
Juno: Reconfigurable Middleware for Heterogeneous

Content Networking

Gareth Tyson
1
, Andreas Mauthe

1
, Thomas Plagemann

2
and Yehia El-khatib

1

1Computing Department, InfoLab21

Lancaster University, UK.
2University of Oslo, Norway.

{g.tyson, andreas, yehia} @comp.lancs.ac.uk

plageman@ifi.uio.no

Abstract. Multimedia Content distribution is playing an increasingly prominent

role in the Internet today, with a proliferation of diverse services and delivery

mechanisms. Due to this increasing heterogeneity the management of next

generation content networks is becoming increasingly complex. This paper

presents Juno, a configurable component-based middleware designed to address

the divergent nature of modern content networking. In Juno, functionality is

separated into pluggable components that can be dynamically attached,

detached and deployed, allowing the middleware to be specialised and adapted

for different applications and environments. To demonstrate how functionality

from (existing) content distribution networks can be realised through the

middleware, an application operating over BitTorrent and Pastry has been

developed using Juno. Through this, Juno is evaluated by looking at functional,

non-functional and performance aspects of the framework.

Keywords: Content networking, middleware, content distribution, peer-to-peer,

component-based engineering, content services.

1 Introduction

Multimedia content distribution is playing an increasingly prominent role in the

Internet with a huge array of distribution mechanisms available for a diverse range of

application areas. Early content distribution infrastructures [2] mainly focused on

delivering stored content. However, as network and end system capabilities have

increased there has also been an increasing demand for more diverse access

mechanisms. Originally this focused on media streaming, but since then, systems

have progressively begun to deliver more sophisticated applications such as video

conferencing [9], video on demand (VoD) [19] and Internet television (IPTV) [27].

This propensity has seen an explosion in services and applications available under the

umbrella term of content networking [22]. In contrast to traditional content

This work is supported by the Network of Excellence CONTENT (FP6-IST-038423)

distribution networks (CDN), content networks view the content itself as the focal

point of the network.

This next generation of content distribution, however, creates a number of issues

when both developing and deploying systems. These issues are primarily related to

the heterogeneity observed in content networks. This heterogeneity can be separated

into four areas:

a) Delivery Heterogeneity – characterised by a range of different delivery

mechanisms employed, e.g. stored, live streamed, interactive, etc.

b) Service Heterogeneity- determined by the range of services available to
improve the quality of experience, e.g. transcoding, content adaptation,

replication, etc.

c) Device Heterogeneity– originating from the range of devices used to access the

content, e.g. PCs, mobile phones, PDAs, etc.

d) Network Heterogeneity – reflected in the range of network capabilities available
to different devices, e.g. ADSL, Ethernet, Bluetooth, WiFi.

When developing a distributed content-centric system it is therefore necessary to

address these issues in order to provide the content network with the configurability

required by real-world deployment. At present this is mainly dealt with by the

application. However, we believe significant benefits can be gained by utilising

middleware designed to handle these concerns. Traditional middleware lacks the

required flexibility to manage this diversity as it is often restricted to dealing with

limited aspects of functionality. A number of configurable middleware platforms

[11][13][17][25] have been proposed but they do not address the specific issues

relating to next generation content networking.

This paper introduces Juno, a configurable content networking middleware that

addresses the heterogeneity of next generation content distribution. To achieve this,

Juno promotes high levels of (re)configurability, allowing the middleware (and

therefore the application) to be specialised and adapted to a variety of environments

and constraints. In order to successfully provide a holistic architecture for content

networking we believe it has to be: configurable, adaptable, functionally scalable,

and development oriented. These properties are integral to providing effective support

for content networking and therefore form the core principles of Juno.

Juno is designed in a component-based manner and has been implemented using

the OpenCOM v1.4 [12] component model in Java. In order to demonstrate the

feasibility of the approach we show how BitTorrent functionality can be implemented

in Juno. Using an application developed over the middleware, the capabilities of Juno

are then investigated; specifically i) by analysing how its (re)configurable approach

deals with heterogeneity, ii) by examining the resource overhead associated with

exploiting such (re)configurability, and iii) by assessing how its architectural design

patterns can assist in the development and deployment of new applications.

