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On the internal radial structure of field line resonances
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Abstract. We examine the radial scales developed inside field line resonances
(FLRs) when they are driven by both broad and narrow frequency bandwidth
fast mode sources. The finest FLR radial scales are always limited by ionospheric
dissipation, being determined primarily by the height-integrated Pedersen conduc-
tivity X p. We estimate likely FLR radial scale sizes in both dayside and nightside
ionospheric conditions, and confirm the accuracy of these estimates using the wave
Doppler shifts observed on inbound/outbound passes of Active Magnetospheric
Particle Tracer Explorers CCE [Anderson et al., 1989]. Dayside broadband FLR
events can have radial scale lengths significantly shorter than their overall widths,
suggesting they may possess several radial amplitude nodes and antinodes. Further,
we examine the Kelvin-Helmholtz (KH) stability of FLRs due to their azimuthal
velocity shear. We estimate a FLR toroidal velocity threshold, for particular Xp,
beyond which the KH growth rate is sufficiently large to disrupt the FLR. For
typical magnetospheric conditions, FLRs are not likely to be disrupted by driving
secondary KH vortices. For large-amplitude FLRs in regions of high ¥p, however,
it may be possible for FLRs to be disrupted by the KH instability and to develop
into large-scale KH vortices. We further speculate on the possible link between
auroral zone FLR internal radial scales and the observed optical widths of discrete

auroral arcs.

1. Introduction

Since the initial ground-based magnetometer obser-
vations of Samson et al. [1971], a large amount of the-
ory has been developed to understand the spatial and
polarization structure of field line resonances (FLRs).
Notably, the seminal papers by Southwood [1974] and
Chen and Hasegawa [1974] were the first to derive the
modal structure of pulsations including fast and Alfvén
wave coupling. Early works considered monochromatic
Kelvin-Helmholtz (KH) magnetopause surface waves as
the likely FLR energy source, with later developments
suggesting the possibility of fast cavity eigenmodes be-
ing created between an internal wave turning point and
an outer boundary (usually the magnetopause) [Kivel-
son et al., 1984; Kivelson and Southwood, 1985, 1986;
Allan et al., 1985, 1986]. The cavity eigenmode picture
was subsequently modified to include the opening of the
magnetosphere downtail to form a waveguide [e.g., Sam-
son et al., 1992a]. These theoretical treatments usually
involve the calculation of the structure of wave normal
modes, the theory having developed into a consider-
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able success with the observed variations of ULF wave
period and polarization with latitude being accurately
reproduced.

Ground-based observations often show FLRs to be
monochromatic over a range of latitudes, with the lati-
tude of maximum amplitude (the “resonant” field line)
increasing with increasing wave period. This is clearly
in good accord with the modal theories of Southwood
[1974] and Chen and Hasegawa [1974]. Satellite obser-
vations however, show that pulsations often exhibit L
shell dependent frequencies, believed to result from the
oscillations of field lines at their local Alfvén frequency,
and frequently display a nearly uniform amplitude over
a large range of L shells. L dependent oscillations of
this type, observed, for example, by Active Magneto-
spheric Particle Tracer Explorers (AMPTE) CCE, are
believed to be excited by broadband sources of some
kind; Hasegawa et al. [1983] pointed out the theoretical
possibility of pulsations being driven by a broadband
disturbance.

Whilst the normal modes of a system are useful tools
for examining the mathematical details of wave mor-
phology, any real system’s behavior will result from
a summation or integration over the governing eigen-
modes [see, e.g., Wright and Allan, 1996a, and ref-
erences therein]. In an inhomogeneous ideal plasma,
the eigenmodes are singular at the Alfvén resonance.
In a realistic time dependent situation, energy can be
seen to be accumulated at the “resonance,” with the
wave fields remaining well behaved in both space and
time [Barston, 1964; Goedbloed, 1983; Cally, 1991; Mann
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et al., 1995; Cally and Maddison, 1997]. In this pa-
per we suggest that both the broadband L dependent
oscillations over a range of latitudes, and the more
monochromatic classical FLR responses, can naturally
be represented by a summation over the eigenmodes
of the magnetospheric system. Each eigenmode in
the inhomogeneous magnetosphere represents a coupled
fast and Alfvénic disturbance having a single eigenfre-
quency. Any time-dependent response of the magneto-
sphere can then be synthesized using these eigenmodes
(the Barston modes). The broadband scenario could
result from the excitation of a wide range of eigen-
modes by a large-frequency bandwidth energy source,
whilst the classical narrowband FLR response usually
observed on the ground can be understood as resulting
from only a few eigenmodes being dominantly driven
in the magnetosphere, perhaps being excited by KH
vortices on the flank magnetopause, or by magneto-
spheric ringing in response to a sudden impulse. It
is possible that only the narrowband FLR events are
observed with resonant characteristics by ground-based
magnetometers, whilst the broadband events have pe-
riod and amplitude characteristics which are smeared
by the magnetometers spatial integration [Poulter and
Allan, 1985]. This smearing might result in the obser-
vation of an apparently fixed frequency over a range
of latitudes; their frequencies decreasing with increas-
ing latitude (this appears to be the case in the ground
magnetometer signatures of the L dependent oscilla-
tions reported by Lin et al. [1992]). This could resolve
the contradiction of why monochromatic FLRs are ob-
served from the ground, but L dependent frequency os-
cillations are often seen in situ in the magnetosphere.

