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ABSTRACT 
Whilst there has been considerable progress in augmented 
reality over recent years it has principally been related to 
either marker based or apriori mapped systems which limits 
its opportunity for wide scale deployment. Recent advances 
in marker-less systems that have no apriori information 
using techniques borrowed from robotic vision are now 
finding their way into mobile augmented reality and are 
producing exciting results. However, unlike marker based 
and apriori tracking systems these techniques are 
independent of scale which is a vital component in ensuring 
that augmented objects are contextually sensitive to the 
environment they are projected upon. In this paper we 
address the problem of scale by adapting a Depth From 
Focus (DFF) technique, which has previously been limited 
to high-end cameras to a commercial mobile phone. The 
results clearly show that the technique is viable and with 
the ever-improving quality of camera phone optics, add 
considerably to the enhancement of mobile augmented 
reality solutions. Further as it simple require a platfrom  
with an auto-focusing camera the solution is applicable to 
other AR platforms. 
Keywords 
Mobile, scale, metric scale, camera, phone, augmented 
reality. 
INTRODUCTION 
One of the main challenges of Augmented Reality (AR) 
systems is camera tracking, which can be implemented 
using fiducial markers or natural-features. In fiducial based 
systems the scale ambiguity is not present as it can be 
easily derived by using markers of a known size, whereas 
in the natural feature based systems it is only possible if the 
system is of informed type where the apriori knowledge of 
the view being studied is available i.e. where a database of 
landmarks forming the map is created offline and the map 
creation process introduces metric scale. In the case of 
natural feature tracking where the 3D map is created online 

from natural features alone, the scale is unknown because it 
is impossible to determine the scale of the scene based on a 
sequence of images alone [5].  
In fiducial marker and apriori feature tracking systems 
scale ambiguity is not a problem although such systems 
offer limited prospects of large scale deployment as they 
would require either wide scale augmentation of our 
physical space with fiducial markers or wide scale 3D 
mapping of our physical environment. The alternative 
options are maker-less AR systems that use online tracking 
approaches without apriori information the method of map 
creation and camera pose estimation can vary from the 
model-based to move-matching approaches. 
In the case of online model-based approach the camera 
pose is always estimated by comparing the initial frame 
with the current camera frame. The initial frame is an 
image taken directly from above the plane, or one that is 
synthetically un-projected from additional sensor 
information, by which perspective distortions of camera 
projections are removed and the extracted landmarks can be 
used as an object model of the plane in the scene. As the 
same initial fame is always taken for pose estimation, such 
system is not incremental and does not have problems with 
drift or loop closures [1]. However, such systems are 
limited to planar scenes, as landmarks not lying on a plane 
cannot be initialized from only one observation thus  
making extraction of the depth information using stereo 
vision impossible. Furthermore, as the initial frame is 
always used for the camera pose estimation, all newly 
added features need to be referenced to the initial frame, 
which in practice means long term maps where features are 
tracked over a long period of time.  
AR systems that use this approach, but differ in the sense 
that their maps are created offline have been created [12] 
[17], however, there is no reason why such systems could 
not be modified to act as uninformed tracking systems 
which would improve their use flexibility, but at the same 
time introduce the scale ambiguity. One such system 
running on a mobile phone is Nestor [4] in which curves of 
planar shapes are used for tracking and  shape 
identification. The shapes are added to the database of 
known shapes by the method described above, and are then 
used as natural features for camera pose extraction as well 
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as to select 3D objects for augmentation.  The drawback of 
this system is that it is also ambiguous up to scale. 
In the later case of move-matching techniques, the camera 
pose is updated based on the frame-to-frame movement of 
tracked features. Such system [14] is incremental as after 
each frame is acquired the camera pose update from the 
previous frame is computed. This approach does not 
require long-term feature tracking and with it the 
requirement to maintain long-term maps, which makes it 
more flexible and faster as computationally expensive 
bundle adjustment of the map is not required. Furthermore 
it also enables depth estimation and with it the camera pose 
extraction from non-planar surfaces. However, as the 
method is incremental, it is hard to avoid drift, which also 
introduces the problem of loop closures [1]. In case of non-
planar surfaces, one of the main problems is the 
initialization of the system where the camera pose and the 
map environment are unknown. To solve this problem, the 
Simultaneous Localization and Mapping (SLAM) 
technique were developed in the field of robotic exploration 
and were later adopted by AR systems. 
Two such SLAM algorithms, EKF-SLAM [15] and 
FastSLAM2.0 [10] both use incremental mapping methods 
and were later adapted for hand held cameras [1] [2]. In 
these systems, the map is initialized by a fiducial marker 
through which the scale of the map becomes available. 
However in case of Eade and Drummond SLAM 
implementation [2] the map can also be initialized without 
the necessity of a marker but in this case the scale again 
becomes unknown. Note after the map initialization, 
natural features are used for expanding the map and 
tracking the camera pose. 
Further developments of single hand held camera tracking 
were achieved using the Parallel Tracking and Mapping 
algorithm (PTAM) [6], which differentiates from others by 
separating the mapping and tracking tasks. In PTAM 
bundle adjustment is used as an alternative to incremental 
mapping in which long-term maps are created and features 
are frequently revisited. The map initialization is done with 
five-point stereo algorithm or in the later versions by 
homography decompositions. In both of these cases the 
metric scale is unknown if no additional information is 
available. 
Currently the only presented alternative for estimating scale 
is performed during the process of stereo map initialization 
as demonstrated in PTAM [6] whereby users were asked to 
provide first two keyframes of the map by moving the 
camera sideways for approximately 10 cm during from 
which the metric scale of the map could be estimated as 
additional information was introduced to the captured video 
stream. However, according to Klein and Murray, this map 
initialisation method proved to be problematic as users 
tended to use pure rotation rather then lateral movement, 
thus the correct map initialization was heavily dependent 
on users understanding of the stereo baseline requirements 
[7]. Furthermore, introduction of scale in this manner is 

