising the use of resource-consuming
multi-threading. This effectively reduces memory usage if GossipKit
operates on mobile devices that are resource constraint.

6. EARLY EVALUATION

We evaluated our GossipKit framework on two categories of gossip
protocols: We implemented three peer-sampling services (SCAMP
[9], PSS [17], and the topologic construction protocol described in
T-Man [5]), and two reliable multicast protocols (Bimodal Multicast
[2], and Lpbcast [1]). In the following, we focus our evaluation on the
reusability of the GossipKit framework (Section 6.1). We then briefly
discuss the configurability and reconfigurability of our framework in
Section 6.2.

6.1 Reusability

We evaluated the reusability of GossipKit using a quantitative
measuring approach suggested in [18]. This approach measures the
size of the Java classes that make up different configurations of com-
ponents. In Fig. 5, the first three configurations indicate the cost of
each individual protocol in the framework (a tick means the protocol
is selected in the configuration). The size of configuring multiple
protocols is measured in Configurations 4-6. These measurements are
compared against the side-by-side measurement of individual proto-
cols. It can be seen that compiled Java code size is reduced by about
33% in Configuration 4 and 5, and 48% in Configuration 6. These
results show that the GossipKit framework does not only promote
code reuse for developing gossip protocols that belong to the same

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

29

category (SCAMP and PPS in Configuration 4 belong to the peer
sampling category), but also for those belong to different categories
(PPS and Bimodal Multicast in Configuration 5). Furthermore, the
evaluation results indicate the reusable quantity increases as more
gossip protocols are deployed in GossipKit (Configuration 6).

Fig. 5. Reusability Measurement.

6.2 Configurability and Reconfigurability

GossipKit offers a common component architecture to simplify the
configuration of gossip-oriented middleware. It does so by providing
module types and connection bindings between modules that remain
the same regardless of the implemented protocols. However, the use
of fine-grained micro-modules in GossipKit’s event-driven architec-
ture can make configuration a time-consuming process. Although
an event-driven architecture simplifies the configuration of micro-
modules into modules as discussed in Section 3.3, the manual
configuration of event bindings for a large number of micro-modules
still remains a time-consuming task, in particular when a user needs
to deploy a number of gossip protocols to operate concurrently within
GossipKit. From our experiences on the development of five gossip
protocols, we have noticed that GossipKit eases the configuration
process for these gossip protocols to a certain level. However, further
study is required to evaluate whether GossipKit can support easy
configuration of a broader range of gossip protocols.

GossipKit supports fine-grained reconfiguration to adapt to envi-
ronmental changes — different protocol behaviours can be achieved
by replacing a simple single component. For instance, a proactive
gossip protocol that provides peer sampling service can be modified
to support number averaging by replacing the stateful event handler,
and the network component that supports communication for multiple
gossip protocols can be replaced by another routing scheme. This
form of component replacement relies on the mechanisms directly
provided by OpenCOM. A detailed discussion of these mechanisms
is however out of the scope of this paper.

7. CONCLUSION AND FUTURE WORK

This paper has presented GossipKit, an event-based gossip protocol
framework. This framework aims to facilitate the development of
configurable and reconfigurable middleware that supports multiple
gossip protocols potentially operating in parallel under different types
of networks. We have presented an early prototype implemented using
a reflective component model (OpenCom), and we have discussed
some of the benefits we have observed when implementing several
gossip protocols with our framework. Our early evaluation indicates
that GossipKit promotes code reuse, simplifies configuration for
deploying gossip protocol middleware, reduces the overhead for
runtime reconfiguration, and minimises the resource usage at runtime
to a certain level.

In the future, we plan to explore a broader range of gossip protocols
in order to identify more domain-specific features and to improve the

genericity of the common interaction model. We are also currently
building a configuration tool to allow users to describe a selection and
composition of micro-modules, and to automatically configure event
bindings of event handlers in order to address the issue discussed
in Section 6.2. Furthermore, we plan to utilise the self-organising
features of gossip protocols to improve GossipKit towards a self-
adaptive framework so that it can automatically reconfigure itself
and adapt to changes in its environment.

REFERENCES

[1] P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P.
Kouznetsov, Lightweight Probabilistic Broadcast. In IEEE International
Conference on Dependable Systems and Networks(DSN2001), July 2001.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu and Y. Minsky,
Bimodal multicast. TR99-1745, May 11, 1999.

[3] R. Renesse, K. Birman, M. Hayden, A. Vaysburd and D. Karr, Building
Adaptive Systems Using Ensemble. Cornell University Technical Report,
TR97-1638, July 1997.

[4] M. Hiltunen and R. Schlichting, The Cactus Approach to Building
Configurable Middleware Services. Proceedings of the Workshop on
Dependable System Middleware and Group Communication (DSMGC
2000), Nuremberg, Germany (October 2000).

[5] M. Jelasity and O. Babaoglu, T-Man: Gossip-based overlay topology man-
agement. In EngineeringSelf-Organising Systems: Third International
Workshop (ESOA 2005), Revised Selected Papers.

[6] O. Babaoglu, Gossiping in Bologna. http://www.cs.cornell.edu/Courses/
cs514/2007sp/UniBo%20Project/Leiden-Gossip.ppt.

[7] K. Birman, A. Abbadi, W. Dietrich, T. Joseph and T. Raeuchle, An
Overview of the ISIS Project. IEEE Distributed Processing Technical
Committee Newsletter. January 1985.

[8] N. Bhatti, M. Hiltunen, R. Schlichting and W. Chiu, Coyote: A System for
Constructing Fine-Grain Configurable Communication Services. ACM
Transactions on Computer Systems, November 1998.

[9] A. Ganesh, A.-M. Kermarrec and L. Massoulie, SCAMP: Peer-to-Peer
Lightweight Membership Service for Large-Scale Group Communication.
In Proc. of the 3rd International workshop on Networked Group Com-
munication, 2001.

[10] D. Agrawal, A. E. Abbadi and R. Steinke, Epidemic algorithms in
replicated databases. In Proc. 16th ACM Symp. on Principles of
Database Systems, 1997.

[11] R. van Renesse, Y. Minsky and M. Hayden, A gossip-style failure-
detection service. In Proc. IFIP Intl. Conference on Distributed Systems
Platform and Open Distributed Processing, 1998.

[12] I.Gupta, R. van Renesse and K.Birman, Scalable fault-tolerant aggrga-
tion in large process groups. In Proc. Conf. on Dependable Systems
and Networks, 2001.

[13] A. Demers, D. Greene, C. Hauser et al. Epidemic algorithms for
replicated database maintenance. In Proc. of the sixth annual ACM
Symposium on Principles of distributed computing, 1987.

[14] Z. Haas, J. Halpern and L. Li, Gossip-based Ad-Hoc Routing. Unpub-
lished. http://citeseer.ist.psu.edu/article/haas02gossipbased.html

[15] M. Clarke, G. Blair, G. Coulson and N. Parlavantzasco An efficient
component model for the construction of adaptive middleware. In Proc.
of IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware). Germany, 2001.

[16] M. Hiltunen, F. Taiani and R. Schlichting, Reflections on Aspects and
Configurable Protocols. The Fifth International Conference on Aspect-
Oriented Software Development (AOSD.06), Bonn, Germany, March 20-
24, 2006, pp.87-98 (12 p.).

[17] M. Jelasity, R. Guerraoui, A.-M. Kermarrec and M. Steen, The Peer
Sampling Service: Experimental Evaluation of Unstructured Gossip-
Based Implementations. Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Toronto,
Canada, 2004, pp. 79-98.

[18] C. Flores-Cortes, G. Blair and P. Grace, A Multi-protocol Framework for
Ad-Hoc Service Discovery. In Proc. of the 4th International Workshop
on on Middleware for Pervasive and Ad-Hoc Computing (MPAC ’06),
co-located with Middleware 2006, Melbourne, Australia, 2006.

[19] P. Grace, G. Coulson, G. Blair et al. GRIDKIT: Pluggable Overlay
Networks for Grid Computing. In Proc.of International Symposium
on Distributed Objects and Applications(DOA), Larnaca, Cyprus, 2004.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

30

X31X

Enabling Cyber Foraging for Mobile Devices

Mads Darø Kristensen
Center for Interactive Spaces, ISIS Katrinebjerg

Computer Science Department, University of Aarhus, Denmark
Email: madsk@daimi.au.dk

Abstract

This paper presents the LOCUSTS framework. The
aim of the LOCUSTS project is to enable easy use
of cyber foraging techniques when developing for
small, resource-constrained devices. Cyber foraging,
construed as “living off the land”, enables resource
poor devices to offload tasks to nearby computing
machinery, thereby enabling the small devices to 1)
save energy and time, 2) take on tasks that would
normally not be possible on such small devices, and
3) co-operate to perform tasks.

This paper is concerned with foraging for processing
power, i.e. remote execution of tasks, and discusses
how distribution and migration of tasks can be done
in a highly mobile environment.

The main contribution of LOCUSTS is the focus
on highly mobile cyber foraging. Here highly mobile
means two things: 1) that the mobile devices are
physically moving through the environment, which
calls for task migration, and 2) that this mobility
moves the devices into unknown environments where
they would still like to be able to perform cyber
foraging, which calls for the use of mobile code.

1. Introduction

In recent years the usage of small mobile devices
has increased dramatically. Today most people own
a mobile phone, many have PDAs, and other forms
of mobile devices, such as electronic gaming devices,
are gaining in popularity. A shared characteristic of
these devices is that they are in some way resource-
constrained devices, if for no other reason then at
least because they are all battery powered. Because of
the scarcity of resources users of mobile devices often
avoid doing resource intensive work when using these
devices, because executing such tasks is very slow
and consumes a disproportional amount of energy.

Cyber foraging, as described by Satyanarayanan [1]
and Balan et al. [2], enables the mobile devices to take
on more resource intensive tasks by leveraging unused
resources on larger computers in the vicinity. Cyber
foraging is foraging for a multitude of resource types
– not just processing power. Among the resources
that could be foraged for is network connectivity or
bandwidth, storage, processing power, and much more.
All of these resource types are equally important in a
cyber foraging scenario. In the present article, however,
only foraging for processing power will be considered.

There are many possible usage scenarios where
cyber foraging can be utilised. Some visions for
pervasive computing calls for wearable computing
devices - i.e. small computing devices that may be
worn by their users like clothes, e.g. see [3]. Users of
such devices are obviously not interested in carrying
around heavy equipment, and these devices must
therefore be as lightweight as possible. This is counter
to the user’s wish to have as powerful a device as
possible. The desired computing power can be added
to these small wearable devices through techniques
such as cyber foraging.

Consider the following scenario: a doctor doing
house calls is wearing a small headset (similar in size
and form to the well-known Bluetooth headsets for
mobile phones). Using this headset he would like to
be able to enter information about his patients into an
electronic journal. This means that the headset is faced
with the difficult task of continuous voice recognition.
The headset is unable to perform this translation
task itself, so instead of performing the actual voice
recognition it merely records the utterances made by
the doctor. Whenever the headset comes within range
of usable computing resources (surrogates) it forwards
some of the recordings to these machines who respond
by returning the translated text. If the surrogate has
an Internet connection it may even be given the
task of updating the patient’s journal directly. After
translation the headset may discard the recording and

X32X

thus free storage for additional recordings.
A notable thing in the preceding scenario is that

the application running on the mobile device works
in two modes; high fidelity and low fidelity, as defined
by Noble et al. in [4]. When no surrogates are
within range the headset simply stores the recordings
(low fidelity), and when surrogates can be used the
recordings are immediately translated into text (high
fidelity). This high/low fidelity aspect is inherent in
all cyber foraging applications – when surrogates are
available high quality work may be done, but this does
not mean that the applications will only work in the
presence of surrogates. For cyber foraging to be usable
a low fidelity setting must also be possible, where the
mobile device itself is running the application, albeit
at a diminished fidelity. In the scenario low fidelity
means that the headset only stores the recordings, but
it would also be possible to ask the mobile device to
do the processing itself, or even to do it in conjunction
with other mobile devices that reside in the doctors
personal area network.

To be able to perform the actions described above
a number of things are needed. First off the mobile
device must be able to monitor the network looking
for any available surrogates. Once found the mobile
device must be able to distribute tasks to surrogate
machines, and, in the case that the user is moving while
tasks are being performed, surrogates must be able to
migrate tasks between each other so that the result may
be returned. These are fairly complex operations, and
it should not be the responsibility of the application
programmer to implement this. LOCUSTS aims to cre-
ate a toolbox so that a developer just needs to mark the
pieces of code that could be distributed, and then the
rest will be taken care of by the framework; distributing
computation to and migrating tasks between surrogates
as needed. Such frameworks have been proposed be-
fore [5] [6], but these approaches have no provisions
for distribution of code or task migration, and as such
they do not consider the high level of mobility and
flexibility that LOCUSTS caters for.

In Section 2 the main challenges faced in cyber
foraging are presented, then, in Section 3, the design
of the LOCUSTS framework is presented and its
architecture is described to show how these challenges
will be met. Related work is discussed in Section 4
and the paper is concluded in Section 5.

2. Cyber Foraging Challenges

There are a number of challenges that must be ad-
dressed when designing a framework for cyber forag-
ing. In this paper only the two challenges most central

for the remote execution of tasks will be discussed:
• Task distribution. How can tasks be delegated

to surrogates, and exactly what should be moved
onto the surrogates.

• Task migration. When mobile devices are using
surrogates the tasks that are distributed to surro-
gates must be migratable – i.e. it must be possible
to move running tasks between surrogates and
also to move a task back to the mobile device.

Apart from these remote execution specific
challenges a number of other challenges are posed as
well in a cyber foraging framework, challenges such
as device discovery, capability announcement, data
staging, etc. These are of course covered in the design
of LOCUSTS, but are not described in any detail here.

One final critical challenge for cyber foraging is
security. Surrogates must execute code on behalf of,
possibly unknown and thus untrusted, mobile devices,
and data must be transmitted over wireless links that
are easy for an eavesdropper to monitor. Finally, the
client must be able to trust that the surrogate actually
performs the task that it is asked to. How can this
be done in a secure manner? A fine balance between
security and flexibility must be found here. A full
description of how this is handled in LOCUSTS is
beyond the scope of this paper.

3. The LOCUSTS Framework

The LOCUSTS framework aims to provision
developers with a complete cyber foraging toolbox
that can ease the process of developing applications
that utilise cyber foraging. In the following the
architecture of LOCUSTS will be briefly described in
Section 3.1, then the chosen approach towards task
distribution is described in Section 3.2. Finally, task
migration is illustrated in Section 3.3.

3.1. Architecture

A simplified view of the current architecture of
LOCUSTS is depicted in Figure 1. The LOCUSTS
daemon is running as a separate process on both client
and surrogate devices, and the individual applications
can communicate with the local LOCUSTS instance. As
shown, a cyber foraging enabled application consists
of some local code, executed by the local device, and
a number of distributable tasks. Whenever a task is
executed, the local LOCUSTS instance is contacted
so that it may find a suitable execution plan. This
execution plan is created by the scheduler which relies
on resource measurements, both local and remote, and

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X33X

Locusts

CF enabled app

Locusts Library

Local
code Tasks

Network Services

Context
manager

Task
processor

Resource
monitorScheduler

Client Surrogate

Locusts Storage
Manager

Locusts

Network Services

Context
manager

Task
processor

Resource
monitorScheduler

Locusts Storage
Manager

Figure 1. LOCUSTS architecture.

in some cases also on storage specific information
such as input availability. When an execution plan has
been derived the task may either be distributed to one
or more surrogates, or it may be handed over to the
task processor for local execution. At the bottom of the
LOCUSTS client is the network services. These enable
the mobile node to do necessary P2P operations such
as peer discovery, network roaming etc. All devices
can choose to act as surrogates and thus the software
running on surrogates and clients is the same. When
operating as a surrogate, a device basically offers
three things: 1) to execute known tasks an behalf of
clients, 2) allowing clients to author new tasks, and
3) full task migration support. Describing these three
subjects fully is out of the scope of this paper, but a
short description is given in the following sections.

The storage manager shown below the LOCUSTS
daemon in Figure 1 provides a simple file system that
can be accessed by tasks executed by LOCUSTS. The
storage manager provides a virtual file system that can
be accessed from within tasks. When executing a task
on the local device, files in this virtual file system sim-
ply point to the local files, but when a task is delegated
for remote execution, the storage managers of the client
and the surrogate are linked, so that remote files may be
read transparently. This small distributed system is kept
as simple as possible and is designed specifically for
the purpose of cyber foraging. It uses on-demand syn-
chronisation of file data to reduce the amount of data
transferred, and has built in support for temporary files
that will only be synchronised if the task is migrated.

3.2. Task Distribution

Task distribution is at the core of cyber foraging; the
delegation of heavy work to surrogates is the whole
idea of cyber foraging. When designing a cyber forag-
ing framework it must be decided exactly what is del-
egated, when it is delegated, and at which granularity.

The question about task granularity is a hard one to
give a definite answer to, since it depends on a number
of factors that may vary from system to system. The
main factors to consider are network bandwidth and
latency, processing power of the mobile device and
the surrogate, the amount of energy used at the mobile
device when communicating with the surrogate, and
the velocity of the mobile device. When delegating
tasks to a surrogate the mobile device needs to send the
task to the surrogate, and likewise the surrogate must
transmit a response back to the mobile device. This
means that data must be transmitted over the wireless
link between the mobile device and the surrogate. It
must be considered whether the cost of this trans-
mission, both in time and energy, is acceptable, i.e.
whether the cost of distributing the task is smaller than
the cost of doing the processing locally. To this end it
makes sense to distribute only larger, longer running
tasks, since the cost of delegating a small task will
exceed the cost of local execution. But what designates
a small task? This will vary from situation to situation
depending on all the factors mentioned above.

To approach this challenge, decisions about when to
distribute a task must be taken dynamically depending
on the current resource availability. This is done by
monitoring resource usage at the client and surrogates
and using this information in the scheduler when
planning future execution. This is also the approach
taken in existing remote execution systems such as
Spectra [5] and Chroma [6]. The LOCUSTS framework
takes the same approach towards task distribution;
monitoring resource usage and dynamically deciding
where and when to distribute tasks. Aside from re-
source monitoring and subsequent planning LOCUSTS
also works with the concept of resizable tasks. A
resizable task is a task that can be solved to different
degrees, in some ways similar to fidelity as introduced
Noble et al. in [4]. But, apart from being able to
solve the task at different fidelities, a resizable task
in LOCUSTS may also be solved to a certain degree,
meaning that a surrogate may choose to solve only
a small fraction of the task before returning the task
to the client. This will normally be done when the
surrogate is subject to timing constrains given by the
client, e.g. if a highly mobile client only allows the sur-
rogate to use one second on the task to make sure that

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X34X

it will receive the answer before going out of range.
Related to this, LOCUSTS also works with the concept
of migratable tasks as will be described in Section 3.3.

The next important question to answer is exactly
what is distributed and how it is done. When a mobile
device is running an application that is capable of
utilising cyber foraging, a part of the application
will always be running locally while other parts may
or may not be distributed to surrogates. Just like
when working with parallelising programs, the task
of preparing a program for distribution requires some
work by the developers of the program. The parts of
the program that can be distributed must be identified
and, possibly, altered to make the distribution possible.

After identifying the parts of a programs that can
be delegated to surrogates a mechanism for actually
distributing these tasks must be found. Existing cyber
foraging systems use RPC for remote execution, and
the surrogates must have the software behind these
RPCs installed prior for the clients to be able to utilise
them. LOCUSTS differs from these systems because it
strives to do away with the need to have anything pre-
installed on surrogates. A task in LOCUSTS is therefore
more than just an RPC invocation, it also contains
the actual source code of the task represented in a
way such that any surrogate, regardless of architecture
etc., will be able to execute it. This means, that the
portions of the code that designate distributable tasks
must be written in a specific, interpreted language
so that it can be moved on to surrogates, and thus
allowing the clients to author new tasks on the
surrogate. Allowing clients to execute unknown code
on surrogates of course leads to an abundance of
security issues that will have to be addressed, but
that is out of the scope of this paper. Currently the
language used for distributable tasks is Python but
other interpreted languages could be used as well.

3.3. Task Migration

Distributing very large tasks increases the benefits
of remote execution, since it helps to diminish the
overhead of sending tasks back and forth. But, in ex-
isting cyber foraging frameworks, working with large
tasks requires the user to stay within range of a specific
surrogate for an extended period of time. To alleviate
this problem, provisions have to be made so that
tasks may span multiple surrogates throughout their
lifetime. The solution to the problem is task migration.
Task migration enables surrogates to move running
tasks to other surrogates or even back on to the mobile
device. Using migration a client no longer needs to
stay within range of a surrogate while performing a

S2S1

S3

S4

S5

MRange

Perform large task

M

Migrate task

t1
t2 M

Returnresult

t3

Figure 2. Migration of a single task. In this scenario
a mobile device M is depicted at time t1, t2, and t3. A
task is initiated on surrogate S2 at time t1, migrated to
S4 at time t2 when M moves out of range, and finally
the result is returned by S4 at time t3.

task, and it is thus possible to distribute larger tasks,
which alleviates the considerable overhead of remote
execution. Task migration is depicted in Figure 2.