The rest of the paper is organised as follows; section 2 offers an overview of

related work in the field. Section 3 provides an overview of the Juno framework,

using BitTorrent to highlight the development process. Section 4 subsequently

provides an evaluation, using a prototype application developed in Juno. Lastly,

section 5 concludes the paper outlining future work that is intended to be carried out.

2 Related Work

There has been a large body of work carried out in the field of content distribution,

recently with a particular focus on P2P systems. Popular distribution paradigms

include high bandwidth stored content delivery [4][5], live streaming [27], on-demand

multicast [7][10], and video on-demand streaming (VoD) [19]. These systems are

specialized to offer well-tuned services for the particular requirements endemic to

those applications. Such systems, however, lack configurability as they are

specifically designed to address issues endemic to those areas. This often makes them

infeasible for deployment in diverse environments. Further their limited scope makes

it impossible to adapt to variations in requirements and constraints.

Over recent years, content networking has also come to involve services such as

content adaptation [21], transcoding [8] and replication [16]. These services augment

the delivery in order to improve such things as performance and user experience.

Traditionally these services have been operated in a client-server manner however

research has also looked into hosting these in a P2P manner [14][18]. We believe this

to be an important progression as the recent success of modular distributed systems

(e.g. Web services) represents a significant trend in distributed computing.

There are a number of middlewares (e.g. JXTA[15]) that have been designed to

offer convenient P2P abstractions for these systems alongside a number of

development tools for implementing overlays [3][20]. These middlewares offer a

platform over which P2P applications can be developed without the complexity of

dealing with lower level issues. However, systems such as JXTA are built as a black

box which limits configurability. This makes it hard to specialize or adapt a system

for individual applications. Further, the low-level nature of these middlewares and

toolkits mean that the construction of high-level systems such as content networks can

become laborious.

To remedy the problems with existing approaches, a number of configurable and

reflective middlewares have been developed [6][13][17]. These middlewares exploit

architectural software patterns to provide a framework in which independent

pluggable software components [12] can be attached. These middlewares, through

reflection, can then inspect the operation of these components to select optimal

architectural configurations. This allows a middleware to be specialized by attaching

appropriate components, creating a bespoke platform for the application to operate

over. Such middleware can then be dynamically reconstructed during runtime to adapt

to changes in the environment. This occurs without direct intervention of the

application. Instead, the application provides details of its requirements allowing the

middleware to interpret and implement them. This removes a significant amount of

complexity from the application without compromising such things as adaptability.

Research areas such as Grid computation [17], distributed objects [6] and

multimedia QoS [11][25] have featured highly in configurable middleware

development. However, little has been performed in the area of next generation

content networking [22]. Unlike existing work, however, content networking

embodies much higher level principles (e.g. the importance of user experience)

alongside traditional low level aspects (e.g. QoS). This means that middleware for

such an environment must be cross-cutting. We therefore believe considerable

benefits can be gained from utilising configurable models. Through this approach, we

believe it possible to address the complexities of developing, deploying and

specialising different applications for their individual requirements and constraints.

3 The Juno Framework

The Juno Framework is a configurable middleware designed to address the divergent

nature of next generation content networks. To achieve this it is therefore necessary to

provide a configurable and extensible framework in which a diverse range of content

related services and delivery mechanisms can be supported. The middleware consists

of two aspects: pluggable functional components and utility support. The former

constitutes the functionality of the middleware whilst the latter offers convenient

support for these components (e.g. state management).

Juno has been implemented using the OpenCOM v1.4 [12] component model in

Java. In order to illustrate how Juno realises content delivery functionality and

demonstrate the feasibility of the underlying concept, it is shown how BitTorrent [5]

can be implemented and extended in the Juno Framework.

3.1 Juno Overview

When an application is developed over Juno it provides Juno with the details of its

requirements. Using this information Juno will then construct itself from the optimal

components. Subsequently, it will also reconfigure itself dynamically to use different

components as requirements and environmental factors change. This approach allows

an application to operate over a bespoke middleware without the complexity of

dealing with such issues as adaptation itself.

Network Context

Service Context

Application Context

State

Manager

Event

Broker

Fig. 1. Overview of Juno Framework

Juno is constructed from three layered contexts, shown in Fig. 1; each of these

deals with a different type of heterogeneity: network, service and application. These

contexts are each built from components. This approach separates concerns and

creates a well structured management framework.