subjective as the user camera movement is approximate and 
subjectively assessed. 
To date a highly modified variation of PTAM for the 
iPhone is the only implementation of six degrees of 
freedom camera tracking SLAM on a mobile phone where, 
according to Klein and Murray, stereo initialization was 
determined inadequate not only because of the introduction 
of the user error previously defined, but due to the 
limitations of the mobile phone platform, in particular the 
limited computational power and narrow camera field of 
view [7]. In the alternative map initialization, Klein and 
Murray, ask the user to only provide the first key-frame, 
therefore, the previously defined additional information is 
lost. This means that currently there are no marker-less 
mobile AR systems that provide an estimate of scale.  
In this paper we introduce a possible solution for providing 
metric scale for marker-less AR systems with no apriori 
information by utilizing the Depth From Focus (DFF) 
technique. In the following section the theoretical 
background of the method will be presented followed by 
the design patterns section where two different generic 
scale implementations will be discussed. The solutions are 
then analyzed through an empirical study of a specific 
implemented on a commercially available mobile phone the 
Nokia N900. Note that the proposed solution is platform, as 
well as operating system, independent and could therefore 
be implemented on any auto-focusing system where access 
to the camera driver is available. Finally the 
implementation of a demo application will be presented 
followed by the conclusions and further work. 
THEORETICAL FRAMEWORK 
Digital cameras are generally auto-focused by searching for 
the lens position that gives the ‘best’ focused image, thus 
the lens position is dependent on the distance to the object 
as shown in Figure 1.  If the focused lens position and the 
focal distance of the lens are known, the thin Gaussian lens 
equation (1) can be used to calculate DFF i.e. the distance 
to the object u.  
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1/ f = 1/u +1/v  (1) 

This method has been mainly used in the domain of robotic 
vision as an alternative to stereo depth recovery. One of the 
main choices with this method is which focus measure to 
use in order to identify the best lens position [18]. An ideal 
focus measure is described as unimodal and monotonic in 
that it should have only one maximum at the point where 
the image is in focus [11] [16]. However, in practice any 
focal measure has many local maximums, therefore, the 
global peak of the focal measure is not easy to find. 
Furthermore, as it has been observed by [11] and [18], not 
only the texture and contrast of the scene, but also the depth 
of field (DOF) influence the maximums of focus measure 
function. It is preferable to have good texture with high 
contrast as well as the smallest possible DOF, which can be 
achieved by using the maximal focal distance of the camera 
as well as maximal aperture. Furthermore, with bigger focal 
distance the lens movement for focusing the image is 



 

 

bigger which is expected to increases the resolution and 
precision of the lens positioning system. 

 
Figure 1: Image formation in a convex lens 

In order to calculate the scale unit s of the scene, one needs 
to know the distance to the object plane u, the vertical or 
horizontal cameras field of view

! 