The ways that such task migration could be
implemented range from simple surrogate-to-surrogate
proxies to task checkpointing. Both methods are used
in LOCUSTS. Proxies are used in some circumstances
when high speed network connections exist between
surrogates. Take for example the scenario in Figure 2.
The task is initiated at S2 but when M moves out of
range of S2 the task is migrated to S4. If, for some
reason, it makes sense to let S2 keep the task S4

will simply be asked to proxy for S2. In the eyes of
the client M surrogate S4 is the one executing the
task and all communications regarding the task goes
through S4. Alternatively, the task could be moved
entirely to S4. In this case the running task would
be checkpointed by S2 and its code and state sent to
S4. A multitude of factors must be considered when
choosing which kind of migration to use – factors
such as network bandwidth between the surrogates,
current resource usage at the surrogates, checkpoint
size, estimated finish time of the task etc.

This preceding description of task migration touches
lightly on a very complex matter – the full complexity
of task migration and how it is implemented in
LOCUSTS is outside the scope of this papers.

4. Related Work

Remote execution of tasks is a well-studied research
field, but remote execution of tasks done by mobile,
resource constrained devices is less so. Spectra, de-
scribed by Flinn et al. [5], and Chroma, described by
Balan et al. [6], are two related examples of remote ex-
ecution frameworks that consider these factors. These

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X35X

systems include very sophisticated schedulers that try
to dynamically find the best execution plans for a
given task execution. They measure resource usage on
different levels, both at the client, at the surrogates, and
in the network, and thus try to choose the best possible
placement of the tasks. Spectra and Chroma thus solve
many of the problems when using remote execution
in a cyber foraging setting. One shortcoming of these
systems, when considered in the highly mobile usage
scenarios envisioned for the LOCUSTS framework, is
that they do not provide any means for dynamically
distributing the code of the tasks. Surrogates must
therefore be prepared beforehand to enable the execu-
tion of tasks. Furthermore, they do not consider migra-
tion of tasks between surrogates. Likewise, Spectra and
Chroma use the Coda [7] filesystem for data staging,
which, in a highly mobile scenario such as the ones
LOCUSTS aims to support, would be too complicated.

The Coign system, described by Hunt and Scott
in [8], makes distribution of tasks possible without
even altering the source code of the application. But,
as it is also noted by Flinn et al., a little application-
specific knowledge can go a long way when preparing
an application for distribution. In many cases the
inclusion of distribution alters entirely the way to
think about a given program, e.g. it may make sense
to execute parts of an initially linear program in
parallel (possibly even on multiple surrogates). Such
optimisations would be hard to detect for an automated
distribution algorithm. Ideally a cyber foraging
framework should cater for both kinds of distribution,
falling back to automatic distribution when no
instrumented version of an application is available. The
Coign system only works on applications consisting of
Microsoft COM components, and is therefore limited
to distributing applications running on different
versions of Microsoft Windows. This is a big limitation
in a cyber foraging setting where many different kinds
of mobile devices must be supported. Furthermore,
Coign is not a cyber foraging framework – it is only
concerned with the partitioning of applications.

5. Conclusion

This paper presents the LOCUSTS framework.
The LOCUSTS framework extends cyber foraging to
encompass highly mobile foraging for resources in
unknown environments. The focus on unknown, or
unprepared, environments leads to new challenges in
task distribution since unknown code has to be dis-
tributed to untrusted surrogates. The focus on mobility
means that task migration becomes a necessary part

of LOCUSTS. This has to our knowledge not been
studied in detail before in a cyber foraging setting.

LOCUSTS is still a work in progress and much
work and experimentation needs to be done. The most
challenging future questions are: 1) how can code be
distributed safely in an untrusted environment? 2) how
will task migration perform compared to converting
the problems into smaller tasks? 3) Which features
are needed in a minimal distributed file system to
fully support usage in a cyber foraging setting?

Acknowledgements

This paper has been funded by a research grant
from the Danish Research Council for Technology
and Production Sciences.

Furthermore, I would like to thank Niels Olof
Bouvin for proof-reading and providing helpful
insights into the subject matter.

Finally, I would like to thank the anonymous
reviewers for their excellent and very insightful
comments. I hope to have honoured most of their
requests for improvement in this version of the paper.

References

[1] M. Satyanarayanan, “Pervasive computing: vision and
challenges,” Personal Communications, IEEE, vol. 8,
no. 4, pp. 10–17, 2001.

[2] R. Balan, J. Flinn, M. Satyanarayanan,
S. Sinnamohideen, and H.-I. Yang, “The case for cyber
foraging,” in EW10: Proceedings of the 10th workshop
on ACM SIGOPS European workshop: beyond the PC.
New York, NY, USA: ACM Press, 2002, pp. 87–92.

[3] S. Mann, “Wearable computing: a first step toward
personal imaging,” Computer, vol. 30, no. 2, pp. 25–32,
1997.

[4] B. D. Noble, M. Satyanarayanan, D. Narayanan,
J. E. Tilton, J. Flinn, and K. R. Walker, “Agile
application-aware adaptation for mobility,” in SOSP
’97: Proceedings of the sixteenth ACM symposium on
Operating systems principles, vol. 31, no. 5. New York,
NY, USA: ACM Press, December 1997, pp. 276–287.

[5] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing
performance, energy, and quality in pervasive
computing,” Distributed Computing Systems, 2002.
Proceedings. 22nd International Conference on, pp.
217–226, 2002.

[6] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herb-
sleb, “Simplifying cyber foraging for mobile devices.”

[7] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere, “Coda: a
highly available file system for a distributed workstation
environment,” Transactions on Computers, vol. 39,
no. 4, pp. 447–459, 1990.

[8] G. C. Hunt and M. L. Scott, “The coign automatic
distributed partitioning system,” in Operating Systems
Design and Implementation, 1999, pp. 187–200.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X36X

X37X

Peer-to-Peer Strategies for Location-based Publish/Subscribe with Persistent
Events in Wireless Settings

Patrick Eugster1, Benôıt Garbinato2, Adrian Holzer2, Jun Luo3

1 Purdue University, West Lafayette, USA
2 Universit́e de Lausanne, Lausanne, Switzerland

3 University of Waterloo, Ontario, Canada

Abstract

In this paper, we compare two peer-to-peer implementa-
tion strategies for persistent publications in location-based
publish/subscribe. Both approaches use a scoped flood-
ing algorithm to effectively disseminate data through the
network – the first naive alternative propagates only pub-
lished events, while the second smarter approach dissem-
inates subscriptions during awarm up phase and then
routes matching publications with a multisend communica-
tion primitive. We show in preliminary performance evalu-
ations that depending on the applicative scenario, the cost
of the warm up phase cannot be covered and the seemingly
naive approach can outperform the smart one.

1 Introduction

Publish/subscribe programming models offer many char-
acteristics which seem intuitively appealing for bulding ap-
plications involving mobile clients and wireless communi-
cation, i.e., running in MANETs. Several authors have ad-
vocated for publish/subscribe abstractions in these settings.
To address thegeographicdependence of communication
in MANETS, i.e., the fact that nodes move about, these ab-
stractions proposed virtually all include a notion of “loca-
tion context” attached to publications and/or subscriptions
which is logically decoupled from the events themselves
and reflects spatial proximity semantics (e.g., [1, 2, 3, 4]).

The second main characteristic of MANETS is their
chronologicdependence of communication, resulting from
the fact that communication enjoys no wired infrastructure
but has an ad-hoc and thus transient nature.Persistentpub-
lications are a means to address this second dimension of
dependency, consisting in associating explicit lifetimes to
published events rather than propagating these events in a
“fire-and-forget” manner. These criteria go hand-in-hand

with location semantics, since not all nodes in the pre-
scribed perimeter might be reachable at the very moment
of publication. [5, 6] offer such a feature but do not provide
a means to restrict events to a certain proximity if needed.

An issue when implementing such a service is thematch-
ing strategy. Two kinds of approaches have been proposed:
(1) publication-centric approaches [2],1 where only publi-
cations are disseminated and where matching is done on the
subscriber side and, more recently (2) subscription-centric
approaches [7, 8],2 where publishers perform the matching
and route publications using the previously received sub-
scriptions. Intuitively, the former is usually based on un-
conditional flooding and thus tends to congest the network
more. The latter on the other hand, needs a warm up phase
in order to gather routing information.

In this paper, we compare both strategies and try to eval-
uate the performance of both alternatives. To do so, we
present two fully decentralized implementation alternatives
for persistent publications in location-based publish/sub-
scribe, one using a publication-centric strategy and another
one using a subscription-centric strategy. The preliminary
results obtained using a simple network topology, convey
the fact that there are applicative scenarios in which the cost
of the warm-up phase of a subscription-centric approach
cannot be covered by the efficiency of its routing strategy
and where a publication-centric strategy is preferable.

The rest this paper is organized as follows: Section 2
describes the location-based publish / subscribe paradigm
while Section 3 presents the proposed strategies, Section 4
discusses the performance evaluations whereas Section 5
concludes the paper.

1For lower overhead, publications are only valid in a certain range.
2For better scalability, routing is delegated to forwarding nodes.

1

X38X

2 Location-based Publish / Subscribe

With location-based publish/subscribe [1, 2, 3, 4],
matching criteria include dynamic event content as in
industrial-strength solutions for wired settings, but in ad-
dition comprisesgeographical context. With our notion of
context, an event is typically restricted to a defined range
around the publisher (subscriber). This range defines the
publication (subscription) space.3 To be called a location
match, both subscriber and publisher must be located in the
intersection of both spaces. So in order to be called a match,
a publication/subscription couple has to meet both condi-
tions: (1) the location match and (2) the content match.

Persistent publications. In many application scenarios,
subscribers should eventually deliver geographically and
content-wise matching publications even though they might
not be reachable at publication time. To a similar end, con-
ventional publish/subscribe systems, for wired settings, of-
fer some notion of durable subscribers that can be registered
with a topic. Such a subscriber gets notified of publica-
tions that occurred while it was unreachable, as soon as it
comes back online. As there is no notion of topic in LPSS
to restrain “applicability” of events, we introduce persistent
publications to address the issue and allow subscribers that
enter a publication range to deliver previously published
events. Note that unlike the wired system solution, here
a persistent publication is linked to its publisher.

Location-based publication. We represent a publication
p=〈e, h, t,∆t,∆x〉 abstractly as an evente distributed at
time t within a determined geographical range∆x around
the position of a publisher represented by hosth. This de-
limits an area termed thepublication space. An evente
itself is a record of attributes[a0 = v0, ..., ak = vk]. A
publication is valid by default for a predetermined timespan
∆t or until it is explicitly unpublished. Any element of a
publicationp can be accessed by dereferencingp e.g.p.∆x.

Location-based subscription. A subscription is defined
as s=〈h, ∆x,∆e〉 and is a request to receive events pub-
lished by producers located within a determined geograph-
ical range∆x around the position of the nodeh hosting
the corresponding subscriber on host . This delineated area
is known as thesubscription space. Content-based selec-
tion of events can be achieved via anevent template∆e,
which represents a record of attributes alike events them-
selves. The content match condition is met when the pub-
lished event contains at least all attributes specified in the
subscribed event template, and matching values for those.

3We assume that each node has access to its own location via a location
provider such as a GPS receiver for example.

This is similar to what most common content-based pub-
lish/subscribe platforms offer.

3 Peer-to-Peer Location-based Publish / Sub-
scribe Implementation Strategies

In this section, we present two implementation alterna-
tives of the peer-to-peer location-based publish/subscribe
service (LPSS). The first alternative can be characterized
as publication-centricas it only propagates publications
through the network similar to [8, 2]. The second alterna-
tive can be qualified assubscription-centricas it first prop-
agates subscriptions through the network and then routes
matching publications similar to [7]. Our service offers five
primitives:

LPS-PUBLISH(p) - publishes a publicationp.

LPS-SUBSCRIBE(s) - creates a subscriptions.

LPS-UNPUBLISH(p) - removes a persistent publicationp.

LPS-UNSUBSCRIBE(s) - removes a subscriptions.

LPS-STANDUP(p,s) - works as a callback and notifies the
host that a publicationp matches the subscriptions.

Before further detailing the alternatives, we present the
underlying services they rely upon, namely the Scoped
Flooding Service (SFS) and the Multisend Servics (MS).4

Definitions. In the following, we will use the notions of
neighborhoodandgroup. A neighborhood at timet for a
given node denotes the set of peers within the considered
node’s communication range at timet. We distinguish two
types of groups: a publication group for a given publication
at timet represents the set of peers within the corresponding
publication space att and a subscription group for a con-
sidered subscription at timet denotes the set of peers within
the corresponding subscription space at timet.

Scoped Flooding Service (SFS).The Scoped Flooding
Service is used to disseminate messages to all peers within
a defined geographical range of the source and offers two
primitives.

SFS-BROADCAST(m, x, ∆x) - disseminates messagem to
all hosts located within the range∆x of positionx.

SFS-DELIVER(m) - works as a callback and notifies the
host when a messagem is received.

4Note that both SFS and MS use the MAC layer to broadcast messages
over the physical network

2

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X39X

Multisend Servics (MS). The multisend service is a one-
to-many communication abstraction where the sender ex-
plicitly denotes the destinations. Our simple algorithm cre-
ates a route to all destination nodes within a given range
starting with the closest to the sender and finishing with the
furthest away. For the first node the route with the least
communication hops that separates it from the sender is
chosen. All nodes that have to relay the message are added
to a forwarder set and all nodes within the one hop range
from such a forwarder are placed in a set for reached nodes.
Then the route to the next unreached destination is calcu-
lated as the shortest path to the closest forwarder, and the
forwarding and reached nodes are again added to their re-
spective sets and so on. According to its functionality, the
service offers two primitives.

MS-SEND(m, {h1, ..., hn}) - multisends a messagem to
the set of hosts{h1, ..., hn}.

MS-DELIVER(m) - is used as a callback when a message
m is received.

3.1 Publication-centric Solution

Hereafter, we present the publication-centric implemen-
tation of the decentralized LPSS. We detail the two main
primitives provided by the LPSS interface, namely the
LPS-PUBLISH andLPS-SUBSCRIBEprimitives. We also de-
tail theREFRESHtask which is key to event persistency (see
Algorithm 1).

The publication primitive. When a publicationp is cre-
ated,LPS-PUBLISH is called withp as parameter (line 2)
andp is stored in themyPubs set for newly created pub-
lications, until it is either unpublished explicitly through
the LPS-UNPUBLISH primitive, or automatically by the
REFRESHprocess after its time-to-live has elapsed.

The subscription primitive. When a subscriptions is
created, LPS-SUBSCRIBE is called with s as parameter
(line 4) ands is stored in themySubs set which stores
all of the peer’s subscriptions until it is removed by the
LPS-UNSUBSCRIBEprimitive. When a host receives a pub-
lication through theSFS-DELIVER callback, it adds it to
the set of received publications until it is processed by the
REFRESHtask.

The refresh task. This task is executed every∆t and
republishes the peer’s persistent publications with the up-
dated location information (myLoc) to ensure that all sub-
scribers entering the publication space beforep is unpub-
lished will eventually deliver it, discards out-of-date pub-
lications received from other peers, and unpublishes the

peer’s own out-of-date publications (line 9) and matches
all received publications with the peer’s own subscription
stored inmySubs. When a match is found the publication
is delivered using theLPS-STANDUP callback (line 19).

1: usesScoped Flooding Service (SFS)

2: To executeLPS-PUBLISH(p) :
3: myPubs← myPubs ∪ p {addsp to own pub list}

4: To executeLPS-SUBSCRIBE(s) :
5: mySubs← mySubs ∪ s {addss to own sub list}

6: upon SFS-DELIVER(p) do
7: pubs← pubs ∪ p {addsp to received pub list}

8: task REFRESH

9: repeat every∆t
10: for all p ∈ myPubs do {for all created publications}
11: SFS-BROADCAST(p, myLoc, p.∆x) {forwardsp}
12: if p.∆t 6= UNLTD TTL then
13: p.∆t← p.∆t−∆t {decreases the ttl}
14: if p.∆t≤ 0 then {if p is obsolete}
15: myPubs← myPubs\{p} {removesp}
16: for all p ∈ pubs do {for all received publications}
17: MATCH(p) {checks for subscriptions matchingp }
18: pubs← pubs\{p} {removesp }

19: function MATCH(p):
20: for all s ∈ mySubs do {for all of the host’s subscriptions}
21: if LOCATIONMATCH(p, s) and CONTENTMATCH(p, s) then
22: if 〈p, s〉 3 matches then {if the match is new}
23: LPS-STANDUP (p, s){delivers the matching publication}
24: matches← matches ∪ 〈p, s〉 {adds the match}

Algorithm 1. Publication-centric LPSS

3.2 Subscription-centric Solution

Hereafter, we present the subscription-centric implemen-
tation of the decentralized LPSS. Like in the publication-
centric solution, we will detail theLPS-PUBLISH and
LPS-SUBSCRIBEprimitives as well as theREFRESHprocess
(see Algorithm 2).

The publication process. In this alternative the publica-
tion process is the same as in the publication-centric algo-
rithm.

The subscription process. When a subscriptions is cre-
ated,LPS-SUBSCRIBEis called withs as parameter (line 2)
ands is stored in themySubs set for newly created sub-
scription just like in the publication-centric solution. When
a host receives a subscription theSFS-DELIVER callback
is triggered and the subscription is placed in a set for re-
ceived subscriptions until it is processed by theREFRESH

3

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X40X

task. When a match is received, theMS-DELIVER call-
back is called with a messagem as parameter. This mes-
sage contains a publication and a list of matching subscrip-
tions. For every subscription in the hostsmySubs set,
the LPS-STANDUP callback is triggered with the matching
publication-subscription couple as parameter.

The refresh process. This process is executed every∆t
and is in charge of four actions: (1) rebroadcasting the
peer’s subscriptions with updated location information to
ensure that all publishers entering the subscription space
befores is unsubscribed will eventually delivers, (2) dis-
carding out-of-date received subscriptions, (3) unpublish-
ing the peer’s out-of-date publications (line 24) and (4)
matching each of the peer’s publications against all received
subscriptions, and then multisending each such publication
to all nodes with matching subscriptions usingMS-SEND

(line 12).

1: usesLocation Flooding Service (SFS), Multisend Servics (MS)

2: To executeLPS-PUBLISH(p):
3: myPubs← myPubs ∪ p {addsp to the publication list}

4: To executeLPS-SUBSCRIBE(s):
5: mySubs← mySubs ∪ s {addss to own sub list}

6: upon SFS-DELIVER(s) do
7: subs← subs ∪ s {addss to received sub list}

8: upon MS-DELIVER(m) do
9: for all s ∈ m.subs do

10: if s ∈ mySubs then {tests if thes is in own sub list}
11: LPS-STANDUP(s,m.p) {delivers the matching publication}

12: function MATCH(p):
13: m←⊥ {message to send}
14: m.p← p {sets the message’s publication}
15: dests←⊥ {list of destinations}
16: for all s ∈ mySubs do
17: if LocationMatch(p, s) and contentMatch(p, s) then
18: if 〈p, s〉 3 matches then {if the match is new}
19: dests← dests ∪ s.h {addsh to dests}
20: m.subs← m.subs ∪ s {addss to matching sub list}
21: matches← matches ∪ 〈p, s〉 {adds the match}
22: MS-SEND(m, dests) {multisendsm to destinations}

23: task REFRESH

24: repeat every∆t
25: for all p ∈ myPubs do {for all created publication}
26: MATCH(p) {checks for subscription matchingp }
27: if p.∆t 6= UNLTD TTL then
28: p.∆t← p.∆t−∆t {decreases the ttl}
29: if p.∆t≤ 0 then {if p is obsolete}
30: myPubs← myPubs\{p} {removesp}
31: for all s ∈ mySubs do {for all created subscriptions}
32: SFS-BROADCAST(s, myLoc, s.∆x) {forwardss}
33: subs←⊥ {resets the set of received subscriptions}

Algorithm 2. Subscription-centric LPSS

4 Simulation Evaluation

Our performance evaluation is a preliminary study of the
behaviour of our algorithms. Its aim is to evaluate the use-
fulness and relevance of further studying those algorithms.
To do so, we assume a simple grid network topology de-
picted in Figure 1, composed of fixed nodes.

Node n
All nodes within the
technological range of n
(one hop from n).

Neighborhood of n

A grid of nodes h by h, where h
determines the distance in number
of hops from the network center.

Network Topology

Figure 1. Network Topology

Nodes can broadcast messages to their neighbors. In our
topology neighbors are those nodes immediately adjacent
to a certain node in the grid. Also instead of a geographical
range, we use an amount of network hops to determine the
group boundaries. In the following, we first want to quan-
tify the usefulness of scoped flooding in an ad hoc commu-
nication environment compared to standard flooding, then
we are going to compare scoped flooding with our mul-
tisend algorithm to measure the advantages of multisend
without its warm up phase, and finally we want to mea-
sure the expected performance of both of the algorithms
presented in the former section, the first using only scoped
flooding to disseminate publications and the second using
scoped flooding to disseminate subscriptions and multisend
to route matching publications.

4.1 Standard Flooding vs Scoped Flooding

The advantage of scoped flooding over standard flood-
ing in terms of message load is fairly trivial. The more
the flooding is scoped the less messages are unnecessarily
propagated through the network. The number of forwarders
grows exponentially as the range increases following the
equation below:

forwarderNumber = (2 ∗ (range − 1))2 (1)

Furthermore, as scoped flooding avoids flooding the whole
network with every message, it allows a better usage of the
overall bandwidth. For example if two remote nodes, node
A and node B, separated by 10 network hops diffuse infor-
mation to nodes in a range of 4 hops, 2 network partitions
will be created and both A and B will be able to fully use
the respectively available network bandwidth.