The lowest layer is the Network Context which deals with the overlay aspects of

the content network. This allows different overlays to be dynamically installed,

adapted and managed to support more sophisticated functionality. Above the Network

Context sits the Service Context. This context contains components that provide a

variety of content distribution services operating over the lower overlays. These can

range from delivery aspects such as chunk selectors, to services such as caching and

transcoding. Lastly, above the Service Context, is the Application Context which

offers a convenient interface for the application to interact with. Further to this, it also

deals with combining multiple services for the ease of the application.

To support the three contexts, Juno also provides state and event management.

Juno components do not maintain persistent state so to facilitate the easy

reconfiguration of the middleware. This assists in open component introspection as

well as allowing component to be easily removed without data loss.

3.2 Network Context

The Network Context forms a platform for more sophisticated distributed services to

operate over. It consists of a set of components that interact through interfaces to

manage and operate an overlay. These overlays are attached to Juno to provide the

necessary distributed support for running higher level services and distribution

paradigms. It consists of four primary components shown in Fig. 2. Construction

deals with initiating, joining and leaving an overlay. Maintenance deals with

monitoring and repairing the overlay. Forward deals with the routing of data in the

overlay. Finally, Transport deals with transporting data between nodes.

Each component implements a defined interface that provides access to its

capabilities. These interfaces can also be extended to be specialized for individual

overlays. Furthermore, Juno’s open and extensible nature allows different component

architectures to be used. The details of finer grained alternate architectures can be

found in [26].

Construction

{initiate, join, leave}

Maintenance
{start, stop}

Transport
{send, receive}

Forward
{send, Forward, Broadcast,

Receive, Call Back}

Fig. 2. Overview of Network Context

The Network Context is built by installing a set of compatible components that

provide the necessary overlay level functionality required by the Service Context.

Multiple overlays can be instantiated in the Network context either in a layered

manner (e.g. SplitStream [7] over Pastry [24]) or side-by-side to offer multiple

capabilities (e.g. DHT lookup [24] and streaming [27]).

Table 1. Overview of Generic Mesh Functionality

Component Interface Operations

Generic Mesh Construction Join, Leave, Add Link, Remove Link.

Lazy Mesh Maintenance Initiate, End.

Generic Mesh Forward Send, Forward, Broadcast, Receive, Call Back

Object Transport Send, Receive

In the BitTorrent example, the Network Context is built using a Generic Mesh

overlay; this is a highly reusable unstructured overlay that abstracts the topology to

simple links between peers; its interfaces are provided in Table 1. It can be seen that

the construction component is extended to also support add and remove operations in

order to allow links to be manipulated. BitTorrent also uses a Lazy Mesh

Maintenance component; this does not perform active probing and simply updates

state information on the detection of a fault. Lastly, an Object Transport component is

attached; this uses Java ObjectStream objects to transport chunks and protocol

message.

3.3 Service Context

The Service Context consists of a number of content services and delivery

mechanisms embodied in a set of cooperating components. These components use the

Network Context as a platform over which they perform distributed interactions.

There are three primary types of components in the Service Context: Managerial,

Functional and Policy. There is one Managerial component per service; this

component will deal with managing multiple components to work in conjunction. For

example, it will deal with the reconfiguration of cooperating components to react to

environmental events. A Functional component embodies aspects of functionality to

perform a particular service in the system. It is defined by its ability to actively

initiate procedures itself. Alternatively, Policy components make decisions passively

on behalf of the other components; an example of this is a source selector component

which decides on the optimal source to use in a distribution scenario.

The Service Context is where the majority of BitTorrent’s functionality resides;

this functionality deals with a number of aspects operating over the Network Context:

a) Bootstrapping – It is necessary to obtain a list of potential sources.

b) Request Generation – It is necessary for requests to be issued to remote nodes.
c) Request Handling – It is necessary for chunk requests to be handled.

d) Chunk Selection – It is necessary to select which chunks to request first.
e) Source Selection – It is necessary to select which sources to utilise.

f) Incentive Management – Incentive mechanisms must encourage contribution.

Fig. 3 shows the Service Context of BitTorrent; bootstrapping, request generation

and request handling are all embodied in functional components. These are

components that perform active functions and can therefore initiate their own

procedures. They are attached above the Network Context and use its Forward

interface to perform distributed interactions.