"  and picture height or 
width in pixels 2h’. The calculation of scale unit s is then 
based on simple trigonometry as shown in equation (2). In 
case of the augmented reality application, the user would 
need to focus on the plane where at least two map points 
are present. After defining the scale between two map 
points the scale of the whole map is known.  
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h = u tan " / 2( ) # s = h[mm] /h'[ px] (2) 

The measurable depth of DFF system is theoretical limited 
by the hyperfocal distance, which is a defined as a minimal 
object distance at which we need to focus in order to 
consider the points at infinity to be in focus. However, as 
DOF needs to be as small as possible in order to achieve 
reliable and accurate results, such distance lies much closer. 
The relation between the size of DOF and hyperfocal 
distance is inversely proportional with the ratio between 
object and hyperfocal distance, therefore the accuracy of 
the system is expected to be better in the close up range. In 
case of an AR application with the ability to expand the 
map, the scale estimation only imposes the limitation for 
close up system initialization, which can then expand the 
map to desirable proportions. Therefore, the size of the AR 
workspace is not limited by the requirement of a close-up 
initialization.  
From the previous discussion it is obvious that the scale 
could be introduced to uninformed marker-less AR systems 
if the system has a camera with auto-focusing capability 
and allows access to the camera driver. In the following 
section the generic implementation for scale estimation will 
be designed. 
DESIGN PATTERNS FOR GENERIC IMPLMENTATION 
The motor count captured from the camera driver is 
assumed to represent the relative distance of the lens in the 
motor step domain. In order to use motor count with the 
Gaussian lens equation (1), the conversion to absolute 

distance in metric space (on Figure 1 shown as v) is 
required. An alternative is to capture measurements across 
the whole focusing range and define an approximation 
function that will define the transformation from motor 
count to object distance. This research analyzes both cases 
as it has some significant implications for the user 
interaction requirements as well as the flexibility of the 
system. 
In the first mode of operation, the camera system is 
assumed to be unknown. In order to convert the motor 
count to object distance, the lens equation (1) can be used, 
however, as already indicated, the lens movement interval 
is usually unknown. The only information available about 
the lens position is its motor count, which needs to be 
converted to lens distance v in metric space.  
The proposed solution is to focus the camera at the object, 
at two different, but known distances. The first 
measurement should be taken close to the minimal 
focusable object distance, and the second at approximately 
one sixth of the hyperfocal distance. The range is 
performed in the close up region of the camera as the 
accuracy of DFF system is expected to decline with object 
distance and it is important to ensure that the calibration of 
the motor step values is made in a way to best fit the lens 
equation in the close up region. As the distances to the 
object are known, the theoretical lens position can be 
calculated using the equation (1) by which the motor step 
unit is defined. The difference between the current motor 
count value m and the minimal motor count value 
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m0  make 
the conversion of motor step count to metric space possible 
by equation (3). 
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v = v0 + "m #unit "m = m $m0  (3) 

In the second mode of operation, the assumption of a 
known camera model is made, which enables the use of an 
approximation function to transform the motor count step 
to object distance. No user calibration is therefore required 
for this mode of operation, however, this would limit its 
applicability to known camera models for which the 
approximation curve has been predefined. In the next 
section, we will make a case study of the scale estimation 
accuracy using standard camera phone Nokia N900 running 
Maemo operating system. It is important to note, that the 
proposed solution is not limited to the specific operating 
system nor the device. In the following section the 
proposed solutions will be analyzed through an empirical 
study of a specific implemented on mobile phone the Nokia 
N900. 
EMPERICAL STUDY OF SCALE ESTIMATION 
The data presented in this section was captured with four 
phones where auto-focusing was performed by two 
focusing algorithms, namely, the native camera application 
algorithm and by utilising the ‘gstreamer’ library. The 
phone camera used is a 5-mega pixels camera with Carl. 
Zeiss optics with a focal length of 5.2 millimetres, aperture 
f/2.8 and a horizontal field of view of 56 degrees.



 

 

  

 

Figure 2: The left graph shows the average lens position in relation to object distance in mode one operation. The graph in the 
middle shows the average lens position in motor step space in relation to object distance for mode two operation and exponential 

approximation function (3). To the right, the screen shot of the Metre application measuring the laptop is shown.