4.2 Scoped Flooding vs Multisend

As shown previously, scoped flooding has a definite ad-
vantage over standard flooding in an ad hoc network where

4

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X41X

the communication model implies that messages are tar-
geted at recipients located within a certain geographical
range from the sender. But the performance in terms of
message load obtained with a multisend algorithm are much
better, especially if only a subset of the nodes within a group
must be reached (see Figure 2).5 The cost of multisend is
twofold: (1) the receivers are not anonymous, and (2) the
sender needs to maintain a routing table.

0 20 40 60 80 100
Receivers / Total Nodes (in percent)

0

1000

2000

3000

4000

5000

6000

M
es

sa
ge

 N
um

be
r

Multisend Algorithm
Flooding Algorithm

Figure 2. Flooding vs Multisend.

4.3 Publication-centric vs Subscription-centric

Intuitively, if there are few subscriptions and many pub-
lications, the costly warm up phase will be repaid by the
efficient routing scheme. To quantify the break-even point,
we ran simulations using a fixed number of publications
(100 publications) in a fixed range (40 hops) and we evalu-
ated both alternatives changing the number of subscriptions.
We also evaluated different levels of matching subscriptions
(1%, 10%, 50%, 100%). Our results show that if the number
of publications and subscriptions is equivalent and the num-
ber of matches is very low, both alternatives perform equally
well(partner search senario). And if the number of sub-
scriptions is less than 70% of the publications then the sub-
scriptions centric approach will outperform the publication-
centric one no matter the level of matching (location-based
game senario). But if the subscriptions outnumber publica-
tions, the publication-centric approach is most efficient in
terms of message overhead (emergency message senario).6

5 Conclusion

Finding the right routing scheme for a specific service
is not trivial. In this paper, we showed that two different
solutions can both be efficient depending on the applicative
scenario. In future work, we will thoroughly evaluate these
solutions using mobile ad hoc network simulation tools.

5Network settings: 40 hops range, 1681 nodes
6Such as an ambulance sending messages in a traffic jam.

20 40 60 80 100
Subscriber Number

0

200000

400000

600000

800000

M
es

sa
ge

 N
um

be
r

Publication-centric
Subscription-centric match 100%
Subscription-centric match 50%
Subscription-centric match 10%
Subscription-centric match 1%

Figure 3. Pub-centric vs Sub-centric

References

[1] L. Fiege, F. C. Gaertner, O. Kasten, and A. Zei-
dler, “Supporting mobility in content-based publish/-
subscribe middleware,” inProceedings of the 4th
ACM/IFIP/USENIX International Middleware Confer-
ence (Middleware’03), 2003.

[2] R. Meier and V. Cahill, “Steam: Event-based middle-
ware for wireless ad hoc network.” inProceedings of
the 22nd International Conference on Distributed Com-
puting Systems (ICDCS’02) Workshops, 2002.

[3] C. Sorensen, M. Wu, T. Sivaharan, G. Blair, P. Okanda,
A. Friday, and Duran-Limon, “A context-aware middle-
ware for applications in mobile ad hoc environments,”
in Proceedings of the 2nd Workshop on Middleware for
Pervasive and Ad-hoc Computing, 2004.

[4] P. T. Eugster, B. Garbinato, and A. Holzer, “Location-
based publish / subscribe,” inProceedings of the 4th
International Symposium on Network Computing and
Applications (NCA’05), Cambridge, 2005.

[5] I. Podnar and I. Lovrek, “Supporting mobility with
persistent notifications in publish/subscribe systems,”
in Proceedings of the third International Workshop on
Distributed Event-Based Systems (DEBS’04), 2004.

[6] D. Frey and G.-C. Roman, “Context-aware publish sub-
scribe in mobile ad hoc networks,” inProceedings of
the 9th International Conference on Coordination Mod-
els and Languages (Coordination’07), 2007.

[7] E. Yoneki and J. Bacon, “Distributed multicast group-
ing for publish/subscribe over mobile ad hoc networks.”
in Proceedings of IEEE WCNC’05, 2005.

[8] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca,
and L. Querzoni, “Structure-less content-based routing
in mobile ad hoc networks.” inProceedings of IEEE
ICPS’05, 2005.

5

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X42X

X43X

Probabilistic Publish-Subscribe for Mobile Ad Hoc Networks

José Mocito
U. Lisboa

jmocito@di.fc.ul.pt

José Côrte-Real
U. Lisboa

cortereal@lasige.di.fc.ul.pt

Luı́s Rodrigues
U. Lisboa

ler@di.fc.ul.pt

Abstract

This paper proposes a probabilistic publish-subscribe
approach for Mobile Ad Hoc Networks (MANETs). In our
approach publishing and subscribing are implemented us-
ing random walks in the network. This strategy avoids the
cost of continuously maintaining complex routing structures
that are unstable due to node mobility. While previous re-
search on gossip based publish-subscribe for MANETS as-
sumed the collaboration of all nodes in the network our so-
lution operates on an overlay constructed on top of DSR,
allowing for only a small fraction of the nodes to partici-
pate in the publish-subscribe system.

1. Introduction

The publish-subscribe communication paradigm is a
very powerful tool for designing flexible, reactive and
highly decoupled distributed systems, which makes it well
suited to highly dynamic systems like Mobile Ad Hoc Net-
works (MANETs).

Several solutions for implementing publish-subscribe in-
frastructures have been proposed ranging from structured
and deterministic [5, 8, 1] to unstructured and probabilis-
tic [3]. In the former, participating nodes are organized in
a specific structure (e.g. tree-based) which is then used to
route publications to the respective subscribers. The latter
uses limited subscription information and probabilistic de-
cisions to provide high event delivery with low overhead in
highly dynamic environments.

In this paper we propose a probabilistic publish-
subscribe approach for MANETs which uses random walks
for subscribing and publishing events in the system. In-
spired by previous work [1], our solution benefits from the
existence of routing information provided by a unicast rout-
ing protocol like DSR [4] to aid in the optimization of the
overlay network used for publishing and subscribing. More-
over, by relying on an underlying unicast protocol, our al-
gorithm can be executed in just a small subset of network
nodes, as long as every node executes the routing protocol.

The rest of the paper is organized as follows. In Section 2
we describe the core components of the publish-subscribe
approach. Preliminary experimental results are presented in
Section 3. An overview of open issues regarding our ap-
proach is provided in Section 4. Finally, Section 5 presents
the concluding remarks and outlines future work.

2. Publish-Subscribe Protocol

We now provide a description of the publish-subscribe
protocol. Each participant in the system can be a publisher,
subscriber, forwarder or any combination of the three, and
maintains both an active view AView and a passive view
PView. The purpose of the AView is to store the identi-
fiers of participants to which the current participant can
send/forward messages. The PView works as a backup and
holds identifiers of the remaining participants for which
routing information is available (from DSR).

In order to allow only a subset of network nodes to par-
ticipate in the publish-subscribe system we build an overlay
network on top of DSR that uses the routing table infor-
mation to optimize the links in the network graph. This
can be accomplished by keeping in the PView every partic-
ipant with routing information and performing exchanges
with the AView based in some criteria.

To cope with the highly dynamic environment of
MANETs and to address scalability concerns, our algorithm
uses a probabilistic approach based on random walks [6] to
forward published events to the interested subscribers.

The protocol can be divided into three main components:
overlay network construction and maintenance, event sub-
scription and event publication.

2.1. Overlay Network Construction and
Maintenance

The overlay network is the cornerstone of our proposal.
Its topology will determine the efficiency of the random
walk based publishing and subscribing activities. The path
of an unbiased random walk is usually determined by the
in-degree of participants in the network, i.e. the number

X44X

of incomming connections of each participant. In simplis-
tic terms, participants with higher in-degrees will be visited
by random walks with greater probability than participants
with lower in-degrees.

Also important to the overall performance of the system
is the stretch, i.e. the average ratio of the shortest path la-
tency in the overlay network to the shortest path latency
in the physical network. The goal here is to minimize the
stretch without compromising the topological properties of
the overlay.

2.2. Event Subscription

When a given participant wants to subscribe a certain
type of event it initiates several random walks that contain
the event type. Participants visited by the random walks
store an association between the event type and the sub-
scribing participant. These associations are later used to
forward the events to the respective subscribers. Note that,
because our approach uses DSR as the underlying unicast
primitive no routing information is kept by the publish-
subscribe protocol. Only the address of the respective par-
ticipant is stored.

2.3. Event Publishing

When publishing an event the publisher also initiates
multiple random walks containing the event. Each visited
participant checks its association table for interested sub-
scribers which, if found, will be sent the event.

Because subscribers also participate in the forwarding of
events, if they have information about other subscribers for
the same event, they will also forward it to them.

The rationale behind this approach for event publication
is the fact that random walks will intersect in higher in-
degree participants with greater probability. Therefore, we
can take advantage of this emerging property in order im-
prove the delivery ratio of publications.

3. Preliminary Experimental Results

To quickly assess the benefits of an approach based on
the previous description we performed several preliminary
experiments. To illustrate the rationale behind our proposal
we present two of them.

Both experiments were performed in the NS-2 network
simulator.

In the first experiment 50 nodes were placed randomly in
a 1000x1000 meters area, with a movement model follow-
ing the random waypoint approach, at a speed of 10 m/s.
Every node participates in the publish-subscribe system,
but only one participant publishes and five participants sub-
scribe. Subscriptions are performed by a variable amount

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 9 10 11 12 13

D
el

iv
er

y
 R

at
io

Publish TTL

Subscribe Fanout 6
Subscribe Fanout 7
Subscribe Fanout 8
Subscribe Fanout 9

Figure 1. Delivery ratio in a scenario were
publications are performed at rate of 1 per
second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 9 10 11 12 13

D
el

iv
er

y
 R

at
io

Publish TTL

Subscribe Fanout 6
Subscribe Fanout 7
Subscribe Fanout 8
Subscribe Fanout 9

Figure 2. Delivery ratio in a scenario were
publications are performed at rate of 20 per
second.

(fanout) of random walks with a TTL value of 2. Publica-
tions are performed by two random walks with a variable
TTL.

In Figures 1 and 2 we show the delivery ratio for different
combinations of subscription fanout and publication TTL,
with the publication rate being 1 event per second and 20
events per second, respectively.

As we can see in the first scenario (Figure 1) the delivery
rates range from approximately 60% with a publish TTL
of 4 and a subscription fanout of 6 to approximately 96%
with a publish TTL of 12 and a subscription fanout of 9. In
the second scenario (Figure 2) the delivery rates range from
close to 50% with a publish TTL of 12 and a subscription
fanout of 9 to almost 80% with a publish TTL of 5 and a
subscription fanout of 9.

The performance clearly suffers from the increase in the
publishing rate, which is justified by an increase in the num-
ber of messages in the underlying MANET, resulting in an

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X45X

 0

 1500

 3000

 4500

 6000

 7500

 9000

 10500

 12000

 13500

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

N
u
m

b
er

 o
f

P
u
b
li

ca
ti

o
n
s

Pub/Sub Participant

Figure 3. Distribution of publications across
the participants of the publish-subscribe sys-
tem.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

N
u
m

b
er

 o
f

S
u
b
sc

ri
p
ti

o
n
s

Pub/Sub Participant

Figure 4. Distribution of subscriptions across
the participants of the publish-subscribe sys-
tem.

increase in the packet drop rate. These results illustrate how
the combination of the number of random walks and their
length influence the ability to properly deliver published
events to the respective subscribers.

In the second experiment we studied the impact of ran-
dom walks in the spreading of publication and subscription
information. The simulation consisted of a network with
250 nodes placed in a square of 2000x2000 meters, moving
at 2 m/s following a random waypoint movement model.
Only a fraction of the nodes (50) were made participants
of the publish-subscribe system. The simulation was per-
formed using one participant as a publisher and five other
participants as subscribers. The publish TTL was 13 with
a single random walk and the subscription TTL was 9 with
two random walks.

In this experiment we obtained an average delivery ratio
of 86%. Figures 3 and 4 show the plots for the number of
publications and subscriptions received by each participant,
respectively.

Figure 3 clearly shows a significant bias in the publish-

ing activity, with participants 1 to 5 receiving most of the
publication information. However, Figure 4 shows a more
distributed amount of subscription information, which may
justify the average delivery ratio of only 86%. This indi-
cates that a more biased random walk approach is required
in the subscription phase to ensure a higher ratio of inter-
sections with publication random walks.

4. Open Issues

In the previous sections we described the general behav-
ior of each component of the approach and provided some
experimental results of a preliminary implementation of the
publish-subscribe system. In this section we provide a small
discussion about open issues that we identified in our ap-
proach.

4.1. Overlay Network Quality

As we saw in Section 2, subscription and publication ac-
tivities are performed using random walks. Depending on
the desired outcome of the probabilistic dissemination of
events, we may wish to influence the topology of the over-
lay network to promote a regular or biased topology. The
former case will lead to a more fair scenario, where all par-
ticipants will potentially have similar loads. The latter case
will bias the in-degrees of participants and therefore pro-
mote more load on participants with higher in-degrees. As
we will see later in this section, biasing random walks may
be useful in some situations.

4.2. Mobility

In MANETs node mobility is usually the main source
of topology changes due to sporadic or permanent discon-
nections, or to readjustments in routing paths. Because
our approach is built on top of DSR, topology changes in
the MANET are handled transparently. However, these
changes may have a negative impact on the performance
of the publish-subscribe system, which is built on top of the
overlay. To counter this effect we need a mechanisms that
adapts the overlay topology at run-time.

A way to accomplish this would be for each participant
to periodically compare its views (AView and PView) re-
garding routing information provided by DSR and choose
for its AView the participants that minimize the stretch of
the overlay. This feature can, however, produce clustering
or even partitioning effects in the overlay network, which
would significantly degrade the system’s performance.

Therefore, it is our belief that an overlay maintenance
and optimization strategy must ensure some diversity in
each participant’s AView regarding participants hop-count.
Although it should try to have as much closer participants

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X46X

as possible it must also contain some that are further away
in the underlying MANET to avoid the problems just de-
scribed.

4.3. Load Balancing vs Delivery Ratio

As we have seen in Section 3 a high load on the publish-
subscribe system may produce a decrease in the delivery ra-
tio of the publish-subscribe system. Therefore, using over-
lay topologies that favour load balancing can decrease col-
lisions and contention in the underlying MANET and im-
prove the performance of the overall system. However, ran-
dom walks tend to meet more frequently in biased network
topologies, which would lead to an improved delivery ratio.

Bar-Yossef [2] proposes a method, which is based in self-
loops, to erase the heterogeneity in node degrees. Each node
adds selfloops (connections to itself) until all have the same
degree. This way, a simple random walk would always
sample nodes following an uniform distribution. Moreover,
selfloops are “cheap” in a MANET environment, because
they are done locally and do not require any radio commu-
nication. Other approaches usually use information about
neighboring nodes to bias the forwarding probabilities. This
however, has the disadvantage of requiring additional infor-
mation to be exchanged with neighboring nodes.

A survey of biased random walks for uniform node sam-
pling and selection can be found in [7]. It is our goal to ex-
periment with these approaches to find the one(s) that best
fit our needs.

Although regular network topologies can be useful for
improving load balancing and connectivity, sometimes it
seems reasonable to promote unbalance in order to improve
convergence. For instance, if we increase the in-degree of
a set of nodes, they will be more likely visited by random
walks. Intuitively, this would also improve the ability of
publication random walks to intersect subscription random
walks, as both would visit these nodes with greater proba-
bility than the remaining.

We can have biased random walks either by building an
irregular overlay network, or by tweaking the forwarding
probabilities associated with the random walk. In the for-
mer case, the contact node may provide the means to bias
the AView of the joining node, however either the contact
node is always the same or all the contact nodes must co-
ordinate to agree on which participants will be promoted.
In the latter case neighboring participants may coordinate
with each other, for instance by carefully shuffling views,
to increase the in-degree of specific participants.

5. Conclusions and Future Work

In this paper we have proposed a probabilistic publish-
subscribe approach for Mobile Ad Hoc Networks. Our

proposal has several advantages over previous solutions,
namely the ability to execute on only a subset of nodes
as long as the remaining ones execute DSR, and also the
improved scalability and adaptability because it uses only
probabilistic dissemination. We presented preliminary re-
sults that provide some insight on the issues we need to
address in the final version of our system. Moreover, we
showed how the parametrization of the publish-subscribe
system components may provide adapted behaviors that
favour load balancing or improved delivery ratios.

For future work we intend to do an analysis of the differ-
ent approaches biased and unbiased random walks in irreg-
ular graphs, both formally and experimentally, and develop
an algorithm that makes use of the best approach to pro-
vide a scalable and efficient publish-subscribe protocol for
MANETs.

References

[1] M. Avvenuti, A. Vecchio, and G. Turi. A cross-layer ap-
proach for publish/subscribe in mobile ad hoc networks. In
T. Magedanz, A. Karmouch, S. Pierre, and I. S. Venieris, ed-
itors, Mobility Aware Technologies and Applications, volume
3744 of Lecture Notes in Computer Science, pages 203–214.
Springer, 2005.

[2] Z. Bar-Yossef, R. Friedman, and G. Kliot. Rawms -: random
walk based lightweight membership service for wireless ad
hoc network. In MobiHoc ’06: Proceedings of the seventh
ACM international symposium on Mobile ad hoc networking
and computing, pages 238–249, New York, NY, USA, 2006.
ACM Press.

[3] P. Costa and G. P. Picco. Semi-probabilistic Content-based
Publish-subscribe. In Proceedings of the 25th International
Conference on Distributed Computing Systems (ICDCS05),
pages 575–585, Columbus (OH, USA), June 2005. IEEE
Computer Society Press.

[4] D. A. M. David B. Johnson and J. Broch. Ad Hoc Network-
ing, chapter DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks, pages 139–172.
Addison-Wesley, 2001.

[5] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mo-
bile environment. Wireless Networks, 10(6):643–652, 2004.

[6] L. Lovász. Combinatorics, Paul Erdos is Eighty, volume 2,
chapter Random Walks on Graphs: A Survey, pages 1–46.
Bolyai Society, Keszthely, Hungary, 1993.

[7] V. Vishnumurthy and P. Francis. On heterogeneous overlay
construction and random node selection in unstructured p2p
networks. In Proceedings of the 25th IEEE International Con-
ference on Computer Communications (INFOCOM 2006),
pages 1–12, Barcelona, Spain, Apr. 2006. IEEE.

[8] E. Yoneki and J. Bacon. Distributed multicast grouping for
publish/subscribe over mobile ad hoc networks. In 2005 IEEE
Wireless Communications and Networking Conference, vol-
ume 4, pages 2293–2299, New Orleans, LA, USA, Mar. 2005.
IEEE.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X47X

Predictive Publish/Subscribe for Delay Tolerant Mobile Ad Hoc Networks∗

Paolo Costa
Vrije Universiteit, Amsterdam

The Netherlands
costa@cs.vu.nl

Cecilia Mascolo
University College of London, UK
c.mascolo@cs.ucl.ac.uk

Mirco Musolesi
University College of London, UK
m.musolesi@cs.ucl.ac.uk

Gian Pietro Picco
University of Trento, Italy
picco@dit.unitn.it

Abstract

Many infrastructure-less mobile applications demand the abil-
ity to withstand long-lasting network partitions and disconnec-
tions. Solutions supporting opportunistic communication have
been studied in the context of delay-tolerant mobile ad hoc net-
works. However, they typically assume that the sender determines
the intended recipients, using a unicast or multicast address. In-
stead, several applications require a form of publish/subscribe,
where it is the receiver that specifies the messages it is interested
in; the sender simply injects messages into the network, which
routes them based on their content. Although publish/subscribe
protocols and systems exist for fixed and mobile networks, to the
best of our knowledge no proposal addressed highly partitioned
and intermittently connected MANETs.

In this paper we report about our experience with SOCIAL-
CAST, a routing framework for publish-subscribe that exploits
predictions based on metrics of social interaction (e.g., patterns of
movements among communities) to identify the best information
carriers. The protocol takes into account contextual information
(e.g., connectivity changes) to produce estimates about the net-
work evolution. These estimates are used to forward messages not
only to the intended receivers, but also towards good message car-
riers, i.e., hosts with a high probability to deliver messages across
partitions. We highlight the principles underlying our protocol,
illustrate its operation, and evaluate its performance using a mo-
bility model validated with real mobility traces.

1 Introduction

Imagine an emergency situation (e.g., a fire in a road tun-
nel) where wireless communication supports the activities
of rescue teams. Different team members have different
mobility characteristics. For instance, medical personnel

∗An extended version of this paper is currently under submission and
available as techinical report [7].

are likely to remain stationary for a long time, curing the in-
jured people. Firemen are likely to move more frequently,
although most likely around their assigned area. Supervi-
sors are likely to stay out of immediate emergency areas,
albeit frequently moving between critical zones. Therefore,
team members form highly dynamic mobile ad hoc net-
works (MANETs) that are likely to be intermittently con-
nected and frequently partitioned, due to the relative move-
ment of members and to environmental factors (e.g., differ-
ent connectivity inside and outside the tunnel). Application
messages cannot be delivered along the whole end-to-end
path in one shot, since the links forming this path are not si-
multaneously active. Instead, messages may be stored dur-
ing partitions and forwarded opportunistically when con-
nectivity is restored. For instance, information about the
fact that a path is now safe may be present among firemen
at one end of the tunnel, and it maybe of interest to a medi-
cal personnel. However, the two may be temporary discon-
nected; communication can occur only by relying on hosts
(e.g., supervisors) buffering messages while in the firemen
range, and delivering them opportunistically when in the
range of medical personnel.