Chunk selection, source selection and incentive management are all embodied in

policy components. This is because they are passively used to make decisions based

on the current state of the node. For example, a chunk selector will make its decisions

based on the current chunks that are required.

A BitTorrent Management component is also attached to the system. It is

responsible for coordinating the behaviour of the other components. For instance, it

will coordinate interactions between the Bootstrapper component and the Request

Generator. This also allows it to act as an adapter between incompatible components.

To enable these components to cooperate it is necessary to provide them with an

interaction mechanism. In contrast to the strictly defined nature of the Network

Context, the divergent nature of the Service Context lends itself well to event based

interaction. This allows components to offer functionality in a very fine grained, event

based manner. Therefore, Juno can support the use of subsets of component

functionality allowing operations to be spread over a set of multiple components.

Unlike the Network Context, the use of this event based architecture therefore does

not fix the Service Context to use components in a particular architecture. Instead,

components exist in an event orientated container. This means that components can

simply be added to augment or modify functionality by automatically manipulating

events and shared state.

3.4 Application Context

The Application Context resides above the Service Context and provides a layer of

abstraction between the application and the middleware. The Application Context

consists of a minimum of one component that provides an interface to the application.

The type of interface is not strictly defined therefore allowing a variety of interaction

approaches to be utilised. For instance, remote invocations can be utilised by

installing a remote procedure call interface.

Generally, reusable, generic components are installed in the Application Context to

offer abstractions to the application. However, as well as this, it is also possible for

developers to implement their own components to offer more specialised access to the

lower layers. For instance, a developer can extend the generic stored delivery

interface to allow more detailed access to state information. An application utilising

BitTorrent would therefore install a Generic Stored Delivery component. This

component offers a simple abstraction, allowing downloads to be initiated or

cancelled.

4 Evaluation

This section investigates a number of properties of the Juno middleware. The primary

concern of this paper is how the heterogeneity encountered in content networking can

be dealt with. This is achieved through a components based architecture that allows

(re)configuration. Thus, the Juno (re)configurable architecture supports the utilisation

of varieties of functionality within a single framework to cope with the heterogeneity

of delivery, service, devices and networks. Hence, the (re)configurable properties of

Juno, in the context of heterogeneity, is investigated first. This is then qualified

against the resource overhead of utilising a (re)configurable approach. Lastly, an

investigation into Juno’s developmental benefits is performed in order to inspect the

advantages of utilising the middleware to develop content based applications.

To aid in the evaluation a simple file-sharing application has been developed over

Juno which utilises a Pastry [24] lookup facility alongside a BitTorrent [5]

distribution mechanism. An overview is shown in Fig. 3. Arrows represent interaction

between components. Further to this, the BitTorrent Management component also can

interact with all components. This application will therefore be used to highlight a

variety of features of Juno’s operation.

Mesh Construction Mesh Maintenance

Reliable Transport

Mesh Forward

BitTorrent Management

Request Handler Request Generator

Incentive
Manager

Source Selector Chunk Selector

Stored Content Delivery

Pastry Construction Pastry Maintenance

Reliable Transport

Pastry Forward

Keyword Lookup Management

Key Lookup Generator

Keyword Search

{ lookup (String query) }
{ start (String fileID, Node tracker)

stop (String fileID) }

Bootstrapper

Key Lookup Handler

File Sharing Application

Fig. 3. Overview of File Share Architecture

4.1 (Re)Configurability

Section 1 introduced four types of heterogeneity (summarised in Table 2). These

highlight the diversity in requirements and constraints involved in developing and

deploying a content network. Juno addresses heterogeneity through the

(re)configuration of individual nodes in the content network in order to embody

optimised qualities. Configurability refers to the specialisation of the middleware for

a particular set of requirements and constraints whilst re-configurability refers to the

process of changing this configuration during runtime. This section therefore looks at

how well Juno deals with the different types of heterogeneity (shown in Table 2)

through its (re)configurable architecture.