In all measurements the same randomly selected A3 colour 
poster with good contrast and texture was used. The 
measurements were repeated 20 times at each given 
distance. In case of ‘gstreamer’ library, the phone was 
focused at an object at random distance before capturing 
each measurement. In the case of native application the 
measurements were taken in a sequence starting at minimal 
object distance. Using the data analysis of the ‘gstreamer’ 
dataset, a decision was made to only capture values in the 
range between 70 and 500 millimetres in the next 
experiment, as results above this distance were considered 
to be to unreliable. The motor count value was assumed to 
be represented by the ‘V4L2_CID_ FOCUS_ABSOLUTE’ 
variable of the Video4Linux2 camera driver and was 
captured after each successful focusing. 
DFF Accuracy Using Gaussian Lens Equation (Mode 1) 
In order to analyze how well the Gaussian lens equation (1) 
fits the captured data, the average values of measured lens 
displacements of each phone were plotted alongside the 
theoretical values obtained using the lens equation function 
and are shown in the left graph of . The camera was 
calibrated at object distances of 70 and 250 millimeters. 
Although the shape of the theoretical curve runs relatively 
close to the captured data set it is still considerably 
different. As expected, the dataset is best described close to 
the value of 
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v0  which is the lens position of the far point 
used in the calibration procedure of mode one operation. 
Furthermore, it can be observed that the two focusing 
algorithms produce similar results and that the deviation of 
results between four different phones is small. The results 
prove that the assumptions made are correct and that the 
captured value from the camera driver is interpreted 
correctly. 
The accuracy of depth measurement can be best described 
with the relative depth error (shown on in the left graph of 
Figure 3), which is also the relative error of the scale 
introduced to the AR system because the only variable in 
scale calculation of equation (2) is the object distance. The 
maximal relative depth error at distances below 300 
millimetres ranges from 9.5 up to 15.8 percent, which is 
compared to results acquired with precise camera systems 
(0.098% acquired at 1.2 meters) still very high [18]. 

However, it should be taken into account that the focal 
length, lens mechanics and quality of such high precision 
camera systems limit the direct comparability to the mobile 
phone camera. These limitations could be also seen as one 
of the reasons for deviation of the dataset from the 
theoretical lens equation. Furthermore, as discussed in the 
method section, some of these parameters have significant 
effect on the focus measure that is a crucial component of 
the auto-focusing accuracy.  
DFF Accuracy Using Approximation (Mode 2) 
In order to improve the accuracy of the system and to 
remove need for user calibration, the mode two solution 
proposed the use of approximation function for mapping 
the transformation from motor count space to object 
distance. The exponential approximation curve (3) was 
determined from the average data set of all measurements 
taken by the ‘gstreamer’ focusing algorithm. To make the 
function best represent the data at a close range, only 
measurements up to 400 millimetres were considered. 
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v(u) = a /u + b  (3) 

The centre graph of  shows that this new curve better 
represents the measurements, especially in the close up 
region. The maximal relative depth error can be seen in the 
centre graph of Figure 3 and shows that the maximal 
relative depth error does not drop but stays at comparable 
levels to mode one operation, however it is obvious, that 
the approximation function describes the data far more 
consistently as in the case of lens equation because the 
relative depth error graph does not show the distinctive 
minima at the calibration value
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v0 that can be observed in 
mode one operation. It can also be seen that the standard 
deviation of results between different phones seams to have 
grown compared to mode one operation. This is due to the 
fact that motor count values have not been normalized as in 
the case of mode one operation. 
To explore the full potential of the system, a decision was 
made to analyze behaviour of the system where a simple 
one step calibration was added to the mode two operation. 
As it is easier for the user to calibrate the device at the 
close up region, the user is asked to calibrate their phone 
close to the minimal focusable distance, in our case at 70 
millimetres.  The exponential approximation curve needs to



 

 

   
Figure 3: The graphs in this section all show Relative Depth Error of object distance. In the graph to the left mode one operation 
results are shown, followed by the mode two results and finally on the right the results for a single step user calibration of mode 

two are presented.  Each line of the graph represents one of the 4 phones., and the two colours denote different focusing algorithms. 