The scenario we described can be defined as a delay-
tolerant [9] MANET, a dynamic infrastructure-less network
where groups of hosts can be temporarily or permanently be
partitioned. Applications of this kind of networks cover a
broad spectrum including support for rural networks, inter-
planetary communications, wildlife monitoring, and info-
mobility. Research in the field of delay-tolerant network has
focused on traditional communication paradigms where the
sender knows a priori the intended receivers, and messages
are routed based on their (unicast or multicast) recipient ad-
dress [15]. Nevertheless, many of the applications above—
including the example at the beginning of this paper—call
for a paradigm where the sender does not know who should
receive a message, and is, instead, up to the receiver to spec-

X48X

ify the messages of interest, based on their content.
This form of communication demands for publish-sub-

scribe , where messages injected in the network by senders
are routed by the network towards the interested hosts. Sev-
eral proposals and system exists for publish-subscribe in
fixed networks (e.g., [4, 5, 14]) and, recently, some have
been proposed also for MANETs (e.g., [2,8,12]). However,
to the best of our knowledge, no proposal has yet addressed
the specific characteristics of highly partitioned and inter-
mittently connected MANETs.

In this paper we present a predictive publish-subscribe
protocol called SOCIALCAST, designed to deal with the
aforementioned delay tolerant mobile ad hoc scenarios. In a
nutshell, SOCIALCAST complements the information about
the receivers’ interests with information about the changes
in the context observed by nearby hosts. Our framework is
general enough to encompass a broad definition of context,
e.g., including a host’s residual energy, physical location,
or application-specific data. Kalman filter forecasting tech-
niques [3] are used to predict the future evolution of these
parameters based on previous observations. These predic-
tions are used to estimate which hosts are potentially good
message carriers, i.e., may enable indirect connectivity by
moving into partitions containing subscribers. In some sit-
uations, the forwarding host may actually be a good carrier
as well, and, therefore, buffer the message in the hope of
forwarding it opportunistically later.

2 System Model and Assumptions

We assume a network composed of N hosts. For sim-
plicity of treatment we assume they all have the same capa-
bilities, in particular to store messages in a buffer of maxi-
mum size β. Hosts are mobile and interconnected by wire-
less links. The mobility of a host is determined by the user
carrying it.

A user, and therefore a host, may act as an information
publisher or subscriber1. Publishers and subscribers are in
general not aware of each other. A host subscription iden-
tifies the host’s interest (e.g., “Rugby” or “Computer Sci-
ence”). We assume that each user in the system has at least
one interest. When a message is published (e.g., “Six Na-
tions Results”), it is tagged with the related interest. The
goal of our protocol is to deliver the message to the hosts
with at least one interest matching the one in the message.
As such, delivery is driven by the message content. In this
work we base matching on interests specified as message
topics, but we conjecture that extensions allowing for more
sophisticated and direct matching against the message con-
tent can be easily integrated in our approach.

Key to this work is the assumption that users with com-
mon interests tend to meet with each other more often than

1A host can be, at the same time, a publisher and a subscriber.

with other users. This can be observed in practice in our
everyday life. Examples are people interested in informa-
tion concerning the department where they work, or friends
sharing the same sport interest. In other words, we assume
that the mobility of users is driven by their social behaviour
that, in turn, is determined by their common interests.

Apart from the aforementioned social behaviour, hosts
can move with arbitrary (not necessarily random) directions
and speeds, and in doing so they may cause an arbitrary
number of network partitions. Furthermore, for what con-
cerns communication we rely solely on the basic ability of
a host to communicate within its 1-hop neighbourhood, by
broadcasting a message to all the neighbours or unicasting
it to a specified one.

3 Routing in SOCIALCAST

In this section, we describe the main characteristics of
our routing protocol. This relies on the notion of utility for
the selection of message carriers in order to enable store-
and-forward communication. The utility of a host h with
respect to interest i represents how good of a carrier h is
for messages matching i. The utility values in SOCIAL-
CAST are linked to movement patterns and colocation with
other hosts: as the basic assumption is that hosts which
have the same interests spend time co-located, the SOCIAL-
CAST routing aims at exploiting as carrier for messages
hosts which have been co-located often with the interested
subscribers. The calculation of utilities are described in de-
tail in the next section.

Routing in SOCIALCAST consists of three phases: inter-
est dissemination, carrier selection, and message forward-
ing. The distinction in phases is only for illustration pur-
poses, as in practice each phase is executed one after the
other. The whole sequence is repeated periodically after T
units, without requiring synchronisation across hosts.

During Interest Dissemination, each host broadcasts the
list of its interests to its 1-hop neighbours, along with the
corresponding list of utility values. These are first locally
re-computed based on the current host context before dis-
semination. This information is stored in the routing tables
of the neighbours, and is key in determining message for-
warding decisions. In this phase, the identifiers of the last λ
messages received are also piggybacked on the utility mes-
sage.

During Carrier Selection, the utility of the local host, Ui,
is recomputed for all interests i. This utility Ui is compared,
for each interest i, against the highest among those commu-
nicated by neighbours, say Uh,i as reported by a neighbour
h. If Ui < Uh,i + ε, this means that, for interest i, h is a
better carrier than the local host. ε is an hysteresis threshold
which forbids that the message is bounced back and forward
between hosts with similar fluctuating utilities. Otherwise,

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X49X

the local host is still the best carrier for messages tagged
with i.

During Message Dissemination, the content of the buffer
is re-evaluated against the new subscriptions and utilities,
and messages are forwarded to the interested hosts and/or
the best carrier. A copy of messages matching an interest
i is immediately sent to all neighbours whose subscriptions
contain i. Note how this ensures that nearby interested hosts
receive messages, but does not imply that these also become
a carrier for messages. In other words, messages are deliv-
ered to the application but not inserted in the hosts’ buffer.
Indeed, carrier role (and buffer insertion) are determined by
the outcome of the previous phase. If the local host is still
the best carrier, no action needs be taken. Otherwise, all
messages tagged with i are removed from the local host’s
buffer. and sent to h, the best carrier, where they are in-
serted in its buffer. An issue arises if h is also a subscriber
for i. In this case, the matching messages can be properly
flagged to inform the receiving carrier h that they must be
inserted in its buffer instead of being simply delivered to the
application.

To avoid unnecessary traffic, a message is forwarded
only if the recipient has not previously received that mes-
sage. This can be easily verified by checking the list of
the last λ messages piggybacked during the dissemination
phase. Moreover, to prevent messages from remaining for-
ever in the system, we rely on a time-to-live (TTL) based on
hop counts. Clearly, other solutions are also possible. For
instance, in some applications it could be useful to have the
publisher explicitly specify an expiration time, (e.g., a con-
cert advertisement is useful only before the time it starts).

Based on the protocol we described thus far, Message
Publishing becomes essentially the insertion of a message
into the local buffer. Indeed, our routing protocol works
based on whatever the content of the buffer is, regardless
of how it got inserted in it. Therefore, a message inserted
by a publish operation will be forwarded to the interested
subscribers as well as “moved” to a better carrier, if and
when encountered. To ensure high delivery, a publish op-
eration actually inserts γ copies of the message. Each copy
is routed independently, i.e., whenever a better carrier is en-
countered only one copy is removed from the local buffer
and sent to the new carrier, to ensure that the copies are
spread over time and space across the system. Note that the
publisher is the only host that duplicates messages, and does
so only at publish time. Therefore, at any time the network
contains at most γ copies of the message.

4 Computing Utilities from Context

Many parameters determine if a node is a good message
carrier. A host with a high change degree of connectiv-
ity frequently changes its neighbor set (e.g., because it is

moving, or is stable in a very dynamic area), and enjoys
more forwarding options. The probability of subscriber
co-location is the likelihood of meeting another host sub-
scribed to interest i, thus enabling direct delivery of match-
ing messages. A host’s residual energy indicates if it is go-
ing to stay alive long enough to meet other hosts. Finally,
the free buffer space tells if the host can carry the message
altogether.

Knowledge about the current values of these context at-
tributes is helpful, but only to a limited extent. What really
matters are the values the attributes are likely to assume in
the future. We compute these predicted values using tech-
niques based on Kalman filters [10]. These techniques do
not require the storage of the entire past history of the sys-
tem and are computationally lightweight, making them suit-
able for a resource-scarce mobile setting.

We cannot repeat here the mathematical details involved:
a comprehensive presentation of these techniques is found
in [3]. However, it is fundamental to say how a host com-
putes the input values to the Kalman filter, i.e., the value of
the utility at time t, for which the filter computes the pre-
dicted value at time t + T . Hereafter, we focus only on
change degree of connectivity and probability of subscriber
co-location, because they are the attributes most relevant to
our work. However, the framework is general and open to
inclusion of any other context attribute.

The change degree of connectivity of a host h is

Ucdch
(t) =

|n(t− T) ∪ n(t)| − |n(t− T) ∩ n(t)|
|n(t− T) ∪ n(t)|

(1)

where n(t) is h’s neighbor set at time t. The formula yields
the number of hosts that became neighbors or disappeared
in the time interval [t−T, t], normalized by the total number
of hosts met in the same time interval. A high value means
that h recently changed a lot of its neighbors.

The co-location of h with a subscriber for interest i is

Ucolh,i
(t) =

{
1 if h is co-located with a subscriber for i;
0 otherwise

(2)
A value of 1 means that h has been co-located with sub-
scribers for i at time t.

These values are fed into Kalman filter predictors, which
yield the predictions Ûcdch

and Ûcolh,i
of these utilities at

time t + T . These are then composed into a single utility
value using results from multi-criteria decision theory [11],
as

U rec
h,i = wcdch

Ûcdch
+ wcolh,i

Ûcolh,i
(3)

which represents how good of a carrier h is for messages
matching i. The weights w denote the relative importance
of each attribute and their value depends on the application
scenario. Instead, next we show how we use the utility value
above for routing messages.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X50X

Parameters Default value
Simulation area 4 km× 4 km
Number of hosts 100

Hosts speed [1− 6] m/s
Transmission range 250 m

Percentage of publishers 50 %
Percentage of subscribers 50 %

Publishing interval 60 s
Number of interests 10
Simulation duration 8 hours

wcdc 0.25
wcol 0.75

Buffer size (β) ∞
Number of copies (γ) 3

Retransmission interval (T) 20 s
Hysteresis threshold (ε) 0.2

Figure 1. Simulation parameters

5 Evaluation

In this section we report about the evaluation of Social-
Cast based on a social mobility model. We evaluated the
performance of our protocol using OMNeT++ [1], an open-
source discrete event simulator written in C++.

Mobility Model. Traditionally, mobile wireless networks
simulators assume a mobility model in which hosts move
randomly in the space. This, however, does not suit
our needs: since SOCIALCAST exploits prediction of co-
location and movement, the use of a purely random mobil-
ity model would prevent an effective analysis of the proto-
col. To this end, we adopted the Community based mobility
model [13], characterised by mobility patterns founded on
social networks and validated against real traces provided
by Intel Research [6].

Default Parameters. In real life, people sharing similar
interests happen to be co-located more frequently among
each others than with others. This property is crucial to our
protocol as it can be exploited to perform accurate predic-
tions over future movements of hosts. To reproduce this
behaviour in our simulator, we map one interest to each
community of the synthetic social network described in the
previous section, such that hosts have more probability to
be co-located with other hosts having the same interests. To
avoid any bias, we assumed that a host can subscribe to at
most one interest. Finally, publishers are uniformly chosen
among all the hosts in the simulation space. A summary of
all the simulation parameters is presented in Figure 1.

Simulation Results. We now present the results of our
simulations of SOCIALCAST 2. In all our experiments, we
mainly concentrate on message delivery and network traf-
fic. The former accounts for protocol effectiveness and is
defined as the ratio between the actual number of messages
delivered to the interested subscribers and the ideal one.

2Due to space constraints, we cannot report the whole set of experi-
ments we carried out. The interested reader can refer to [7].

The network traffic, instead, is constituted by the number
of forwarded messages and measures the efficiency of the
protocol.

To provide more insights, we compare SOCIALCAST
with a variant in which prediction is not used and where
the next carrier is selected on a random basis.

Number of Replicas. The first parameter we studied is the
number γ of replicas in the system. This is a key parameter,
because it has a large impact on the network traffic. Results
in Figure 2(a) show that, through prediction, SOCIALCAST
is able to achieve high message delivery with less replicas
than the ones needed if prediction is not used. Indeed, 5
replicas are sufficient for SOCIALCAST to reach more than
90% of subscribers while without prediction three times
that number of replocase is needed to obtain similar perfor-
mance. Notably, although delivery is greatly improved in
SOCIALCAST (e.g., with γ = 5 prediction boosts delivery
from 40% up to 93%), the network traffic is not increased
(see Figure 2(b)). The reason stems from the fact that net-
work traffic strongly depends on the number of replicas.
Therefore, since both SOCIALCAST and its variant share
the same γ, the traffics are similar. However, leveraging off
predictions, SOCIALCAST can select better carriers which
enable reaching more subscribers, thus achieving better per-
formance without increasing the traffic.

Time To Live (TTL). The Time To Live of a message
(TTL) represents the dual parameter of γ, as they provide
complementary information. Indeed, γ controls how many
instances of the same message are around, while TTL de-
fines for how far, in terms of hops, a message will be around.
Clearly, given a fixed γ, by increasing the number of possi-
ble hops, there are more chances to reach other subscribers.
Unfortunately, this comes at the price of a higher over-
head because the message will stay around longer. Fig-
ures 2(c) and 2(d) show the performance of our protocol
against different values of TTL. As expected, prediction en-
ables decreasing the TTL because a message is forwarded
only when needed, i.e., when a better carrier or a subscriber
is encountered. Conversely, without prediction, messages
are forwarded in a random fashion and hence more hops are
needed to successfully contact the subscribers. This is con-
firmed in Figure 2(c): 15 hops per message are enough to
SOCIALCAST to reach more the 90% of subscribers while
the variant without prediction requires at least 35 hops per
message. Clearly, the two traffic curves show similar trends
because the TTL (as well as γ) directly influences the traf-
fic. Notably, however, the network traffic generated by SO-
CIALCAST saturates for TTL > 25. Indeed, when all the
best carriers and the subscribers have been reached (i.e., the
delivery hits 100%), the messages are no further replicated.
This happens for a value of TTL equal to 25. The traf-
fic generated by the variant without prediction, instead, in-

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X51X

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

D
el

iv
er

y

γ

No Prediction SocialCast

(a) Delivery (number of replicas).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25 30 35 40 45 50

N
et

w
or

k
T

ra
ffi

c

γ

No Prediction SocialCast

(b) Overhead (number of replicas).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

D
el

iv
er

y

Time To Live (TTL)

No Prediction SocialCast

(c) Delivery (time-to-live).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40 45 50

N
et

w
or

k
T

ra
ffi

c

Time To Live (TTL)

No Prediction SocialCast

(d) Overhead (time-to-live).

Figure 2. Delivery and overhead against number of replicas and time-to-live.

creases linearly with the TTL because it continuously for-
wards messages, also when not needed. This is a result of
paramount importance because it demonstrates that our pro-
tocol does not waste resources generating additional traffic
when not needed.

All the aforementioned results confirm the suitability
of SOCIALCAST for the scenarios we target and demon-
strate the improvements introduced by our prediction mech-
anisms. Indeed, thanks to prediction, SOCIALCAST is able
to perform more accurate selection and to provide a more
efficient usage of resources, both in terms of network traffic
and memory. In addition, the ability to predict over the co-
location as well as the host mobility allows for maintaining
a very high and steady event delivery with a reasonably low
traffic and latency.

6 Conclusions and Future Work

This paper presents a novel approach to publish-subscri-
be in delay-tolerant mobile ad hoc networks, based on an
informed selection of the best carriers for messages match-
ing content-based interests. This selection is made by taking
into account predictions about contextual parameters (e.g.,
mobility patterns and connectivity), based on previous ob-
servations. We have evaluated our approach in realistic sce-
narios with disconnections to demonstrate the advantages of
the prediction and store and forward strategies in terms of
message delivery and overhead. Future work will address
the inclusion of additional contextual information in our
predictions, as encompassed by the general framework we
described in Section 4. We also plan to port our work onto
the architecture defined by the DTN Research Group [9]
and to perform more evaluation on a real test-bed.

References

[1] OMNeT++ Web page. www.omnetpp.org.
[2] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and

L. Querzoni. Content-based routing in highly dynamic mo-
bile ad hoc networks. Journal of Pervasive Computing and
Communication, 1(4), 2005.

[3] P. J. Brockwell and R. A. Davis. Introduction to Time Series
and Forecasting. Springer, 1996.

[4] F. Cao and J. P. Singh. Efficient event routing in content-
based publish/subscribe service network. In Proceedings of
the 23th IEEE Conference on Computer Communications
(INFOCOM 2004), 2004.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Trans.
on Computer Systems, 19(3):332–383, 2001.

[6] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Impact of Human Mobility on the Design of Op-
portunistic Forwarding Algorithms. In Proceedings of IN-
FOCOM’06, April 2006.

[7] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco.
Socially-aware routing for publish/subscribe in delay-
tolerant mobile ad hoc networks. Technical report, Univer-
sity College of London, 2007. Submitted for publication.

[8] P. Costa and G. P. Picco. Semi-probabilistic Content-Based
Publish-Subscribe. In Proceedings of the 25th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS’05), Columbus (Ohio, USA), June 2005.

[9] K. Fall. A delay-tolerant network architecture for challenged
internets. In Proceedings of SIGCOMM’03, August 2003.

[10] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME Journal of Basic
Engineering, March 1960.

[11] R. Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preference and Value Tradeoffs. Wiley, 1976.

[12] R. Meier and V. Cahill. STEAM: Event-Based Middleware
for Wireless Ad Hoc Networks. In Proc. of the 1st Int. Wrk-
shp on Distributed Event-Based Systems, July 2002.

[13] M. Musolesi and C. Mascolo. Designing Mobility Models
based on Social Network Theory. ACM SIGMOBILE Mobile
Computing and Communications Review. To appear.

[14] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An in-
formation flow based approach to message brokering. In In-
ternational Symposium on Software Reliability Engineering
(ISSRE’98), 1998.

[15] Z. Zhang. Routing in Intermittently Connected Mobile Ad
Hoc Networks and Delay Tolerant Networks: Overview and
Challenges. IEEE Communications Surveys and Tutorials,
January 2006.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X52X

X53X

Towards a Peer-to-peer Middleware for Context Provisioning in Spontaneous

Networks

Tuan Dung Nguyen, Siegfried Rouvrais

GET / ENST Bretagne

Technopôle de Brest Iroise, 29238 Brest, France

{td.nguyen,siegfried.rouvrais}@enst-bretagne.fr

Abstract

Context-awareness has been widely considered impor-

tant for applications to provide adaptable services to

changes in dynamic environments. Classical approaches

have mainly focused on gathering and representing inter-

nal contextual information from integrated sensors. Recent

work has shown that useful external contexts can also be

acquired from the surrounding environment in a distributed

manner. However, the dynamism and heterogeneity of spon-

taneous networks raise new challenges for the provision-

ing of such information. This paper describes our ongoing

work on a peer-to-peer middleware for abstracting contexts

as logical peers in independent overlay networks. Con-

text data retrieval then becomes transparent to applications

and other middleware services. The proposed middleware

will support efficient construction and maintenance of these

overlays and offer common interfaces to applications. We

discuss in detail its architecture and the open issues to be

resolved.

1 Introduction

The increasing popularity of wireless computing devices

has resulted in the spontaneous networking paradigm where

a large number of nodes (e.g. PDAs, smart phones) collab-

orate to provide services without neither predefined infras-

tructures nor any manual interventions. Such environments

are characterized by node’s heterogeneity, potential mobil-

ity, unpredicted disconnection and limited resources. Sys-

tems and applications should be able to provide appropriate

services based on user’s current context (e.g. location, time,

social situation).

Dey [3] defined context as any information that can be

used to characterize the situation of an entity (e.g. person,

place, and object). This information helps applications to

dynamically adapt their behavior according to their require-

ments and to changes in the environment. Contexts can be

either internal (e.g. user’s profile, device’s battery level)

or external (e.g. nearby resources, temperature). They can

also be static (e.g. user agenda) or dynamic (e.g. network

bandwidth). For instance, a car may need various contextual

information such as weather, nearby petrol stations, road

status.

Context provisioning mainly consists of contextual in-

formation acquisition, sharing and interpretation. Internal

contexts are often captured by inherently integrated phys-

ical and/or logical sensors. External contexts are acquired

from the surrounding environment either in a centralized or

distributed manner. In the former approach, specific entities

are used for context storage and lookup while in the latter

case, context data is provided by any entities in proximity

of an ad hoc network [13]. The centralized approach is not

relevant to spontaneous networks due to the lack of infras-

tructure and the frequent mobility.

Overlay networks are fundamental building blocks of

peer-to-peer systems where nodes are connected by logical

links on top of underlying physical networks. Their self-

organization and sharing capability is a good support for

dynamic environments.

Our work is highly motivated by the following require-

ments for context provisioning in spontaneous networks:

• Context representation. Various contexts can be
gathered from different sources. An adequate rep-

resentation should respect the separation of concerns

design principle for context management and enable

transparent context provisioning to upper applications.

• Context sharing. Resource-constrained and hetero-
geneous devices have only a limited number of sen-

sors for capturing contextual information. Peer-to-peer

context sharing allows nodes to obtain needed contexts

not only from their integrated sensors but also from

their neighbors.