Table 2. Summary of how Juno Addresses Heterogeneity

Lightweight

Configuration

Pluggable

Mechanisms

Fine Grained

Adaptability

Orthogonal

Instantiation

Stacked

Instantiation

Delivery X X X

Service X X X

Device X X

Network X X X X

Delivery heterogeneity is of particular interest in content networks. This represents

the diversity in which users access content. Many content networks offer a number of

different access mechanisms such as stored and live streaming, stored content

delivery and interactive content delivery. An example of this is 4oD [1] which offers

both stored and streamed access to its content. Juno allows such diversity to be

managed through its (re)configurability. For example, when a file sharing application

is developed over Juno, streaming can be easily introduced to it. In the file sharing

implementation this is done by installing streaming components orthogonal to the

existing BitTorrent mechanism. Juno also allows a variety of different streaming

mechanisms to be installed without mandating individual approaches. For instance,

the use of tree based streaming [10] can be utilised in reliable environments whilst the

use of mesh-based streaming [27] can be used in more transient environments.

Importantly, Juno’s support for installing multiple delivery paradigms also allows

diverse delivery systems to be supported within one framework. This allows

applications developed over Juno to adapt their delivery capabilities to interact with a

range of systems. For example, if a user attempts to access a piece of content hosted

in a Julia [5] network, Juno can attach the Julia components to provide compatibility.

The use of (re)configuration therefore allows both coarse grained and fine grained

architectural modifications to be made to ensure that delivery mechanisms coincide

with user preference and application requirements.

Service heterogeneity is another significant concern that must be addressed by

content networks. Thus, there are considerable benefits associated with the easy

deployment, instantiation and interaction of services. It is therefore important to offer

a generic framework to facilitate this. Juno deals with these issues by allowing

services to be dynamically installed through using its (re)configuration capabilities.

For instance, traditionally BitTorrent does not offer a search service; instead it focuses

on the actual distribution of the file. Juno, in contrast, allows the addition of a file

lookup service as a separate component. This is performed by plugging the Pastry

overlay components into the Network Context whilst attaching the Key Lookup

component in the Service Context. This component receives user queries from the

Application Context and uses the Pastry overlay to route the query to the necessary

node responsible for the specific hash space. Further, the utilisation of alternate search

mechanisms can also be made without modification to the application. This is

possible through the level of abstraction provided by the Application Context,

meaning that it is only necessary for the application to know how to interact with the

higher levels of the middleware. Therefore, through Juno, BitTorrent can incorporate

new services with limited effort on the part of developers. Importantly, it is possible

to introduce services without predefined support. Instead, the necessary functionality

can be attached through components to ensure correct operations. Further, Juno’s use

of event-based interactions allows services to augment existing functionality through

the monitoring, interception and modification of events.

Device heterogeneity is an increasingly prominent aspect of distributed systems.

This refers to the range of devices connected to the content network. To ensure high

performance and acceptable user experience, content networks must make

consideration for this heterogeneity. By allowing fine grained (re)configuration, Juno

can ensure that each device in the content network utilises optimised components.

Therefore, a low capacity device will utilise a light-weight configuration in which

only essential components are installed. This has two effects: i) it limits the memory

and processing consumption on the device and ii) it allows specialised components

that reduce resource utilisation to be installed. For instance, in the file sharing

application, low capacity nodes utilise specialised Pastry components in the Network

Context. These ensure that transient nodes play no part in routing. Instead these nodes

use reliable peers as proxies. This offers improved performance due to the adverse

effect churn has on routing. The configuration is performed by replacing the Pastry

components in the Network Context with a single Hidden Pastry Forward

component. This component is initiated with the location of one of the Pastry peers

(N), which it will use to forward messages through. This is the only reconfiguration

required; no modifications in the Service Context are made. Therefore, when the

standard Key Lookup component sends a message through the Network Context the

Hidden Pastry Forward component will always redirect it through node N. This

highlights Juno’s ability to modify functionality by reconfiguring small aspects. This

allows the same core functionality to be performed in the system whilst exploiting the

natural variations in end host capabilities.