be recalculated for the measurements which are normalized 
at the maximum motor count captured by user calibration. 
Again only the measurements captured with ‘gstreamer’ 
focusing algorithm in the region up to 400 millimetres were 
used. In operation each time the new motor count value is 
captured, it is subtracted from the user calibrated maximal 
motor count value and converted to distance using the new 
fitting function. By doing this the maximal relative depth 
error shown at the middle of Figure 3 has dropped to a 
range between 6.5 to 12.2 percent.  
If the two different focusing algorithms are compared, their 
performance does not differ significantly in the close up 
region, however this is not the case in the regions further 
away from the camera. The accuracy of the native camera 
focusing algorithm in distant regions is better then what 
would be expected. The possible reason for this could be 
the already mentioned difference in the procedure how the 
two experiments were executed. Contrary to the 
‘gstreamer’ measurement, the native camera, was not 
refocused at a randomly distant object before capturing 
each measurement, but was rather capturing the 
measurements in a sequence.  
It is important to note that the captured measurements were 
taken under the controlled environment in good lighting 
conditions with good focusing surface, with no user factor 
error, therefore, the accuracy in real world scenario could 
be expected to decrease. Furthermore, as incremental 
SLAM techniques continuously update the map and camera 
pose with increments, the overall scale could be affected by 
accruing the local scale errors [3], however, this would not 
be the case in SLAM approaches where batch methods are 
used to maintain long term maps. Furthermore, accruing of 
scale error would also not be present in the marker-less 
object-based tracking systems as those systems are not 
incremental and drift is not a problem. 
To sum up, this data analysis shows that the proposed 
solution is valid and can produce reasonable scale 
estimation with relative error raging from 6.5 to 12.2 
percent in the region between 70 and 300 millimetres. In 
the following section, a demo application called Metre will 
be discussed in order to demonstrate a use case of the 
proposed solution. 

APPLICATION SPECIFIC IMPLEMENTATION 
To highlight the technique rather than content a simpler 
application providing scale to a captured picture was 
developed. The demo application is called Metre and 
enables users to measure objects on a taken picture. The 
application was implemented on Nokia N900 phone where 
the tracking part of the application was implemented using 
the OpenCV library, the video capturing and auto-focusing 
were implementation using “gstreamer” library and the 
scale was initialized by the solution of mode two operation.  
In order to increase the maximal size of the objects and to 
improve accuracy of the measurement, the application 
enables users to introduce scale close to the object they 
want to measure and then move back to get the full view of 
the object. In the scale initialization process, two natural 
features that are chosen based on Shi and Tomasi good 
corner definition [13], are being tracked using optical flow, 
which is calculated in the small window region of selected 
points by the Pyramid Lucas-Kanade algorithm [9]. As the 
distance between the two points is known from the scale 
initialization step the scale is known as long as the two 
features are successfully tracked. The screen shot of the 
application can be seen in the right corner of .  

CONCLUSION AND FUTURE WORK 
The results show that auto-focusing capability of the 
camera phone can be used to effectively introduce the scale 
estimate into the marker-less AR workspace without apriori 
information. However, currently the method is limited to 
the close up initialization (in our case distances up to 300 
millimeters) as in this region the maximal relative scale 
error is expected to stay in the range of 6.5-12.2 percent.  
The limitation in range and accuracy is mainly due to the 
small focal length (5.2 millimetres) of a camera phone, 
which results in short hyperfocal distance and therefore a 
small DFF range. It was discovered that the region up to 
1/9 of the hyperfocal distance was to be accurate enough. It 
is important to note that marker-less AR systems which 
create 3D maps online have the potential to dynamically 
expand these maps. This means the requirement of a close 
up initialization is only necessary at the start of the 
mapping process after which the map can be expand to 
desired proportions. Furthermore, range capability 



 

 

limitations are likely to be overcome by the next generation 
camera phones in which the focal distance is expected to 
raise by the introduction of optical zoom lenses.  
However, it is important to identify that the ideal AR 
platform would use a camera with a wide field of view, 
which in practice means even smaller focal distances than 
the one used in this case study. Furthermore, most camera 
pose tracking systems use a camera projection model where 
the intrinsic parameters are assumed to be known and fixed 
[8]. As zooming changes the intrinsic parameters of the 
camera, it is not permitted. However, this problem could be 
overcome, by moving the zoom back to the original 
position after initializing for scale.  
In the future, a fully featured uninformed marker-less 
augmented reality application with the proposed scale 
estimation will be implemented in order to explore the user 
interaction and to test applications that could take 
advantage of the newly added scale information. Finally, as 
the proposed scale estimation is device and platform 
independent, a more detailed feasibility study for 
implementing the proposed system on other suitable AR 
platforms should be preformed. 
To conclude, the proposed method can be used to introduce 
scale into marker less AR systems without the requirement 
of apiori knowledge of the workspace, however, such scale 
estimation is currently limited to a small close up range. 
Nevertheless, as AR systems have potential to dynamically 
expend their maps, the close up initialization does not limit 
the size of their workspace. Furthermore, by introducing 
better lens optics, and optical zoom lenses to mobile 
devices, the accuracy and range will inevitably improve. 
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