The contribution of this paper is a peer-to-peer middle-

1

X54X

ware for managing different contexts on independent over-

lays. This framework allows resources-constrained nodes to

maintain only currently needed contexts according to their

available resources and their own non-functional require-

ments.

The rest of this paper is organized as follows. Section 2

presents our middleware architecture for multiple context

overlays. Next, Section 3 reviews related work and finally,

Section 4 concludes the paper by discussing some open

questions.

2 Dynamic overlays for context provisioning

A physical device can have several integrated sensors for

capturing contexts. However, as illustrated in Figure 1, a

device can have a number of context peers (CxtPeer) cor-

responding to its needed contexts. According to applica-

tion’s needs and available resources, logical peers can be

created and destroyed on-the-fly. Peers are connected in in-

dependent self-organized overlays. The context data stored

in each peer can be provided by integrated sensors or by

querying other peers. The content can be cached in a peer

during a defined period for later lookup operations.

Context Overlay 1

Context Overlay 2

Device Device

Device

CxtPeer CxtPeer CxtPeer

SensorSensor

CxtPeer CxtPeer CxtPeer

SensorSensor

Sensor

CxtPeer CxtPeer CxtPeer

Sensor

Figure 1. Dynamic overlays of context peers

Figure 2 presents our middleware architecture. The main

components are described as follows.

• Context Manager. This component is responsible for
dynamic context peer creation and destruction. New

context peers can be created from a proposed specifica-

tion language. It also provides applications a common

interface to query context data. The context query pro-

cessing can be synchronous or asynchronous, i.e. ap-

plications can submit a context query and receive the

result after some acceptable delay.

• Context Overlay Manager. This component is re-
sponsible for overlay maintenance due to node’s mo-

bility in the proximity. Here, CxtPeer components are

grouped based on its context semantic. The mainte-

nance can also be triggered on the creation/destruction

of a new context peer.

Applications

CxtManager

CxtPeerCxtPeer CxtPeer

Sensor Sensor

CxtOverlayManager

Figure 2. Middleware architecture

The software model of our proposed system is depicted

in Figure 3. CxtPeer maintains list of neighbors represent-

ing a local view of the corresponding overlay. These neigh-

bor lists are dynamically maintained by CxtOverlayMan-

ager. A CxtPeer has a Context data which can be associated

or not with an integrated sensor.

When a context lookup query arrives at CxtManager, it is

forwarded to the corresponding CxtPeer. Then the context

data can be retrieved from a cached content, an integrated

sensor or by querying other peers. These operations are

carried out in the middleware layer and transparent to ap-

plications. By this way, some context data can be retrieved

thanks to node’s mobility even in partitioned networks.

CxtManager

+ queryContext() : Context

+ createCxtPeer() : CxtPeer

+ destroyCxtPeer(peer : CxtPeer) : bool

Sensor

Context

- name : string

- value : CxtDataType

- freshness : int

CxtPeer

+ queryIndividualData() : Context

+ queryEnvironmentalData() : Context

CxtOverlayManager

+ register() : bool

+ updateOverlay() : bool

+ deregister() : bool

0..1

1

0..*+neighbors

1 1

-data

«datatype»

CxtDataType

0..*

-peers

0..*-peers

-value

Figure 3. Context provisioning model

Fractal [4] is a modular, extensible and language-

independent component model to design, implement, de-

ploy and reconfigure middleware systems and applications.

Our middleware model based on the Fractal is depicted in

Figure 4. CxtPeer is a primitive component representing

a context. These components are managed in a composite

component called CxtManager. Its content part is composed

2

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X55X

of a finite number of CxtPeer components. Its controller in-

terfaces (namely CC, LC) permit the creation and destruc-

tion of primitives peers on-the-fly. A CxtPeer has a server

interface providing the corresponding contextual informa-

tion. Its client interface is connected to the client inter-

face of its surrounding component CxtManager. Different

context overlays are maintained dynamically by distributed

binding between server and client interfaces of CxtManager

components (e.g. using Fractal RMI [4]). These main-

tenance operations are carried out by CxtOverlayManager

component.

CC

CxtManager

CxtPeer

CxtPeer

LC

outin

Sensor

CC

CxtManager

CxtPeer

LC

out

Sensor

in

in

CC

CxtManager

CxtPeer

CxtPeer

LC

out

Figure 4. Fractal component-based model

3 Related work

The tuple-space model was first presented with

Linda [5] and then adapted to mobility with LIME [12],

TinyLIME [2] or ErgoSpaces [10]. These efforts have

proved the interest of this data-sharing model to dynamic

environments. However, existing works lack the capacity

to efficiently manage different context sources according to

various application’s needs.

Using peer-to-peer overlays for context lookup was first

presented in [9]. The authors proposed ContextBus, an ar-

chitecture in which context producers are grouped based on

the semantic of their data. An improved version namely Se-

mantic Context Space (SCS), was also proposed to reduce

the maintenance cost when the number of semantic groups

increases using a one-dimensional ring space [7, 8]. Un-

like this work, we propose a more abstract concept because

any devices can have a context peer even if they do not di-

rectly produce context data. Moreover, we support dynamic

overlay management and effective mechanisms for overlay

maintenance.

Research work has recently put great attention on the

coexistence of multiple overlays. Gridkit [6] is a com-

ponent framework for pluggable overlay networks even at

runtime. Behnel et al. [1] combined Gridkit with an over-

lay design modeling framework to enable the generation of

specific code from platform-independent design of overlay

networks. Maniymaran et al. [11] presented a mechanism to

reduce the multiple overlays maintenance overhead without

sacrificing the performance. The authors proposed that the

maintenance of one overlay can be leveraged to partly main-

tain another overlay with no extra cost. These approaches

form a good base for the overlay construction and mainte-

nance in our framework. However, the coexistence of mul-

tiple context overlays needs further investigation.

4 Discussion and open questions

We have presented a peer-to-peer middleware architec-

ture for context provisioning in spontaneous networks. The

proposed system offers a means for context abstraction and

sharing in such dynamic environments. We plan to evalu-

ate our proposition with a prototype working on real PDAs.

By comparing it to existing tuple-space based works, we

will demonstrate its capacity to answer to its design require-

ments and its overall overhead is acceptable. We have also

identified the three following issues to be investigated.

1. Context peer specification and deployment. We are

investigating a specification language and a compo-

nent framework for the dynamic management of over-

lays. The language will allow applications to specify

new context peers based on their current requirements.

The component-based framework enables on-demand

deployment of different context peers. To avoid am-

biguity among different contexts, ontology-based ap-

proaches can be investigated in future work.

2. Context overlay construction and maintenance. As

context peers are connected in unstructured overlays,

the maintenance operations involve two phases: a peer

sampling phase providing candidates for the neighbor

list establishment based on the semantic of overlays.

We plan to exploit epidemic-style approaches [14] for

peer sampling service in spontaneous networks. Then

the coexistence of multiple overlays can be leveraged

to improve the maintenance efficiency by exploiting

the common peer sampling service and the semantic

relations among overlays, i.e. binding of subcom-

ponents in a common composite component. The

maintenance principle consists of updating neighbors

in each overlay through dynamic interface binding of

distrbuted components and assuring data consistency

among context peers.

3. Context overlay lookup and composition. Context

provisioning to applications is realized through lookup

operations in overlays. Therefore, we need effective

lookup mechanisms to improve system performance.

3

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X56X

Moreover, a query for higher-level contexts may con-

cern several context peers which results in the com-

position of multiple overlays. So far, few work has

put attention on this issue and further investigation is

needed.

References

[1] S. Behnel, A. Buchmann, P. Grace, B. Porter, and G. Coul-

son. A Specification-to-Deployment Architecture for Over-

lay Networks. In Proc. 8th OTM Int. Symp. on Dis-

tributed Objects and Applications (DOA’06), pages 1522–

1540, Montpellier, France, Oct. 2006. Springer-Verlag.
[2] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Mur-

phy, and G. P. Picco. Mobile Data Collection in Sensor Net-

works: The TinyLime Middleware. Pervasive and Mobile

Computing, 4(1):446–469, Dec. 2005.
[3] A. K. Dey. Understanding and Using Context. Personal

Ubiquitous Computing, 5(1):4–7, 2001.
[4] Fractal. http://fractal.objectweb.org/, 2006.
[5] D. Gelernter. Generative Communication in Linda. ACM

Computing Survey, 7(1):80–112, Jan. 1985.
[6] P. Grace, G. Coulson, G. Blair, L. Mathy, W. K. Ye-

ung, W. Cai, D. Duce, and C. Cooper. GRIDKIT: Plug-

gable Overlay Networks for Grid Computing. In Proc.

6th OTM Int. Symp. on Distributed Objects and Applica-

tions (DOA’04), pages 1463–1481, Agia Napa, Cyprus, Oct.

2004. Springer-Verlag.
[7] T. Gu, H. K. Pung, and D. Zhang. A Peer-to-Peer Over-

lay for Context Information Search. In Proc. 14th IEEE

Int. Conf. on Computer Communications and Networks (IC-

CCN’05), San Diego, CA, USA, Oct. 2005. IEEE CS Press.
[8] T. Gu, H. K. Pung, and D. Zhang. A P2P Context

Lookup Service for Multiple Smart Spaces. In Proc. 4th

ACM/USENIX Int. Conf. on Mobile Systems, Applications,

and Services (MobiSys’06), Uppsala, Sweden, June 2006.

ACM Press. Poster paper.

[9] T. Gu, E. Tan, H. K. Pung, and D. Zhang. A Peer-to-Peer

Architecture for Context Lookup. In Proc. 2nd Int. Conf.

on Mobile and Ubiquitous Systems: Computing, Networking

and Services (MobiQuitous’05), San Diego, CA, USA, July

2005. IEEE CS Press.

[10] C. Julien and G.-C. Roman. Egospaces: Facilitating rapid

development of context-aware mobile applications. IEEE

Transaction on Software Engineering, 32(5):281–298, May

2006.

[11] B. Maniymaran, M. Bertier, and A.-M. Kermarrec. Build

One, Get One Free: Leveraging the Coexistence of Multi-

ple P2P Overlay Networks. In Proc. 27th IEEE Int. Conf.

on Distributed Computing Systems (ICDCS’07), Toronto,

Canada, June 2007. IEEE CS Press.

[12] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME:

A Middleware for Physical and Logical Mobility. In

Proc. 21st IEEE Int. Conf. on Distributed Computing Sys-

tems(ICDCS’01), pages 524–533, Arizona, USA, Apr. 2001.

IEEE CS Press.

[13] O. Riva. Contory: A Middleware for the Provisioning

of Context Information on Smart Phones. In Proc. 7th

ACM/IFIP/USENIX Int. Middleware Conference (Middle-

ware’06), pages 219–239, Melbourne, Australia, Dec. 2006.

Springer-Verlag.

[14] S. Voulgaris and M. van Steen. Epidemic-style Management

of Semantic Overlays for Content-Based Searching. In Proc.

11st European Conf. on Parallel and Distributed Comput-

ing (Euro-Par’05), Lisboa, Portugal, Aug. 2005. Springer-

Verlag.

4

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X57X

Semantic Middleware for Designing Collaborative
Applications in Mobile Environment

Lamia Benmouffok
Université Pierre et Marie Curie

Laboratoire d’I nformatique de Paris 6
104, avenue du Président Kennedy

75016Paris - France
Email: l amia.benmouffok@lip6.fr

Jean-Michel Busca
INRIA - Rocquencourt

Laboratoire d’I nformatique de Paris 6
104, avenue du Président Kennedy

75016Paris - France
Email: j ean-michel.busca@inria.fr

Marc Shapiro
INRIA - Rocquencourt

Laboratoire d’I nformatique de Paris 6
104, avenue du Président Kennedy

75016Paris - France
Email: marc.shapiro@acm.org

Abstract— The Telex middleware facili tates the design of
collaborative applications in a mobile environment. I t provides
optimistic replication, tentative execution and disconnected work.
I t solves conflicts based on semantic information provided by
applications. We study in par ticular a Shared Calendar (SC) ap-
plication, whereby mobile users can create and manage meetings
in a collection of shared calendars. Theapplication provides Telex
with objects representing (1) meeting creation and modification
operations (actions), (2) dependence or conflict information
between actions (constraints). When a conflict occurs, Telex
proposes solutions to users.

The advantage of this approach is a clean separation of
concerns. The SC application wr iter concentrates on applica-
tion logic, whereas Telex takes care of replication, consistency,
conflicts, and commitment across all applications.

I . INTRODUCTION

Designing collaborative applications raises the key problem
of ensuring the consistency of shared mutable data. This
problem is even more difficult in a mobile environment due
to its decentralized nature and to the volatilit y of participants.

The Telex middleware facilit ates the design of collabo-
rative applications by taking care of complex application-
independent aspects, such as replication, conflict detection
and repair, and ensuring eventual commitment. It supports
optimistic replication [1], which decouples data access from
network access. Telex allows an application to accessa local
replicawithout synchronizing with peer sites. The application
makesprogress, executing uncommitted operations, even while
peers are disconnected. Telex propagates updates lazily and
ensures consistency by a global a posteriori agreement on the
set and order of operations. Local execution is tentative; due
to conflicts, some operations may roll back later.

Unlike previous optimistic replication systems, Telex takes
the semantic of the collaboration into account, building onthe
Action Constraint Formalism (ACF) [2]. A Telex application
represents its shared data as a set of actions (representing
application operations submitted by users), and a set of con-
straints between these actions, expressing their concurrency
semantics. Telex uses this semantic information to accuratly
detect conflicts and to propose solutions.

We designed a Shared Calendar (SC) application to demon-
strate how Telex facilit ates the design of collaborative appli -

Fig. 1. Shared Document Representation

cations in mobile environment. A SC application aims to help
peopleorganizingtheir agendain a collaborativeway. It allows
people to create and manage private events as well as group
meetings, scheduled on a collection of online calendars. The
design of SC application ill ustrates the benefit of using Telex
middleware; it also ill ustrates some limitations of Telex.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes the ACF. Section III presents the
architecture of Telex and its operation. Section IV describes
the Shared Calendar application built on Telex. Section V
concludes.

II . ACTION CONSTRAINT FORMALISM

In ACF, an action represents an application operation
and a constraint defines a scheduling invariant between two
actions. The ACF defines three elementary constraints ex-
pressing commutativity, order and dependency relations. (A
non-commuting B) states that executing A before B does
not yield the same result as executing B before A. (A
not-after B) indicates that A must not execute after B.
(A enables B) means that B can execute if and only if A
also executes.

Elementary constraints can be combined to express richer
semantic relations, encompassing data semantics, application
semanticsand user intents. Thus, the cycle((A not-after
B) and (B not-after A)) states that A and B are
antagonistic, i.e. an execution cannot contain both actions.
((A not-after B) and (A enables B)) expresses
the fact that B causally depends on A. The cycle ((A
enables B) and (B enables A)) indicates that A
and B must be executed atomically.

58

Fig. 2. Telex Architecture

III . TELEX M IDDLEWARE

A document is the basic sharing unit, and Telex represents
its current state as a graph of submitted actions connected by
constraints. As shown in Figure 1, it implements the history as
a set of per-site logs, or multi -log. Furthermore, Telex allows
applications to define cross-document constraints.

Figure 2 shows the overall architecture of a Telex instance
running at some site. This instance supports several appli -
cations that together use its services. The Telex middleware
is composed of two main modules — the scheduler and the
replica reconciler — layered on top of two auxili ary modules
— the transmitter and the logger. For each open document,
Telex creates one instance of each module, which maintains
the execution context of the document.

The transmitter and the logger are responsible for main-
taining a replica of the document’s multi -log at the local site.
To this end, they implement an epidemic replication protocol
which ensuresthat multi -log updatesare eventually propagated
to all participating sites, i.e. sites that collaboratively edits
the document, either at the same time, earlier or later. The
scheduler and the replica reconciler are described next.

A. Scheduler

The scheduler maintainsan action-constraint graph that rep-
resents the state of the document known locally. Actions and
constraints are added to the graph either by: the application,
when local user updates the document, (ii) the logger, when
it receives an update issued by a remote user, (iii) the repli ca
reconciler, when it commits a schedule (seebelow).

Based on the action-constraint graph, the scheduler periodi-
cally computes soundschedules, i.e. sequences of actions that
comply with constraints, and proposes them to the application
for execution. In case some actions conflict, i.e. they do not
commuteor they are antagonistic, several schedulesexist, each
representinga particular solution to the conflict. The scheduler
computes them one by one, uponapplication request, until one
or more satisfaying schedules are found.

Actions submitted concurrently at different sites may turn
out to be conflicting. Therefore, whenever a new action is
addded to the graph, Telex checks whether constraints exist

against concurent actions. Conceptually, Telex calls the appli -
cation for every pair 〈newaction, existingaction〉 and adds to
the graph the constraints that the application returns, if any.
In order to optimizethis CPU-intensive check, the application
tags each action it submits with a set of numeric keys, one
for each object that the action operates upon. Actions conflict
only if their key sets intersect. Telex checks for this condition
before calli ng the application, thus saving a significant number
of unnecessary calls. False positives cause only a performance
loss.

B. Replica Reconciler

Participating sites may generate different sound schedules
from the same action-constraint graph. The role of the repli ca
reconciler is to make sites agree on a common schedule to
apply and thus achieve (eventual) mutual consistency. The
agreed-uponschedule is said to be committed.

The replica reconciler implements a decentralized asyn-
chronous commitment protocol based on voting. Periodicall y
or on user request, each site proposes and votes for one or
more schedules generated by the scheduler. Local user may
specify the schedule(s) of his choice, if any. Votes are sent to
participating sites, and a schedule that receives a majority or
a plurality of votes is committed. The committed schedule is
then materialized as a set of constraints added to the action-
constraint graph.

The commitment protocol is fully asynchronous. It runs in
the backgroundand each instance determines locally when a
schedule has won an election. Meanwhile, the scheduler keeps
proposing (tentative) sound schedules to the application. In
addition, the protocol may run only on a subset of partici-
pating sites that are know to be stable. The voting process is
automated and does not require user intervention. The detailed
protocol can be foundin Sutra et al. [3].

IV. SHARED CALENDAR APPLICATION

The Shared Calendar (SC) application design demonstrates
how Telex facilit ates the design of collaborative applications.
The SC application provides users a way to manage their
activities collaboratively. Each user has his own calendar,
which he shares with the other authorised users.

To create a meeting with a group, a SC user creates a
“meeting object” and shares it with the invitees. He notifies
invitees by creating an action ontheir respective calendar.

When one receives an invitation he can accept it or decline
it. If he accepts it, he can collaborate to hold the meeting: he
can invite other users, and modify the meeting time, and loca-
tion. For that purpose he creates actions on the corresponding
meeting object, concurrently with other invitees. Consequently
conflicts may appear. As we are in an optimistic replicated
environment, those actions are tentative until committed. In
case of antagonism, some of them are aborted.

A. Use case

Figure 3 shows an example concurrent execution of the
calendar application. Users Jean-Michel, Lamia and Marc use

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

59

a Shared Calendar application to plan meetings between col-
leagues. Jean-Michel, Lamia and Marc are working separately
and communicate only via the application.

Fig. 3. Execution scenario the Shared Calendar application.

Jean-Michel organizesmeetingM2 on 3May between 11:00
and 12:00. He allocates Room 245 for that purpose. He
requires the presence of Marc and himself. This is ill ustrated
by Action 2 in Figure 3.

Lamia organizes meeting M1 on the same day between
10:30 and 12:00. She allocates Room 233. She will attend the
meeting, and allows other people to invite themselves, with
actions 1 in Figure 3.

The application only needs to provide the above actions
to Telex. Telex propagates them eventually to all i nterested
sites (in this example, to Marc’s site) even if some users are
offline. Suppose that, at some point in time t1, Marc has
received Lamia’s actions, but not yet Jean-Michel’s. This may
happen, for instance, if Jean-Michel is working offline. Marc
is interested in M1 and invites himself to that meeting (action
3 in the figure). Later, at t2 Marc knows Jean-Michel’sactions.

As M1 overlaps, with M2 a conflict is detected at time
t3. For this to happen, the SC application arranges that the
corresponding actions’ key sets overlap. Therefore, Telex up-
calls SC, which returns an antagonism constraint, as explained
elsewhere.

To avoid this conflict, Lamia shifts the start time of M1 to
13:30 (action 4). Concurrently (t4), Marc also sets the date
of M1 to the 7 May (action 5), and Jean-Michel cancels M2
(action 6).

At t5 Lamia and Marc have received their concurrent
modifications of meeting M1. Obviously M1 is scheduled at
different times on Lamia’s and Marc’s calendar. SC provides
the non-commute constraint, which causesTelex to order them
the same way at all sites, after the commitment phase.

B. SC design using Telex

The application expresses its semantics by defining appro-
priate constraints between actions. The code for computing
actionsandconstraints ispart of the application; at runtimeSC
outputs appropriate action and constraint instances to Telex,
and Telex propagates them to the appropriate replicas. Thus

application semantics is cleanly separated from the difficult
systems task of ensuring consistency.

In more detail , the shared calendar application supports the
following actions:

• createEvent (meetingId): Create some event, for instance
a meeting.

• setInfo (time, meetingId): Modify the schedule of an
event.

• invite/addUser (userId, meetingId): Invite aperson to an
existing event.

• allocate (roomId, meetingId): Allocate a room for an
event.