Network heterogeneity refers to the diversity in which devices are connected to

each other. Some can possess high bandwidth, reliable connectivity (e.g. Ethernet)

whilst others can be considerably more constrained (e.g. Bluetooth). Juno’s

(re)configurability addresses this heterogeneity through utilising fine grained

component configurations to ensure devices observing different network conditions

behave differently to reflect this. For instance, the file share application could be

placed in a number of environments (e.g. a reliable wired campus network or a mobile

ad-hoc network). These differences can similarly be reflected in a number of different

configurations. For instance, in the reliable environment Juno attaches lazy

maintenance components in the Pastry overlay. These uses periodic keep-alive

messages to maintain the leaf set. Conversely, in the unreliable environment, leaf set

broadcasts are used to address the number of node failures. Juno can also perform this

process dynamically in response to changes in network conditions (e.g. moving from

a reliable connection to Bluetooth) without the need to modify the application. This

process therefore allows overlays to have fine grained runtime modifications made to

them to ensure resilience against different network environments.

This section has investigated Juno’s approach of using (re)configuration to address

the heterogeneity observed in content networks. Importantly, it can be seen that the

process of encapsulating functionality in dynamically interchangeable components

provides an effective mechanism for dealing with heterogeneity. This is achieved by

abstracting services and requirements from their implementations, allowing different

components to perform the same procedures in different environments. Further, the

ability to easily extend the middleware through (re)configuration means that

applications can easily incorporate new capabilities to address changes in

heterogeneity. Importantly, the application is agnostic to these changes since Juno

autonomously (re)configures itself allowing the application to simply interact with

abstracted interfaces provided in the Application Context.

4.2 Resource Overhead

This section examines the performance overheads associated with implementing a

content network using Juno. All tests were performed on a 3.4GHz Intel Pentium D

processor; 2 GB RAM; Sun JVM 1.6.0.5.

The operational throughput of BitTorrent’s new source found notification was

measured over a 5 second period; this operation requires two parameters: a file

identifier and a node reference. This operation was implemented in Juno using both

event passing and receptacle calls. As a benchmark it was also implemented using

native Java method calls. The results are shown in Table 3; it can be seen that when

compared to native calls, there is a noticeable reduction in performance.

Table 3. Invocation Throughput

Type Throughput (Invocations/Second)

Java Method Call 15.863570 106 (16 million)

OpenCOM Receptacle Call 3.222367 x 106 (3 million)

Juno Event Passing 1.510376 x106 (1.5 million)

Juno’s use of receptacles and event passing therefore creates a clear overhead in

the system. Receptacles and event passing, however, reduce coupling and allow

reconfiguration; this therefore creates a trade-off between performance and

(re)configurability.

The memory overhead of Juno has been assessed by implementing six modules as

both components and Java objects. These modules have been implemented with an

increasingly large number of interfaces and receptacles. The experiments show that

implementing the system in Juno adds approximately 370 bytes of overhead per

component, compared to the equivalent Java object. This value increases by

approximately 20 bytes for every additional interface. This can be compared to 300

bytes for each extra OpenCOM receptacle. Therefore, development in Juno will lead

to a small increment in memory overhead. However, the ability to use lightweight

configurations (installing the minimal components), allows limited capacity devices

to actually reduce the overall memory footprint.

4.3 Development Capabilities

Clearly, a significant evaluative metric is how well Juno supports the development of

new applications. This is assessed through three approaches; firstly, looking at the

potential for component reuse in the system; secondly, looking at how applications

can utilise new functionality through adding new components to Juno; and thirdly,

through the coding overhead of implementation in Juno. Development can take place

in any of the contexts, or alternatively, above Juno. This section focuses on the former

as it deals more specifically with Juno rather than applications built over it.

Reusability levels in Juno are significant; most noticeably these are in the Network

Context due to its role as a platform. This therefore allows a number of Service

Context components to operate over reused/shared overlay components. For instance,

the mesh components used by BitTorrent can be further used with overlays such as

Julia [4], Narada [9] and Gnutella [23]. This offers significant development

opportunities as it can dramatically reduce coding time.

The Service Context also offers high-levels of reusability; components such as the

Keyword Lookup component can obviously be ported to a number of applications that

require this functionality. Further, fine grained components such as the Incentive

Manager, Request Generator and Request Handler can be reused in a variety of

different systems. For example, BitTorrent can easily be configured to support

streaming applications. To do this, temporally-aware chunk and source selectors are

installed, leaving all other components the same.

Another developmental benefit of Juno is its support for functionally scaling

applications. This is achieved through the introduction of new components that can

dynamically manipulate events and component connections to augment functionality.