• cancelInvitation/cancelUser (userId, meetingId): Cancel
an invitation.

• cancelAllocation (roomId, meetingId): cancel a room al-
location for a meeting.

• Cancel (meetingId): Cancel a meeting.

Recall that this application supports optimistic replication.
Each user of this application can generate one of the previous
actions and execute it locally. However the execution remains
tentativeuntil an agreement phasereachesa consensuswhether
actions are committed, or aborted, or reordered.

In theuse casescenario, Jean-Michel generatesactions: A =
createEvent (M2), B = allocates(245, M2), C = addUser(Jean-
Michel, M2), D = addUser(Marc, M2). It groups them
atomically with an enables cycle: ((A enables B)
and (B enables C) and (C enables D) and (D
enables A)). He also generates E = setInfo (11:00-12:00
03/05/07, M2) and the constraint A enables E. Telex prop-
agates these actions and constraints to Marc’s site, as well as
Lamia’s actions concerning meeting M1.

Telex checks each pair of actions for their keys. Telex up-
calls the application for possible constraints only two actions
have a same key. SC computes its keys as follows. Each
discrete 30-minute time slot has a unique identifier. For action
setInfo (description, time, meetingId) where time is a set of
slots {Si, i = 1 . . . n} the generated keys are:

• The hash of meetingId,
• The hash of each slot identifier Si.

Back to the use case scenario. At time t2 Marc receives
actions F = setInfo (“ ” ,10:30-12:00 03/05/07, M2) and
G = setInfo (11:00-12:00 03/05/07, M2). Keys of the two
setInfo match as both have akey that is a hash of the {11:00-
12:00 03/05/07} slot. Therefore, Telex asks SC for the cor-
responding constraints. SC returns an antagonisism constraint
((F not-after G) and (G not-after F)), which
causes either F or G, or both, to eventually abort.

Telex suffers from some usabilit y issues, because reifying
application semantics into actions and constraints is not very
intuitive. Furthermore, constraints are hard to validate.

To facilit ate the use of Telex to develop collaborative
applications, we propose ageneric methodology for principled
designs. A rule for using Telex is to make any shared mutable
information a Telex-managed object. For instance, a meeting
is an implicit information inherent to each invitees’ calendar.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

60

This information is shared between all i nvitees, and is mutable
as any invitee can collaborate to modify the meeting informa-
tion. The number of invitees is also dynamic. Thus the easiest
way to manage ameeting is to make it an explicit Telex object,
with corresponding actions and semantics. Figure 4 shows the
state of Marc’s site at time t2.

Fig. 4. Marc Site at t2.

The Telex scheduler insures that Marc will not be scheduled
for M1 and M2 at the same time (Antagonistic actions). The
reconcili ation phase ensures eventual consistency.

V. CONCLUSION AND FUTURE WORK

The Telex middleware facilit ates the development of col-
laborative applications in mobile environment. The main con-
tribution of Telex is that the reconcili ation between repli cas
is application independent as Telex is semantically rich. We
presented a design of a Shared Calendar application to demon-
strate Telex benefits and highlight Telex usabilit y limitations.
To facilit ate the use of Telex to develop collaborative applica-
tions, we propose ageneric methodology for more principled
designs. However this approach also suffers from limitations.
Reifying application semantics into actions and constraints is
not very intuitive. Furthermore, constraints are computed in
advance, without knowledge of the actual state. We suggest
two complementary approaches - A compiler should generate
actions and constraints from a high-level specification - A
checker should verify that all action-constraint combinations
verify the application invariants.

REFERENCES

[1] Y. Saito and M. Shapiro, “Optimistic replication,” Com-
puting Surveys, vol. 37, no. 1, pp. 42–81, Mar. 2005,
http://doi.acm.org/10.1145/1057977.1057980.

[2] M. Shapiro, K. Bhargavan, and N. Krishna, “A constraint-based formalism
for consistency in replicated systems,” in Proc. 8th Int. Conf. on Princi-
ples of Dist. Sys. (OPODIS), ser. lncs, no. 3544, Grenoble, France, dec
2004, pp. 331–345, http://www-sor.inria.fr/ shapiro/papers/opodis2004-
final-2004-10-30.pdf.

[3] P. Sutra, J. Barreto, and M. Shapiro, “An asynchronous,
decentralised commitment protocol for semantic optimistic replication,”
INRIA, Research Report 6069, 12 2006. [Online]. Available:
https://hal.inria.fr/inria-00120734

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

61

Handling membership dynamicity in
service composition for ubiquitous computing

Jeppe Brønsted
University of Aarhus

Computer Science Department
Åbogade 34, 8200, Århus N

Denmark
Email: jb@daimi.au.dk

Abstract—In ubiquitous computing, as more and more devices
are introduced into the environment, new applications are made
possible that exploit device capabilities in new ways. Currently,
however, there is a mismatch between the effort involved in
implementing these applications and the benefit they provide.
Furthermore, there is a risk that the user loses the understanding
of the system and although this is usually not a problem during
normal use, it can be problematic if a breakdown occurs. A
proposed solution that handles these problems is to use a service
oriented architecture and implement applications as composite
services and let information about the structure of the composites
be available to the user at runtime.

As long as the set of services that constitute the composite is
static, traditional techniques can be used to specify the composite.
But if the member set is dynamic it is problematic to specify
which nodes partake in the composite and how they interact. In
this paper we introduce mechanisms for handling membership
dynamicity in service composition specifications. We demonstrate
how an application scenario developed in cooperation with users
can be implemented using the mechanisms and sketch how a
decentralised interpretation can be realised.

I. INTRODUCTION

As more and more devices are introduced into our daily lives
the vision of ubiquitous computing approaches realisation.
Devices interact in new ways to provide services supporting
users in home and work situations that were not possible until
recently.

Currently, services incorporating multiple devices are typi-
cally implemented by device manufacturers to add increased
value into their products and thus the possible applications are
limited by what devices a particular company manufactures.
Even when manufacturers cooperate to make their devices
communicate using, e.g., open standards it is hard to predict
which services the users want and which devices to combine.
Furthermore, if a given service involves a particular set of
devices, the service will only be available to users having that
particular set of devices. Consider the following geotagger
example mentioned in [1]:

A user has a GPS device, a digital camera, a mobile
phone with GRPS, and a home server. When pictures
are taken they are automatically tagged with positional
information from the GPS and uploaded to the server
using the mobile phone.

In this application its not clear which manufacturer would

implement the application since all the devices involved can
be used for multiple purposes and should, e.g., the phone
manufacturer decide to implement the service, it would only be
of use to the subset of customers having the particular relevant
device constellation.

Another issue with applications consisting of multiple de-
vices interacting is that if a fault occurs, it can be hard to
determine the cause. In the above example, the GPS device
could run out of battery and unless the application have been
designed with that particular contingency in mind, the user has
to check each of the devices to resolve the situation. Another
problem could be that the GPS device is configured to send
messages in a format that is not understood by the application.
In this case the user is probably even worse off because all
devices will appear to be working correctly.

If device capabilities are exposed through service interfaces,
anyone with access to the interfaces can, in principle, develop
applications exploiting the devices and thus the manufactur-
ers will not have to try to anticipate every combination a
particular device might be involved in. To achieve maximum
interoperability the manufacturers have to agree on a format
for service specifications or at least make available the formats
used. Whether the manufacturers are interested in this is not
the topic of this paper but if a standard was agreed upon the
utility of the devices would be enhanced.

Service composition have previously been used to imple-
ment applications for ubiquitous computing environments [2].
Service orientation alone will not solve the problem of creating
services exploiting the particular device set a user has. If
applications are implemented by developers using a service
composition framework [3–5] it is hard for the user to
control which services are used, how they are connected,
and how they interact. Another option is to let the user try
to specify the task he wants to solve in an abstract way
and let the middleware determine how services should be
composed [6–8]. This has the benefit that the user does not
have to know which services are offered by the devices but
only has to be able to specify the task to be solved. On the
other hand, if a failure occurs, it can be hard for the user to
find the error because the user’s understanding of the system
is rooted in the abstract task specification. A third option
is to let the user experiment with devices and services and

62

manually compose the application [9–13]. This requires that
the composition language or tool is sufficiently understandable
and at the same time complex enough to make it possible to
express useful applications. Previously, both centralised [9–
11] and decentralised [12, 13] algorithms have been used to
govern the flow of service invocations in the composite.

When users compose services into applications, it is prob-
lematic to handle composites with a varying number of mem-
bers. An example could be a chat application that dynamically
includes new devices as they arrive. If the application was
expressed in source code, this would typically be handled by
collections and specialised logic specifying how the composite
evolves over time. Since source code is not understandable by
end users in general, we do not consider this to be an option.
To the best of our knowledge, none of the previous approaches
deal with composites with varying member sets.

In this paper we investigate the problem of handling com-
posites with dynamic membership. We present an extension of
the PalCom assembly scripts that makes it possible to specify
assemblies in which the member set varies over time and
outline how a decentralised interpretation can be implemented.
To evaluate the extensions we demonstrate how one of the
PalCom prototype scenarios can be implemented using the
mechanisms. The prototype scenario have been developed in
cooperation with end users and represents realistic and relevant
challenges.

The rest of the paper is structured as follows. In sec-
tion II we briefly describe the PalCom architecture and the
mechanism available for composing services into applications.
In section III we present the prototype scenario and the
problems involved in realising it using traditional techniques.
In section IV we describe the extensions for handling member-
ship dynamicity, describe how the prototype scenario can be
realised using the extended assembly scripts, and outline how
decentralised interpretation can be implemented. And, finally,
in section V we conclude the paper and present future work.

II. THE PALCOM OPEN ARCHITECTURE

In the PalCom project [14] an open architecture [15] have
been developed that supports users and application develop-
ers in making more understandable applications. Using the
architecture and the runtime system, applications can be built
by composing services through scripts [1]. The scripts can be
defined by application developers or by users interacting with a
service browser [16]. Services can be composed at runtime and
the internal structure of the composite can be opened up and
inspected in case of a failure or a misconfiguration. Being able
to inspect the running system supports users in understanding
how the application works and determine in which part of the
system the failure is located. The composite can be altered at
runtime by replacing services with alternates to resolve failures
or to adapt the application to changing network conditions.

The design of the architecture and the scripting language has
been guided by requirements arising from a set of prototype
scenarios developed in cooperation with users using participa-
tory design techniques. The scenarios cover a broad range of

application areas including support for major incidents, on site
work by landscape architects, and rehabilitation of children
with Downs syndrome. The scenarios have in common that
they exploit combinations of digital devices to better support
work situations and that they do not assume that a fixed
network infrastructure is in place.

In PalCom, composite services called assemblies consists
of simple event-based scripts that declare services and devices
and describe the flow of events through the assembly. This
is an easily understandable way of composing services and
handles static situations with few devices well. However, the
script language has currently no support for composites where
the set of members varies over time. Furthermore, a URN [17]
for each of the involved services must be known when the
composite is created. This implies that it is, e.g., not possible to
specify a composite that will dynamically include new devices
of a particular type as they arrive.

A. PalCom assemblies

In the PalCom architecture device functionality is encapsu-
lated in services that can be remotely discovered and invoked.
Each service has a set of commands which can be either
in-going or out-going. In-going commands are similar to
asynchronous methods with an optional number of parameters.
They can be invoked from other services or by the user. Out-
going commands makes it possible for the services to provide
output. The output can be used as input for in-going commands
or can be presented directly to the user. The output has an
optional number of parameters. An example could be a service
acting as an interface for a lamp. The service would have two
in-going commands on and off and an out-going command
state that is invoked every time the state of the lamp is
changed. Services and commands are composed in assemblies
described by assembly scripts where services and devices are
declared along a with description of which commands are
connected. Variables that can hold state can also be declared.

The example given in the introduction can be implemented
by the assembly script listed in figure 1. Lines 2–7 declares
which devices take part in the assembly. Note that a unique
name (URN) is given for each of the devices. Similarly, lines
8–13 declare the services in the assembly. In line 17–34
the flow of events through the assembly is described. E.g.,
lines 25–28 specify that when the out-going photo_taken
command from the camera’s photo service is invoked, the
tagger service’s tag_photo command on the mobile
phone is invoked. In line 19 a variable is declared with a
MIME-type [18] and in line 23 a value is assigned to it. The
script in figure 1 can be created by using a text editor or by
the user by interacting with a tool.

III. THE SITE STICKS SCENARIOS

Since the users are involved in creating the assembly scripts,
an important design goal is that the script language is as simple
as possible. One could easily use a general programming
language to implement the assemblies, but this would defeat
the goals of simplicity and understandability. The assembly

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

63

1 assembly GeoTagger {
2 devices {
3 gps = urn:palcom://gps;
4 camera = urn:palcom://camera
5 server = urn:palcom://server;
6 mobile = urn:palcom://mobile;
7 }
8 services {
9 gps on gps = /gps;

10 photo on camera = /photo;
11 tagger on mobile = /tagger;
12 photo_db on server = /photo_db;
13 }
14 connections {
15 ...
16 }
17 script {
18 variables {
19 text/nmea-0183 gpsCoord;
20 }
21 eventhandler {
22 when position from gps on gps {
23 gpsCoord = thisevent.NMEA-0183;
24 }
25 when photo_taken from photo on camera {
26 send tag_photo(thisevent.Image, gpsCoord)
27 to tagger on mobile;
28 }
29 when photo_tagged from tagger on mobile {
30 send store_photo(thisevent.Image)
31 to photo_db on server;
32 }
33 }
34 }
35 }

Fig. 1. Geotagger script

script language has to be as simple as possible while at the
same time powerful enough to support relevant scenarios. In
this section we present the PalCom scenario Site Sticks [19]
where a composite service with a dynamic member set is
required for realisation. The scenario has been developed in
cooperation with landscape architects from Edinburgh.

When landscape architects try to visualise how a project
will blend into the landscape at a building site, a typical
approach is to place marker sticks that represent the shape
of buildings, roads, gardens, etc. as outlined in the digital
building plans. Looking at a site with hundreds of sticks (see
e.g. figure 2) it can be hard to figure out which sticks represent
a particular building. The challenge is to visualise the digital
design combined with the physical reality.

Fig. 2. Site Sticks

In the site sticks scenario, each stick is equipped with an
embedded system with wireless communication. When the

stick is placed in the ground, the position and role in the
design is registered in the stick using a GPS device and a
PDA. Later, when the architect wishes to visualise a particular
part of the design, he can select the part on the PDA and the
corresponding sticks will light up with a distinct colour. The
initial placement and the registration will not be dealt with in
this paper.

From a conceptual point of view its natural to express the
application that makes a subset of the sticks light up as a
composite service consisting of the sticks and a PDA. How-
ever, the scripting language presented in section II-A provides
only limited support for the description of the assembly. One
limitation is that the script will be big because all devices and
services have to be declared explicitly. Another is, that the
assembly cannot be expanded to include more sticks without
changing the script. In the following section we propose
extensions to the assembly scripts that will make it possible
to express the application described more naturally.

IV. HANDLING MEMBERSHIP DYNAMICITY

The extensions of the assembly scripts we propose can be
divided into two parts: Selection is about selecting which de-
vices should participate in the assembly and naming deals with
how to represent the services and devices in the specification
of the flow of events.

A. Selection

Given a set of nodes we need a method for selecting those
that should be part of the assembly. In the unextended version
of the scripts this is done using URNs but for assemblies
with dynamic membership this is, as mentioned previously,
not enough. Instead, we propose to use a simple wildcard
pattern on the device URN so that a single line in the device
declaration part of the script (lines 3–8 in figure 1) can declare
multiple devices. Lines not including a wildcard character (’*’)
will be interpreted as before. As an example, the line:

stick = urn:palcom://stick*
matches all devices with a URN with the prefix
urn:palcom://stick. Hereby, all the sticks in the
site sticks scenario can be declared in a single line.

While wildcards provides an easily understandable way of
specifying a lot of devices, it has the drawback that semantic
information has to be encoded in the device URN. In situations
where devices with similar URNs have different service sets,
it can be a problem only to include a subset of the devices in
the assembly. Therefore, as an additional method for selection,
we also use the information already present in the service
declaration part of the script (lines 9–15 in figure 1) to exclude
irrelevant devices. For example, line 13 in figure 1:

photo_db on server = /photo_db;

specifies that the service with the name /photo_db on the
device server will be used under the name photo_db in
the rest of the script. We propose that this statement will also
imply that all devices matching the line that declares the device
server must also have a service with the name /photo_db
to be allowed into the assembly.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

64

B. Naming

With the extension mentioned above, each line in the device
and service declaration parts of the script potentially declares
multiple devices/services and associates a name. This name is
used in the eventhandler part of the script to specify the flow
of events. We extend the semantics of the eventhandler part
so that the line:

when photo_tagged from tagger on mobile {

is used when the out-going command photo_tagged is
invoked on any mobile device. In the case that mobile
only denotes a single device, the interpretation is unaltered.
Similarly, the interpretation of the invoke part of the even-
thandler is changed so that the line:

send store_photo(thisevent.Image)

to photo_db on server;

will invoke the store_photo in-going command on all the
devices denoted by server. Again, if server only denotes
a single device, the interpretation is unaltered.

To allow for local flow of events on devices declared with a
wildcard, the device name can be prepended with the keyword
’particular’ in the eventhandler. Assume for example that
my-device is declared using a wildcard and the eventhandler
includes the following lines:

when my-out-command from my-service-a
on particular my-device {

send my-in-command()
to my-service-b on my-device;

}

Then, when the my-out-command is invoked on a particular
device, the my-in-command will only be invoked on the
same device.

The modifications above have the property that if no device
is declared using a wildcard, then there is no modifications
of the interpretation of the assembly scripts. This implies that
the changes are backwards compatible.

C. Implementation of the Site Sticks scenario

We claim that the mechanisms for selection and naming
described above can be used to implement the site sticks
scenario in a simple and natural way.

Assume that each of the sticks is equipped with two
services, blink and building. The blink service has a
single in-going command activate that will make the stick
light up. The building service has an in-going command
isPartOf and an out-going command isPartOfTrue. If
isPartOf is invoked with a building identifier that the stick
represents a part of, the isPartOfTrue will be invoked.

The PDA has a stick-gui service where the user can
specify which building he wants to see. The stick-gui
service has a single out-going command select that will
be invoked with a building identifier when the user selects a
building.

Given the services and devices described above, the site
sticks scenario can be implemented by the script in figure 3.
Line 4 declares the sticks using a wildcard. Lines 17–20
forwards the user specified building ID to the sticks and if

1 assembly SiteSticks {
2 this = global-service-name;
3 devices {
4 stick = urn:palcom://Stick*;
5 pda = urn:palcom://PocketLoox;
6 }
7 services {
8 blink on stick = /blink;
9 building on stick = /building;

10 stick-gui on pda = /stick-gui;
11 }
12 connections {
13 ...
14 }
15 script {
16 eventhandler {
17 when select from stick-gui on pda {
18 send isPartOf(thisevent.building)
19 to building on stick;
20 }
21 when isPartOfTrue from building
22 on particular stick {
23 send activate()
24 to blink on stick;
25 }
26 }
27 }
28 }

Fig. 3. SiteSticks script

the stick represents part of the building specified, the stick
will be told to blink in lines 21–25.

D. Decentralised interpretation

One way to interpret the assembly scripts is to let a central
node handle the eventhandler part (e.g. lines 16–26 in figure 3)
of the scripts. Every time an out-going command is invoked,
a message is sent to the central node which then determines
which in-going commands should be invoked. As long as the
assemblies only include a few nodes all connected to the same
network, centralised interpretation is a viable option. However,
for assemblies like the site sticks assembly it is not a good idea
because the building service’s invocation of the blink
service (lines 21–25 in figure 3) would have to go through the
central node. Therefore, we argue, it is necessary to interpret
the scripts in a decentralised manner.

Decentralised interpretation can be implemented by dis-
tributing the script to all nodes in the assembly and let each
node handle a part of the eventhandler script. When the
member set of assemblies varies over time it is important
that the distribution of the interpretation of the script is done
in such a way that nodes leaving the network have as little
influence as possible on the execution of the assembly. This
means that if an assembly requires that a service S1 should
invoke another service S2, the connection between the services
should be handled by the nodes hosting S1 or S2. Hereby, that
part of the assembly only fails if S1 or S2 fail.

We propose to divide the handling of the eventhandler part
according to the following simple rule: An eventhandler clause
is handled by the node originating the out-going command in
the clause. As an example, the eventhandler clause in line 17–
20 in figure 3 is handled by the pda node because the out-
going command invocation comes from the pda. Similarly,
lines 21–25 should be handled by each of the sticks.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

65

Only nodes that participate in the assembly should receive
the script. This requires that the distribution of the script itself
depends upon the script. One way to accomplish this could be
to flood the network in a n-hop radius with the script and let
nodes not matching the device declarations ignore the script.

Unlike its centralised counterpart, decentralised interpre-
tation requires that all nodes are able to interpret parts of
the scripts and this excludes a class of devices with very
limited resources. An alternative to completely decentralised
interpretation is to relieve some nodes of the interpretation
responsibility. This, however, requires a method for selecting
the nodes taking over the responsibility and is left as future
work.

V. CONCLUSION

In this paper we investigated the problem of handling
composite services with dynamic membership. We proposed
extensions of the PalCom assembly scripts that make it
possible to specify composites with dynamic member sets
and showed how a prototype scenario from the domain of
landscape architects could be implemented using the proposed
extensions. Finally, we outlined how the scripts can be inter-
preted in a decentralised manner.

We argue that the extended script language is simple and
understandable. The idea behind the language is a basic case
construct that specifies the flow of service invocations. A
visual representation of the language might further support the
user in understanding the scripts. Simplicity and understand-
ability are relative to the user and therefore it is important also
to make studies of end users working with the language. At
present, none of the extensions have been implemented and
therefore such studies are left as future work.

The suggested decentralised interpretation requires that all
participating nodes are able to interpret the script and that
can be a problem for very resource constrained devices. More
powerful devices acting as proxies for the limited devices
could be one way of handling this. In contrast to its centralised
counterpart, the decentralised interpretation have the potential
to scale better since no node have the sole responsibility for
all communication in the assembly. Since no implementation
exists at present, performance measurements are left as future
work.

ACKNOWLEDGEMENTS

The author acknowledges the work done by the participants
of the PalCom project to develop prototype scenarios and
design and implement the PalCom open architecture and
associated tools. The work presented in this paper has been
supported by ISIS Katrinebjerg (http://www.isis.alexandra.dk).

REFERENCES

[1] D. Svensson, G. Hedin, and B. Magnusson, “Pervasive applica-
tions through scripted assemblies of services,” in Proceedings
of 1st International Workshop on Software Engineering of
Pervasive Services, 2006.

[2] J. Brønsted, K. M. Hansen, and M. Ingstrup, “A survey of
service composition mechanisms in ubiquitous computing,” to

appear in ’Second Workshop on Requirements and Solutions
for Pervasive Software Infrastructures (RSPSI)’ at Ubicomp
2007. [Online]. Available: http://www.daimi.au.dk/∼jb/papers/
bronsted07b.pdf

[3] M. Román, B. Ziebart, and R. H. Campbell, “Dynamic applica-
tion composition: Customizing the behavior of an active space,”
in PERCOM ’03: Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications.
Washington, DC, USA: IEEE Computer Society, 2003, p. 169.

[4] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. An-
derson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall,
“System support for pervasive applications,” ACM Trans. Com-
put. Syst., vol. 22, no. 4, pp. 421–486, 2004.

[5] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service
composition for mobile environment,” Mobile Networks and
Applications, vol. 4, no. 10, pp. 435–451, August 2005.

[6] E. Kıcıman and A. Fox, “Using dynamic mediation to integrate
cots entities in a ubiquitous computing environment,” in Pro-
ceedings of HUC2000 , ser. LNCS, no. 1927, 2000, pp. 211–
226.

[7] S. Maffioletti, M. Kouadri, and B. Hirsbrunner, “Automatic
resource and service management for ubiquitous computing en-
vironments,” Pervasive Computing and Communications Work-
shops, 2004. Proceedings of the Second IEEE Annual Confer-
ence on, pp. 219–223, 2004.

[8] M. Vallee, F. Ramparany, and L. Vercouter, “Flexible Com-
position of Smart Device Services,” in The 2005 International
Conference on Pervasive Systems and Computing (PSC-05), Las
Vegas, Nevada, USA., June, 2005, pp. 27–30.

[9] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste,
“Project Aura: toward distraction-free pervasive computing,”
Pervasive Computing, IEEE, vol. 1, no. 2, pp. 22–31, 2002.

[10] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd,
“ICrafter: A Service Framework for Ubiquitous Computing
Environments,” Proceedings of Ubicomp, vol. 1, 2001.

[11] Y. Yang, F. Mahon, M. H. Williams, and T. Pfeifer, “Context-
aware dynamic personalised service re-composition in a perva-
sive service environment,” in Proceedings of Ubiquitous Intelli-
gence and Computing, ser. LNCS, vol. 4159. Springer, 2006,
pp. 724–735.

[12] W. K. Edwards, M. W. Newman, J. Z. Sedivy, and T. F. Smith,
“Bringing network effects to pervasive spaces,” IEEE Pervasive
Computing, vol. 4, no. 3, pp. 15–17, 2005.

[13] W. K. Edwards, M. W. Newman, J. Sedivy, and S. Izadi, “Chal-
lenge:: recombinant computing and the speakeasy approach,”
in MobiCom ’02: Proceedings of the 8th annual international
conference on Mobile computing and networking. New York,
NY, USA: ACM Press, 2002, pp. 279–286.

[14] PalCom - making computing palpable. [Online]. Available:
http://www.ist-palcom.org

[15] PalCom, “PalCom External Report no 50: Deliverable
39 (2.2.2): PalCom Open Architecture,” PalCom
Project IST-002057, Tech. Rep., 2007. [Online].
Available: http://www.ist-palcom.org/publications/deliverables/
Deliverable-39-[2.2.2]-Palcom-Open-Architecture.pdf

[16] ——, “PalCom External Report no 57: Deliverable 43 (2.6.2):
End-User Composition: Software support for assemblies,”
PalCom Project IST-002057, Tech. Rep., 2007. [Online].
Available: http://www.ist-palcom.org/publications/deliverables/
Deliverable-43-[2.6.2]-EndUserComposition.pdf

[17] R. Moats, “URN Syntax,” RFC 2141 (Proposed Standard),
Internet Engineering Task Force, Tech. Rep. 2141, May 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2141.txt

[18] MIME Media Types. [Online]. Available: http://www.iana.org/
assignments/media-types/

[19] PalCom: On Site. [Online]. Available: http://www.ist-palcom.
org/application-areas/on-site/

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

66

X67X

End-to-end Middleware for Distributed Sensor
Applications

Nelson Matthys, Sam Michiels, Wouter Joosen and Pierre Verbaeten
IBBT-DistriNet, Department of Computer Science, K.U.Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
{nelson.matthys, sam.michiels}@cs.kuleuven.be

Abstract—Many industrial applications, such as supply chain
logistics, may considerably benefit from the use of wireless sensor
networks (WSNs), as their involved logistics services (product
tracking, localization, or asset monitoring) require real-time
sensor information. However, developing such distributed sensor
applications is a complex process, as these applications are
distributed in an end-to-end fashion across a huge amount of
heterogeneous platforms, and deployed in dynamic operational
environments. Therefore, a middleware platform is needed which
offers on the one hand generic services and enables the inte-
gration of application-specific plugins, while on the other hand
offers support for the composition of those services under various
scenarios. In this paper, we present the key research challenges
in developing and managing distributed sensor applications. We
describe the main components of the middleware architecture
and show their relation to the identified key challenges. This
analysis and design of a middleware architecture is an important
step towards using WSNs in a realistic business context.

Index Terms—Sensor middleware, distributed software archi-
tecture, multi-tiered architectures

I. INTRODUCTION

The environments in which distributed software applications
execute become more and more dynamic, heterogeneous and
integrated with the physical world. It is generally accepted that
wireless sensor networks form a key and emerging technology
that enables this evolution. Supply chain logistics represents
a typical example of such a distributed application that can
benefit from the use of WSNs to track, localize or monitor
products while they are being transported using different
means such as trucks, ships and trains.

Applications for distributed logistics control, for instance,
may use a large number of sensor nodes and RFID-tags that are
deployed close to - or even inside - the object being observed.
For instance, fruit and vegetables logistics providers might
equip each crate with a sensor node to track their equipment
and monitor the conditions of the products being placed
inside. The asset management system of the logistics provider
could then monitor the conditions of the transported products.
Whenever certain conditions are violated (e.g. temperature
exceeds a given threshold), the system can trigger an alert
and inform the responsible employees.

Many of these applications are implemented as cooperat-
ing software components residing on different infrastructural
components, such as programmable sensor nodes, (mobile)
gateways or access points, end-user devices, and back-end
systems. For instance, the enterprise asset management system

consists of services, deployed on sensor nodes, (e.g. temper-
ature sensing or localization), on gateways or access points
(e.g. aggregation or access control), and applications on an
employee’s PDA (e.g. a web-browser) or back-end servers (e.g.
the management system).

However, as WSNs arise as a promising solution for these
distributed sensor applications, their development and man-
agement is complex and thus comes at a certain cost. Besides
the typical characteristics of wireless sensor networks, such
as resource-scarcity, energy limitations, and unreliable wireless
communication, this complexity is mainly due to three reasons.

First, applications are distributed in an end-to-end fashion
across (i) programmable sensor nodes attached to products or
packings, (ii) (mobile) gateways and wireless access points,
placed in warehouses or storage sites, and (iii) a network of
end-user devices and enterprise back-end systems. This means
that applications must be able to deal with various kinds of
heterogeneity, both in platform and network type (resource-
constrained wireless sensor nodes, gateways and fixed WiFi
access points, application servers), as well as in environment
(deployed in indoor, outdoor, or even mobile environments).

Second, as logistics providers ship millions of tons of goods
annually, distributed sensor applications typically involve huge
amounts of devices. This extreme scale of deployment makes
manual management of all devices infeasible.

Finally, the execution environment of distributed applica-
tions is subject to dynamism. Changes in end-user application
requirements, user mobility or other scenarios requires the dis-
tributed application to take specific actions. For instance, when
products enter a warehouse, the inventory management system
could automatically require a more fine-grained localization
service to be deployed on each product.

These three challenges indicate that the provision of an end-
to-end sensor middleware could support the distributed sensor
application’s developer and manager. We define such an end-
to-end sensor middleware as follows: a middleware layer that
is distributed over, and build upon a heterogeneous set of
devices, ranging from small programmable sensor nodes, over
gateway devices and network infrastructure, towards back-end
systems. This middleware layer can be tailored to fit on each
device platform and it can be customized to provide support
according to the applications’ different needs.

The main contributions of this paper are that (i) it identifies
the key challenges that make the development and man-

68

agement of distributed sensor applications hard, and (ii) it
proposes an end-to-end sensor middleware architecture that
tries to tackle these challenges.

The paper is organized as follows: Section II gives a short
overview of the domain of distributed sensor application devel-
opment and management, while Section III elaborates on the
key research challenges for building such systems. Section IV
sketches our proposed middleware architecture and illustrates
how this middleware handles these challenges. Section V
illustrates related work. Finally, Section VI summarizes our
contributions and identifies future work.

II. ANALYSIS

This section provides an in-depth analysis of the problem
domain of distributed sensor applications. It describes the
involved stakeholders and their role on the development and
management of the different installed applications and ser-
vices.

A. Involved stakeholders

There are many different stakeholders involved in the de-
velopment and management of distributed sensor applications.
We identified four main categories of stakeholders: end-users,
technology providers, platform providers and integrators.

In the context of supply chain logistics, end-users could
be, for instance, logistics providers, manufacturers, or whole-
salers. These end-users typically pose several application and
information requirements, that might change over time.

The required hardware technology and sophisticated al-
gorithms or protocols for distributed applications are deliv-
ered and implemented by technology providers or special-
ists. In the previously sketched context, programmable sensor
nodes, RFID-tags and readers form the underlying technology,
while algorithms like localization, protocols like timesync, or
platform-specific implementations like a temperature sensor
driver are typically provided by technology specialists.

Platform providers are responsible for the coupling of the
different hardware platforms into a common communication
platform. This communication platform allows software com-
ponents, residing on different devices, to exchange any type
of information with each other.

Finally, integrators are responsible for the integration of
application requirements from end-users with the platform
and technology from platform and technology providers. This
integration is translated by the development and deployment
of several application components on the underlying commu-
nication platform. These application components may use the
platform’s offered services to achieve their goals.

B. Involved services and their management

Distributed software systems consist of several cooperating
services and applications. Services are implemented as com-
ponents, offering specific functionality, and exposing their API
towards applications or other services. Applications are soft-
ware components that may then use these APIs in combination
with application logic to achieve their goals.

Services can be classified into two categories. First of all,
there exist services that are needed to perform application-
specific functionality, such as localization, tracking, temper-
ature sensing, etc. Second, there exist services that are re-
lated to non-functional requirements, such as authentication
or authorization, aggregation, group management, etc. The
first category is in general used by integrators to develop
applications, while the second category is in general used by
platform providers, responsible for network management.

Several stakeholders are responsible for the management of
the distributed software system. Integrators are responsible for
the management of business applications, and thus they need
to maintain the different installed applications and services on
the distributed communication platform. Platform providers
are responsible to keep the underlying communication plat-
form up and running, which includes the management of
data (e.g. by providing caching in the infrastructure) and
general network management. Finally, technology providers
are only responsible for the maintenance of system-specific
components residing on each device.

III. RESEARCH CHALLENGES

Several key challenges arise when building such complex
distributed systems based on sensor networks. In this section,
we identify three key challenges that must be handled when
developing and managing realistic sensor applications: (i)
heterogeneity, (ii) scale of deployment, and (iii) dynamism.

A. Heterogeneity

Heterogeneity is a complex key challenge to deal with
when building distributed software systems, especially in the
context of sensor networks as it mainly complicates uniform
management. Heterogeneity exists at multiple levels: (i) re-
source and network heterogeneity, (ii) heterogeneity in posed
requirements, and (iii) platform heterogeneity. From a software
perspective, modularization is an excellent approach to deal
with these different kinds of heterogeneity, as it allows one
to customize the software being installed on the different
infrastructural components and under different application
scenarios.

In the context of supply chain logistics, resource heterogene-
ity is very common as there are many different types of devices
involved, ranging from simple wireless sensor nodes, gateway
nodes, employees’ PDAs towards powerful application servers.
Heterogeneity in network types is also common since sensor
nodes communicate with each other using low bandwidth
radio communication (ZigBee), while PDAs and gateways or
access points may use WiFi, and application servers in general
use high-speed network connections. Requirements can be
heterogeneous as well, as they may be related to quality-of-
service (QoS) or quality-of-data (QoD), security, performance,
etc. Finally, besides sensor networks, other kinds of distributed
systems, such as P2P networks or grid infrastructures for
data processing, may as well be involved in the context of
distributed industrial applications, resulting in a wide hetero-
geneity in computing platforms.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

69

B. Scale of deployment
Realistic distributed sensor applications typically consist of

a huge amount of devices, crossing system administration
and enterprise boundaries. As a result of this large-scale
deployment, manual management of all devices is considered
infeasible as it is cost-inefficient and often error-prone. High-
level policy interpretation and distributed coordination mech-
anisms can provide a solution to perform safe and efficient
automated management.

C. Dynamism
The operational environment of large-scale distributed sys-

tems is subject to changes in time. To deal with this dynamism,
distributed applications should be developed using reusable
components. This approach allows one to easily replace in-
dividual components. Together with this component-oriented
approach and by implementing coordination mechanisms, one
can achieve consistent system and platform-wide adaptations.

In realistic distributed applications, dynamic changes hap-
pen due to, for instance, the changing of end-users’ require-
ments, network or device failures. This dynamism may have
influence on the installed applications and services. Not only
existing functionality can therefore alter or be removed, also
new functionality could be required to be installed. This
adaptation of functionality and behavior of distributed sensor
applications is not without any risk. First, one must take care
that existing applications can be broken if an installed com-
ponent is modified, disabled or completely removed. Second,
safe distributed reconfigurations are difficult to achieve in sen-
sor networks mainly through resource limitations, unreliable
communication, and the huge amount of involved devices.

IV. ARCHITECTURE

Based on the key research challenges, discussed in Section
III, we propose in this section an architecture for an end-to-end
sensor middleware that handles these challenges. The archi-
tecture is an integration layer on top of an underlying multi-
tiered system. This layer allows one to deploy applications on
it, as well as provide management support for the underlying
distributed system.

A. Underlying system
As explained in Section I, distributed applications using sen-

sor networks traditionally consist of different levels, namely
programmable sensor nodes, gateways, and back-end systems.
Therefore, the underlying system to deploy distributed sensor
applications on will be based upon multiple tiers, where each
tier houses a device class.

In the context of supply chain logistics, we consider at least
four different classes of devices, which are illustrated in Figure
1. Basic sensor nodes, attached to products, reside in the basic
or lower tier, while more advanced sensor nodes, attached to
logistic infrastructure, reside in the aggregate tier. Gateways,
access points and employee’s portable devices reside in the
communication tier, while enterprise systems running back-
end application software reside in the highest or enterprise
tier.

Enterprise Tier

Communication Tier

Aggregate Tier

Basic Tier

Fig. 1. Multi-tiered architecture for the supply chain platform

B. End-to-end middleware as integration layer

There is the need to integrate the technology and software
components residing on each tier in order to form a common
end-to-end platform where integrators and service providers
can easily deploy applications and services on. The middle-
ware therefore provides a uniform layer on each of the four
tiers. This integration layer provides support for customiza-
tion and management of component compositions, tailored to
the capabilities and responsibilities of the underlying device
platform.

C. Key middleware components

The proposed middleware architecture is illustrated in Fig-
ure 2, and is based on a component-oriented programming
model. The architecture is structured around three main sub-
systems. Each subsystem is responsible for a category of
management: (i) management of installed functionality, (ii)
platform and network management, and (iii) device specific-
management. The component-oriented programming model
allows each subsystem to be customized to the hardware
capabilities and responsibilities of the underlying devices.

1) Subsystems: The core runtime subsystem is needed to
assure the correct execution of the installed components. To
handle resource, network and platform heterogeneity (see
Section III), the core runtime subsystem is implemented on
top of a uniform layer: the core runtime API. The API’s
functionality is implemented in a platform-specific manner.
The API includes operations for instantiation, linking and
removal of components, as well as for keeping track of the
interactions between the different components in the middle-
ware framework. The subsystem itself provides an API that
can be used by the different responsible stakeholders to gain
access to and information from the subsystem’s components.

The management subsystem is used by network managers
to control the behavior of the underlying communication plat-
form. For instance, one can install caching services, perform
automated management and grouping control to deal with
the scale of deployment and the inherent dynamism of the
infrastructure due to network failures and topology changes.

Finally, the functional subsystem exposes a well defined API
towards integrators or service providers to allow them to de-
ploy services (e.g. a localization service) and applications (e.g.
a container monitoring application, combining measurements
from different types of sensors) on the platform. All services
have a service descriptor SD, which is a high-level language
description used to describe the behavior of the service (e.g.
to specify its required services or interaction paradigms).

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

70

Core Runtime API

Operating System

Communication Resources

Data

Manager

Policy

Manager

DMI PMI
GMI

Req DMI

Service Repository Application Repository

S
SD

SMI

Req SMI

AMI

Req PMI

Req AMI

Req GMI

Group

Manager

Monitoring

Engine

Communication

Manager

Reconfiguration

Engine Req MEIREI

Req REI CMI

Req CMI

CMI

Policy

Functional

Subsystem

Management

Subsystem

Core Runtime

Subsystem

FSI

MSI

CRTSI

MEI

Application & Service

Providers

Network

Managers

Technology

Providers

<<To CRTSI>>

<<To MSI>>

<<To MSI>>

<<To FSI>>

S
SD

A
AD

A
AD

<<To CRTSI>>

Interpreter

Enforcer

<<To MEI>>

Fig. 2. The proposed middleware architecture, as seen from a local perspective

A similar descriptor (AD) is included with each end-user
application component. This AD can for instance specify that
the container monitoring application requires three different
sensor services (e.g. temperature, humidity, door monitoring).

2) Components residing in each subsystem: The monitoring
engine is responsible for gathering information about the
different interactions and connections between the installed
components. This information can then be passed to the recon-
figuration engine to assist with dynamic reconfigurations (e.g
replacing a service that is required by other services). Com-
munication between different devices across adjacent tiers is
possible through the communication manager, which provides
a uniform abstraction for inter-component communication.

The management subsystem consists of network and re-
source management components, such as a group manager
(e.g. to gather temperature readings from a group of nodes) and
a data manager (e.g. to provide data caching of temperature
readings). To deal with the management of large-scale sensor
applications, we provide a policy manager. This compo-
nent is connected to the monitoring engine to gather details
about the current middleware configuration. It deals with the
translation of business policies into lower level configuration
descriptions. The policy manager can for instance instruct the
reconfiguration engine to execute a dynamic reconfiguration
if the operational environment is subject to change (e.g. when
products are placed in a cooled container, the middleware can
decrease the temperature sampling rate or turn off the service).

Finally, the functional subsystem provides a service repos-
itory and an application repository, which allows one to
keep track of the installed services (resp. applications) and
deploy new services (e.g. localization or temperature sensing),
resp. applications (e.g. alert signalization). Both repositories
depend on the policy manager, as they take application or

service descriptors and pass them to the manager. Based
on the installed policies, the policy manager can then pass
this information to other components (e.g. the caching data,
coming from the temperature service, in the data manager, or
reconfiguring the middleware to install the required services).

D. End-to-end distribution

Figure 3 gives an example of a possible configuration of
the sensor middleware across multiple tiers in the context of
supply chain logistics. Each tier consists of a customizable
subset of interacting components, associated with the tier’s
responsibilities and capabilities.

As the figure illustrates, the basic tier is only offering simple
services to applications residing on its upper tiers (e.g. temper-
ature sensing), whereas the aggregate tier is responsible for the
managing, tasking and aggregating data of its associated nodes
in the basic tier. The communication tier is mainly responsible
for data and network management through, for instance, data
caching and access control to network resources. Finally,
the enterprise tier in general does not take care of network
management. It only executes end-user applications (e.g. the
enterprise asset management system) and requires data coming
from the network. The enterprise tier is however mainly
responsible for the triggering of dynamic reconfigurations,
which then need to be performed inside the network. Finally,
to deal with the extreme scale of deployment, each tier has the
policy interpreter and reconfiguration engine enabled, to allow
uniform and flexible management of the entire distributed
infrastructure.