This allows new components to be dynamically deployed between nodes to extend

functionality ‘on-the-fly’. On a coarse level, entire sets of components can be

installed. For instance, if a node wishes to download an item of content from another

but they do not have compatible delivery mechanisms; this can be easily resolved

through component exchange. More fine grained deployment can also be performed;

for instance, a peer utilising a modified BitTorrent implementation to stream content

can easily interact with other oblivious BitTorrent implementations. However, the

traditional BitTorrent incentives scheme will not be effective, as chunks that are

nearer to a node’s playback position are more valuable than distant ones. Therefore,

new incentive mechanisms (e.g. a digital currency) can simply be deployed between

peers to facilitate access to certain chunks.

Table 4. Transport Component Code Complexity Overview

 Lines of Code Difference

Full Component 110 0

Without Event Capabilities 102 - 8

Without Component Capabilities 88 - 22

To provide an overview of the coding overhead related to developing systems in

Juno the Generic Mesh Construction component is inspected, shown in Table 4. This

component has one receptacle, Transport, which provides network level transport

functionality. The full component has 110 lines of code; 22 lines are attributed to

managing component receptacles and 8 lines are required to deal with the event based

notification of messages received by the Transport component. There is therefore a

small coding overhead in implementing the Juno components. However, this

overhead is in the form of template-like coding; further the use of Juno’s well defined

approach can assist in such things as code maintenance and project management.

5 Conclusion and Future Work

This paper provides an overview of the Juno content networking middleware. Juno is

designed to address the complexities of next generation content distribution. The

proliferation of multimedia content distribution over the Internet has led to an

explosion in the ways in which users choose to view content, leading to a transition

from content distribution networks to more integrated content networks [22]. This

diversification has resulted in huge array of content, overlays, services and delivery

mechanisms, creating significant complexities when developing and deploying

content networks over the Internet.

Juno addresses these issues through its use of an open, (re)configurable component

architecture allowing it to dynamically build and rebuild itself. This allows Juno to

efficiently support a diverse range of applications by (re)configuring itself based on

environmental constraints and application requirements. Juno has been evaluated

through the development of a file sharing application using BitTorrent and Pastry. It

is shown that significant levels of (re)configurability can be achieved to specialise and

adapt content networking systems. This is evaluated by showing how Juno deals with

the four primary heterogeneity factors (i.e. delivery, service, devices and network

heterogeneity). More specifically, it is shown how the different requirements of these

factors can be accommodated through using Juno’s (re)configuration. Further, Juno’s

functional scalability and the ability to reuse components have been shown to offer

considerable benefits to developers. These properties have also been placed in

consideration of an overhead study, showing that there was a noticeable but

manageable overhead, causing a trade-off between performance and configurability.

There is a considerable body of future work that can be carried out in this area.

Middleware support for this new generation of content networking is in its infancy

whilst Juno is still in the relatively early stages of development. The next step is to

develop Juno further, introducing a wider range of services and delivery mechanisms.

One area of significance is the security of Juno; currently the use of digitally signed

components is presumed to offer security, however, more sophisticated support for

the secure functional scalability of applications is necessary. This will involve both

the development of more advanced component deployment alongside more

sophisticated remote reconfiguration of nodes.

References

1. 4oD – Channel 4’s TV and Film on Demand Service. http://www.channel4.com/4od/
2. Akamai. http://www.akamai.com.
3. Behnel, S. and Buchmann, A. Models and Languages for Overlay Networks. In Proc. Intl.

Workshop on Databases, Information Systems and Peer-to-Peer Computing, Trondheim,

Norway (2005).

4. Bickson, D. and Malkhi, D. The Julia Content Distribution Network. In Proc. Conference
on Real, Large Distributed Systems, San Francisco, CA (2005).

5. BitTorrent Specification. http://www.bittorrent.org/beps/bep_0003.html.
6. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,

Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., and Saikoski, K. The Design

and Implementation of Open ORB V2. In IEEE Distributed Systems Online, Special Issue

on Reflective Middleware, vol. 2 (2001).

7. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., and Singh, A.
SplitStream: High-Bandwidth Multicast in Cooperative Environments. In Proc. ACM

Symposium on Operating Systems Principles Bolton Landing, NY (2003).