V. RELATED WORK

Tenet [3] leverages on a two-tiered architecture for sensor
networks that provides a fixed tasking library to program

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

71

Enterprise Tier Communication Tier Aggregate Tier Basic Tier

Asset Management System Caching Access Control Aggregation Container Monitoring Temperature sensing

Fig. 3. Example configuration of the middleware in the context of supply chain logistics

applications. Nodes in the lower tier are managed and tasked
by the upper tier nodes. In this context, the tenet approach fits
in between the aggregate and basic tiers. Dynamic reconfigu-
rations are however not possible, as the tasking library cannot
be extended dynamically.

DAViM [6] leverages on state-of-the-art virtual machine
technology for sensor networks. It treats the sensor network
as a lightweight service platform, by allowing multiple appli-
cations to be run concurrently. Additional services and appli-
cations can be dynamically installed, changed and removed in
the network. DAViM can serve as an representative middleware
platform as it implements similar service and application
repositories, as well as a concurrency manager. We argue that
an extended version of DAViM may serve as a platform for the
two lower tiers, however it is currently bounded to the devices
residing in the aggregate tier due to its memory requirements.

To support the dynamic deployment of distributed applica-
tions on heterogeneous platforms, the RUNES middleware [2]
leverages on the GridKit [4] middleware. RUNES implements
a middleware kernel with a fixed API and provides reconfigu-
ration support to deal with environmental dynamism. However
it does not support large-scale application management.

The OSGi framework [1] consists of a component model,
which is suitable for mobile devices residing in the communi-
cation tier. OSGi allows components to be adapted at runtime,
however it does not provide support distributed reconfigura-
tions, component monitoring, and policy-based management.

Finally, policy-based management approaches, such as Pon-
der2 [5], exist for sensor networks. Ponder2 implements a Tiny
Policy Interpreter that provides support for specification and
enforcement of dynamically loadable policies. The Ponder2
approach is comparable with our proposed policy interpreter,
however it is focused on policy enforcement and not on the
translation into lower level configuration descriptions.

VI. CONCLUSION AND FUTURE WORK

We described the key research challenges (heterogeneity,
scale of deployment, and dynamism) that must be handled
when building large distributed sensor applications. Based on
these challenges and from a representative example in the
domain of supply chain logistics, we proposed a customizable
end-to-end middleware architecture on an underlying multi-
tiered platform. The middleware integrates the different tiers,
and provides, through specific components, support for the
identified key challenges.

Although many research projects are investigating the de-
velopment of sensor middleware, we are not aware of other
in-depth requirements studies within a particular application
domain, especially when focusing on the end-to-end spectrum
of sensor application development. Therefore, we would like
to receive support from the community whether the identified
subsystems and components (especially the monitoring engine,
policy and data manager) are relevant. In the near future,
we will also consider security and interoperability between
different platforms and (remote) services as other important
key challenges for building distributed applications.

We are currently implementing a proof-of-concept of the
architecture in the context of a project with industry in which
applications for temperature control and tracking will be
deployed. The prototype will combine heterogeneous sensor
nodes running various operating systems in different tiers.
We are especially investigating the policy-based approach to
manage these large-scale distributed systems.

ACKNOWLEDGMENT

The authors are grateful to Wouter Horré for his valuable
comments on the paper and for proof reading the text. Re-
search for this paper was sponsored by IBBT, the Interdisci-
plinary institute for BroadBand Technology, and conducted in
the context of the MultiTr@ns project [7].

REFERENCES

[1] OSGi Alliance. About the OSGi Service Platform, technical whitepaper,
revision 4.1, June 2007.

[2] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Luca Mottola, Gian Pietro
Picco, and Stefanos Zachariadis. Reconfigurable component-based mid-
dleware for networked embedded systems. International Journal of
Wireless Information Networks, 2006.

[3] Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki,
Jeongyeup Paek, Marcos Vieira, Deborah Estrin, Ramesh Govindan, and
Eddie Kohler. The tenet architecture for tiered sensor networks. In
Proceedings of the ACM Conference on Embedded Networked Sensor
Systems (Sensys), Boulder, Colorado, November 2006.

[4] Paul Grace, Geoff Coulson, Gordon S. Blair, and Barry Porter. Deep mid-
dleware for the divergent grid. In Proceedings of the ACM/IFIP/USENIX
6th International Middleware Conference, pages 334–353. Springer
Berlin / Heidelberg, 2005.

[5] S Keoh, K Twidle, N Pryce, A. Schaeffer-Filho, E. Lupu, N. Dulay,
M. Sloman, S. Heeps, S. Strowes, J. Sventek, and E. Katsiri. Policy-based
management of body-sensor networks. In Proceedings of the International
Workshop on Wearable and Implantable Body Sensor Networks, March
2007.

[6] Sam Michiels, Wouter Horré, Wouter Joosen, and Pierre Verbaeten.
Davim: a dynamically adaptable virtual machine for sensor networks.
In Proceedings of the First International Workshop on Middleware for
Sensor Networks (MidSens), November 2006.

[7] Multitrans project. http://projects.ibbt.be/multitrans.

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

72

X73X

Using COSMIC – A real world case study combining virtual and
real sensors

Michael Schulze and Sebastian Zug
Otto-von-Guericke University
Faculty of Computer Science

Department of Distributed Systems (IVS)
Universitätsplatz 2
D-39106 Magdeburg

{mschulze, zug}@ivs.cs.uni-magdeburg.de

Abstract

The cooperation of distributed nodes in sensor
networks forms a dynamic structure of informa-
tion providers and information consumers termed as
sources and sinks. Often, the used nodes differ by
the available performance, network capabilities, oper-
ating system, applications etc. although, all of them
have to be integrated in an appropriate network struc-
ture. Hence, a middleware is necessary to provide a
common communication interface for the network in
the whole system to cover the heterogeneity. To en-
able the integration on different platforms and into
different systems the COSMIC middleware itself is
designed flexibly and adaptively.

In this paper we present a cross platform case
study, which shows the information exchange via
COSMIC between micro-controllers and PCs on dif-
ferent network types by C or C++ applications and
Matlab/Simulink. The case study illustrates, apart
from other features, the possibility for an experimen-
tal setup combining virtual and real sensors/actuators
in the sense of hardware in the loop scenarios.

1 Introduction

Complex mechatronic systems like cars, mobile
platforms etc. join a large number of embedded sen-
sor/actuator modules which individually or combined
make information available, support calculations and
data exchange or influence their environment actively.
These systems are currently limited in their imple-
mentations and behaviour by a predefined structure
of functionalities, interfaces and information sources.
Additional interaction with other dynamically ap-
pearing components of an intelligent environment are
neither intended nor possible. However, only if an
application can use all available possibilities of its

environment, its tasks will be optimally completed.
Hence, for a distributed approach of data aggregation,
analysis and the resulting interactions a middleware
is necessary.

The role of the middleware in an embedded net-
work is manifold: Firstly, as argued above, it has to
hide the different addressing and routing mechanisms
of the various physical sub-networks. All applications
should use a common communication interface. Sec-
ondly, as the underlying networks often have different
quality properties, it must provide means to handle
this. Additionally, the middleware should support
dynamic network configuration issues like adding or
omitting components without reconfiguring all sub-
nets completely. Therefore the chair of Embedded
Systems and Operating Systems developed an event-
based Publish/Subscribe middleware termed COS-
MIC (COoperating SMart devICes).

In this paper, we describe a case study based on
an experimental setup using COSMIC to illustrate
the potential of a common communication interface
for the development of embedded systems. The paper
is structured as follows: In section 2 we briefly intro-
duce the concept of COSMIC. Section 3 describes the
experimental platform, the application structure and
analysis options and challenges. The conclusion and
future remarks are summarised in section 4.

2 COSMIC

The COSMIC middleware described in [3, 4] of-
fers an event-based communication model accord-
ing to the publisher/subscriber concept. COSMIC
is especially designed to allow cooperation between
smart sensors and actuators on different hardware
platforms ranging from 8-bit micro-controller up to
32-bit PC/Workstations and interacting over a broad
variety of communication media like Controller Area
Network (CAN) [8],ZigBee [9], TCP/IP to name a

X74X

few.
In COSMIC an event is a programming abstrac-

tion and the carrier of the exchanged information. A
COSMIC event consists of three different parts:

• a subject, represented by a unique identifier
(UID) that describes the content,

• the content or payload itself for instance the
value of a distance measurement and

• additional attributes (e.g. sensor position, con-
text, quality) which are optional.

Events may arise in two different ways . Firstly, an
event is spontaneously generated by the hardware be-
cause of a detection on a sensor interface. This means
the physical environment is the stimulus of an event.
Secondly, an event is periodically initiated by a clock
to sense a change of a variable or of a state within
the system.

Beside events COSMIC uses event channels as ab-
straction for event transfers. An event channel has
the same subject as the corresponding event. The
event is published by pushing it to the according event
channel. In case of subscription, the occurrence of an
event is notified to the application by the event chan-
nel. The programming abstraction event channel is
introduced mainly to map the UID of an event to
specific network addresses and therefore it hides the
heterogeneity of the different network architectures
by providing a global addressing scheme. Further-
more the event channel is used for network resource
allocation - for instance a part of the bandwidth. De-
pending on temporal constraints or the importance
of the event, the event is classified into three different
quality levels which are hard real-time (HRT), soft
real-time (SRT) and none real-time (NRT).

In COSMIC all events are handled by the event
channel handler (ECH) which is part of the event
layer (EL). The EL- marked by a filled circle in figure
1- is the interface to application level. Consequently,
the publisher uses the EL to send events to event
channels and on the other hand the EL provides the
subscriber with notification and supports it by read-
ing of events from event channels.

COSMIC

AVR Linux
PC

Windows
PC

TCP/IPCAN ZigBee

Hardware

SensorsSensorsSensor

GatewayNetworks Gateway

AVR

Sensor

ECH

Figure 1. Current network structure

A possible implementation of the network struc-
ture with various hardware platforms as well as com-

munication media is shown in figure 1. To allow
information exchange between publisher and sub-
scriber over network boundaries, the networks are
connected by gateways. Currently, implementations
of COSMIC for Atmel AVR micro-controllers, Mo-
torola HC08, Siemens C167, Linux and Windows were
realized which support the communication via CAN
and TCP/IP.

The COSMIC middleware is implemented as a
family [6] to achieve flexibility, adaptability and de-
pendability. The implementation for the AVR micro-
controller is an example of such a member of that
family. The common functionality of the family is
an intrinsic part of each member regardless of the
platform where COSMIC is instantiated. Then the
platform-specific functionality is only part of the rele-
vant family member. Moreover, the design as a family
allows a fine-grain selection of the required function-
ality necessary to spare the constrained resources on
the embedded system. For example to deal with the
limited memory (e.g. few kilobytes in sensor nodes),
the software should only provide the functions actu-
ally needed by the application. In order to reach this
goal, the functionality of the middleware is a collec-
tion of configurable components and functions. De-
sign decisions about the required properties are de-
ferred as long as possible and often determined by
application needs.

Apart from the functional properties, the encap-
sulation of non-functional requirements - like de-
pendability issues and real-time properties - need a
separate treatment. These requirements - termed
crosscutting concerns - are often fundamental sys-
tem policies and refer to issues as robustness, fault-
tolerance and real-time. Since crosscutting, quality
features may apply to multiple functions and it is im-
possible to implement them as independent encap-
sulated entities. However, this would restrict the
above-mentioned freedom of selection and adapta-
tion. Aspect-oriented programming (AOP) seems to
be a suitable possibility to deal with crosscutting
concerns [5]. AOP allows separating the functional
middleware components and non-functional compo-
nents called aspects. Aspects are woven into the mid-
dleware during build time. Thus there is no extra
runtime overhead to dynamically introduce these as-
pects.

3 Case Study: Interoperable network

3.1 Hardware description
As test environment for our software we use a de-

velopment platform consisting of 4 nodes connected
via a Controller Area Network (CAN). Each con-
troller can be equipped with additional interfaces
(sensor connection, ZigBee board, serial communica-
tion adapter) and is programmed separately or jointly

2

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X75X

using CAN very comfortably. One of the nodes in-
cludes a LED array for visualization. For simulation
of failures, each controller can be switched off individ-
ually. Therefore, tests for a dynamically changeable
network structure are possible. As depicted in fig-
ure 2, two sensors are integrated, i.e. a temperature
and a distance sensor as representation of real sensor
data. PCs can be integrated in the CAN network as
well as being connected with each other via TCP/IP.

The micro-controllers run our PURE operating
system and the PC works under Linux (in near fu-
ture under Xenomai - areal-time Linux extension [1])
or Windows. The communication is handled by COS-
MIC.

Figure 2. Development platform

As actuators, several mobile robots can be inte-
grated in the network.

3.2 Software structure
The test environment demonstrates the flexibility

of the distributed approach in two scenarios

1. ”Real” sensors produce information which is con-
sumed by other participants for data logging, vi-
sualization and data fusion.

2. Virtual sensors - like a PC - publish logged or
calculated data instead of measured values.

The subscriber cannot differentiate between these two
channel sources. Hence, the seamless interchangeabil-
ity provides modern development methods like Hard-
ware and Software in the Loop.

For the first case, our distance sensor periodically
captures a voltage value as representation of the dis-
tance between sensor and an obstacle . This informa-
tion is published on the CAN, and node 3 in figure 3
reflects the events by an LED array. The Linux PC
works in two ways. Firstly, it acts as a gateway for the
connection of CAN and TCP/IP. Secondly, a small C
application runs, which is subscribed for the distance
channel. It calculates a distance in [cm] by the volt-
age value and logs all values at the same time. The
use of Xenomai will offer real-time functionalities in
this context. In Matlab/Simulink a median filter and
a graphical user interface is used for a comfortable vi-
sualization of the sensor data. Further developments
for data analysis, fusion and visualization will exploit

the manifold number of toolboxes for Rapid Prototyp-
ing. In order to provide real-time applications such
implemented models can be transferred and used by
code generation tools for different platforms.

In the second scenario, sensor node 2 is switched
off. Logged or calculated data are propagated by a
Linux application or from Matlab/Simulink. Node 3
depicts the value as in the first scenario. This means
if a mobile robot logs all information about its en-
vironment once, the replayed data can be used for
instance in reproducible examinations of navigation
or control algorithms .

Gateway
Linux PC

Matlab Application
Windows PC

CAN-Bus TCP/IP

Experimental Platform

1

2

3

4

Distance
Sensor

Temperature
Sensor

LED array

Figure 3. Scenario software scheme

4 Conclusion and Future Remarks

The simple demonstration setup illustrates the
practical possibilities of a distributed system with a
transparent communication via middleware.

1. A transparent and defined uniform interface sup-
ports application developers considerably. The
design and implementation of distributed embed-
ded systems can be accelerated by concentration
on the application.

2. The dynamic adaptability of the system on run-
time reacts to the appearance and disappearance
of components caused by communication prob-
lems.

3. Exchangeable data sources and sinks simplify ex-
periments combining real components and vir-
tual modules. Hence, the test scenarios can
use predefined reproducible information gener-
ated by a simulation first and validate the results
by real measurement data.

4. The monitoring of the data transfer by estab-
lished engineering programs supports Rapid Pro-
totyping development for data aggregation, fu-
sion and interpretation.

Point 1 in this enumeration is based on manifold
versions of COSMIC. Hence, a family of COSMIC

3

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X76X

and appropriate operating systems are necessary for
different hardware environments.

The current COSMIC implementation offers non-
real-time communication only. For further extensions
a time synchronisation will be included to offer real-
time event channels. Therefore first drafts of the syn-
chronisation algorithm presented in [2] reach average
time deviations of 6µs. This synchronisation is fun-
damental for more complex dynamic data fusion al-
gorithms.

For an adaptability of the network mentioned
in point 2 and 3 two aspects have to be consid-
ered. Firstly, each channel should provide infor-
mation about its events like sensor type, measuring
ranges, noise performance etc. Therefore [7] inte-
grates functionalities for electronic data sheets and
establishes appropriate service discovery functions in
COSMIC. Secondly, intelligence for the information
selection has to be designed for data sinks.

Point 4 is aimed at an advanced integration of
Matlab/Simulink toolboxes for a flexible and dynamic
data fusion.

As a more interactive test platform, we will use
”Q” - a quad drive robot 4 - for further steps. Q repre-
sents the distributed approach very consequently. It
consists of four independently steerable driving units,
each monitored by a micro-controller and a number of
infrared sensors. Additional gyroscopes and compass
modules can be integrated. The network is connected
by a CAN.

Figure 4. Mobile robot Q

The sophisticated mechanical drive system of Q offers
movements with many degrees of freedom (e.g. mov-
ing and rotating simultaneously). Only with exten-
sive communication, distributed controlling and flexi-
ble interaction of all modules tasks - ”Driving through
a door without collision” - can be completed. Using
this in experimental setups, virtual sensors (smart
bumpers, ultrasonic etc.) can simulate obstacles or
disturbances for testing control algorithms. So the
real environment with a robot system can be super-
imposed by virtual elements. After testing, the sub-

scribers of the virtual environment are switched off
and the robot works correctly without any changes
in software. Complex moving patterns, path plan-
ning and so on can therefore be tested without the
danger of physical damage or increased mechanical
stress.

References

[1] Xenomai: Real-time framework for linux.
[2] M. Gergeleit and H. Streich. Implementing a dis-

tributed high-resolution real-time clock using the can-
bus. In Proceedings of the 1st International CAN-
Conference. Mainz, Germany, 1994.

[3] J. Kaiser and C. Brudna. A publisher/subscriber ar-
chitecture supporting interoperability of the can-bus
and the internet. In 2002 IEEE International Work-
shop on Factory Communication Systems, Väesteras,
Schweden, August 28–30 2002.

[4] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira.
COSMIC: A middleware for event-based interaction
on CAN. In 9th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA 2003), Lisbon, Portugal, September 2003.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Aksit and S. Matsuoka,
editors, Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP ’97), vol-
ume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, June 1997.

[6] D. L. Parnas. On the design and development of pro-
gram families. IEEE Transactions on Software Engi-
neering, SE-2(1):1–9, March 1976.

[7] H. Piontek and J. Kaiser. Self-describing devices in
cosmic. 2004.

[8] Robert Bosch GmbH. CAN Specification Version 2.0.
1991.

[9] ZigBee Alliance. ZigBee Specification - IEEE
802.15.4. 2003.

4

5th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany

X77X

Index of authors

Allani, Mouna, 14

Benmouffok, Lamia, 58
Blair, Gordon, 26
Brønsted, Jeppe, 62
Busca, Jean-Michel, 58

Costa, Paolo, 48
Côrte-Real, José, 44

Felber, Pascal, 8

Garbinato, Benôıt, 14, 38

Holzer, Adrian, 38

Joosen, Wouter, 68

Kristensen, Mads, 32
Kropf, Peter, 8
Kummer, Raphaël, 8

Leggio, Simone, 20
Lin, Shen, 26
Luo, Jun, 38

Mascolo, Cecilia, 48
Matthys, Nelson, 68
Michiels, Sam, 68
Miranda, Hugo, 20
Mocito, José, 44
Musolesi, Mirco, 48

Nguyen, Tuan Dung, 54

Patrick, Eugster, 38
Pedone, Fernando, 14
Picco, Gian Pietro, 48

Raatikainen, Kimmo, 20
Rodrigues, Lúıs, 20, 44
Rouvrais, Siegfried, 54

Schulze, Michael, 74
Shapiro, Marc, 58
Stamenković, Marija, 14

Täıani, François, 26

Verbaeten, Pierre, 68

Zug, Sebastian, 74

78

	Table of contents
	Foreword
	Organisation
	Session 1: Streaming and Multicast
	Building multicast trees in ad-hoc networks, Raphaël Kummer, Peter Kropf, Pascal Felber
	A Gambling Approach to Scalable Resource-Aware Streaming, Mouna Allani, Benoît Garbinato, Fernando Pedone, Marija Stamenkovic
	Removing Probabilities to Improve Efficiency in Broadcast Algorithms, Hugo Miranda, Simone Leggio, Luís Rodrigues, Kimmo Raatikainen

	Session 2: P2P Systems and Overlay Networks
	GossipKit: A Framework of Gossip Protocol Family, Shen Lin, François Taïani, Gordon Blair
	Enabling Cyber Foraging for Mobile Devices, Mads Kristensen

	Session 4: Publish/Subscribe
	Strategies for implementing Peer-to-Peer Publish/Subscribe with Persistent Events in Wireless Settings, Eugster Patrick, Benoît Garbinato, Adrian Holzer, Jun Luo
	Probabilistic Publish/Subscribe in Mobile Ad Hoc Networks, José Mocito, José Côrte-Real, Luís Rodrigues
	Predictive Publish/Subscribe for Delay Tolerant Mobile Ad Hoc Networks, Paolo Costa, Cecilia Mascolo, Mirco Musolesi, Gian Pietro Picco

	Session 5: Architectures and Frameworks
	Towards a Peer-to-peer Middleware for Context Provisioning in Spontaneous Networks, Tuan Dung Nguyen, Siegfried Rouvrais
	Semantic Middleware for Designing Collaborative Applications in Mobile Environment, Lamia Benmouffok, Jean-Michel Busca, Marc Shapiro
	Handling membership dynamicity in service composition for ubiquitous computing, Jeppe Brønsted

	Session 6: Wireless Sensor Applications
	End-to-end middleware for distributed sensor applications, Nelson Matthys, Sam Michiels, Wouter Joosen, Pierre Verbaeten
	Using COSMIC -- A real world case study combining virtual and real sensors, Michael Schulze, Sebastian Zug

	Index of authors