8. Chen, F., Repantis, T., and Kalogeraki, V. Coordinated Media Streaming and Transcoding
in Peer-to-Peer Systems. In Proc. IEEE Intl. Parallel and Distributed Processing

Symposium, Denver, CO (2005).

9. Chu, Y., Rao, S., Seshan, S., and Zhang, H. Enabling Conferencing Applications on the
Internet Using an Overlay Muilticast Architecture. In SIGCOMM Computer

Communications Review, vol. 31, issue 4 pp. 55-67. Oct (2001).

10. Chu, Y., Rao, S.G., and Zhang, H. A Case for End System Multicast. In Proc. ACM
SIGMETRICS, Santa Clara, CA (2000).

11. Coulson, G. A Configurable Multimedia Middleware Platform, IEEE Multimedia
Magazine, vol 6, issue 1, pp 62-76, IEEE Press, January-March (1999).

12. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J, and Sivaharan, T. A
Generic Component Model for Building Systems Software. In ACM Transactions on

Computer Systems, vol. 27, issue 1, pp. 1-42, February (2008).

13. Furmento, N., Lee, W., Mayer, A., Newhouse, S., and Darlington, J. ICENI: An Open Grid
Service Architecture Implemented with Jini. In Proc. ACM/IEEE Conference on High

Performance Networking and Computing, Baltimore, MA (2002).

14. Gerke, J., Hausheer, D., Mischke, J., and Stiller, B. An Architecture for a Service Oriented
Peer-to-Peer System. In Praxis der Informationsverarbeitung und Kommunikation (PIK),

No. 2, 2003.

15. Gong, L. JXTA: A Network Programming Environment. In IEEE Internet Computing, vol.
5, issue 3, pp.88-95, May/June (2001).

16. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., and Keleher, P. Adaptive Replication in
Peer-to-Peer Systems. In Proc. Intl. Conference on Distributed Computing Systems, Tokyo,

Japan (2004).

17. Grace, P., Coulson, G., Blair, G.S., and Porter, B. Deep Middleware for the Divergent Grid.
In Proc. IFIP/ACM/USENIX Middleware, Grenoble, France (2005).

18. Gu, X., Nahrstedt, K., and Yu, B. SpiderNet: An Integrated Peer-to-Peer Service
Composition Framework. In Proc. IEEE Intl. Symposium on High Performance Distributed

Computing, Honolulu, HI (2004).

19. Hefeeda, M., Habib, A., Botev, B., Xu, D., and Bhargava, B. PROMISE: Peer-to-Peer
Media Streaming using CollectCast. In Proc. ACM Intl. Conference on Multimedia,

Berkeley, CA (2003).

20. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., and Stoica, I.
Implementing Declarative Overlays. In SIGOPS Operating Systems Review Oct (2005).

21. Mohan, R., Simth, J.R., and Li, C.S. Adapting Multimedia Internet Content for Universal
Access. In IEEE Transactions on Multimedia, vol. 1, issue 1, pp. 104–114, March (1999).

22. Plagemann, T. Goebel, V., Mauthe, A., Mathy, L., Turletti, T., and Urvoy-Keller, G., From
Content Distribution to Content Networks – Issues and Challenges. Computer

Communications, vol. 29, issue 5, pp. 551-562, (2006).

23. Ripeanu, M. Peer-to-peer Architecture Case Study: Gnutella Network. Technical Report,
University of Chicago (2001).

24. Rowstron, A. and Druschel, P. Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems, In Proc. IFIP Middleware, Heidelberg, Germany

(2001).

25. Stiller, B., Bauer, D., Caronni, G., Class, C., Conrad, C., Plattner, B., Vogt, and M.,
Waldvogel, M. DaCaPo++ – Communication Support for Distributed Applications, ETH

Zürich, Computer Engineering and Networks Laboratory TIK, Switzerland, TIK-Report

issue 25 (1997).

26. Tyson, G. Component Based Overlay Development in Gridkit. Available at
http://www.comp.lancs.ac.uk/~tysong/MScThesis.pdf. MSc Thesis, Lancaster University

(2006).

27. Zhang,.X, Liu, J., Li, B., and Yum, T.S.P. CoolStreaming/DONet: A Data-driven Overlay
Network for Live Media Streaming. In Proc. IEEE Infocom, Miami, FL (2005).