In this paper we examine the internal radial struc-
ture of FLRs by considering the fields which we expect
to result when waves are driven by different sources. In
each case, we can understand the pulsation physics by
considering the fields as a summation over the eigen-
modes. We use the observations of differing inbound
and outbound pulsation frequencies in the AMPTE
CCE data set reported by Anderson et al. [1989)] to in-
fer the internal scale lengths of dayside broadband pul-
sations and compare it to theoretical estimates based
on height-integrated ionospheric Pedersen conductivi-
ties (¥p). Further, we consider the likely differences
in the scale sizes of dayside versus nightside waves and
speculate on the likelihood of the shearing equatorial
FLR velocity fields to be subject to the KH instability.
We qualitatively estimate the conditions necessary for
the KH instability to be sufficiently strong to disrupt
a FLR of particular amplitude oscillating on field lines
with footpoints in conditions of varying ¥ p. Finally,
we discuss the possible link between FLRs and discrete
auroral arcs.

2. Internal FLR Radial Structure

In a recent study, Mann et al. [1995] used a time-
dependent model to show how the overall radial width
of a FLR can be understood in terms of the bandwidth
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of the driving fast wave as it deposits energy around
the resonant field line. In the absence of dissipation,
the overall radial width of the resonance should narrow
in time (o t~!) until it reaches a scale which is deter-
mined by the driver’s frequency bandwidth. The wider
the bandwidth of the driver, the broader the resulting
overall spatial width of the toroidal fields at the reso-
nance. The final full width at half maximum (FWHM)
AX, as found, for example, in the velocity perturba-
tions, is

AX ~ Aw dws ™ (1)
~ awa
dzx ’

where Aw is the bandwidth of the driver’s velocity field
(FWHM), and dwa/dz is the local Alfvén frequency
gradient.

For example, if the magnetosphere acts as a high-
quality factor (@) resonant cavity, then the cavity/-
waveguide response to a sudden impulse, for example,
will have a narrow bandwidth and can be described us-
ing a summation over only a few Barston modes. The
cavity disturbance should drive a narrow FLR resonant
response centered on the resonant field line; the spatial
width being determined by the bandwidth which the
cavity mode develops due to its amplitude decay, in-
cluding cavity losses and the deposition of energy at
the “resonance” [Mann et al., 1995]. Widths ~ 0.4
RE are predicted for typical theoretical cavity mode
“decay” rates, in good agreement with the observed
widths of impulsive cavity mode driven FLRs [e.g., Yeo-
man et al., 1997]. Similarly, monochromatic KH surface
waves on the magnetopause should drive similar nar-
row resonances, whilst low @ cavity /waveguide modes,
broadband KH magnetopause surface waves, or sim-
ply broadband inwardly propagating fast waves should
drive much wider resonances, requiring a large number
of Barston modes to be used to synthesize the broad-
band waves.

Once the energy has been deposited at the resonance,
the resulting toroidal FLR fields tend to oscillate at
the local natural Alfvén frequency. Over time, the field
lines drift out of phase with each other and generate
increasingly fine internal structure, having phase mixing
length scales given by [Mann et al., 1995]

dwa

o=a(i2)” o

In an ideal plasma, and on field lines with no ionospheric
losses, the eigenmodes of an inhomogeneous plasma are
singular at the resonance; the ¢, (poloidal) fields gov-
erned by a logarithmic (In(z — z,)) singularity, and the
&, (toroidal) fields are governed by a 1/(z — z,) singu-
larity. These singular eigenmodes (the Barston modes)
can be used as a basis set of functions with which to
describe the real time-dependent evolution of coupled
MHD waves [Barston, 1964; Cally, 1991; Mann et al.,
1995; Cally and Maddison, 1997). It is the singularities
in the eigenmodes which allow ideal phase mixing to
continue without limit, producing toroidal length scales
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which continuously narrow in time; the eigenmode sin-
gularities also being responsible for the asymptotically
toroidal wave state produced by time-dependent FLR
wave evolution [Radoski, 1974].

In the Earth’s magnetosphere, dissipation in the iono-
sphere removes the singularities in the ideal eigenmodes
and limits their finest scales [ Wright and Allan, 1996b)].
FLR eigenmodes varying as expi(kyy — wt) and stand-
ing along the background field with a wavenumber k,
in a box model magnetosphere [e.g., Southwood, 1974]
can be described in terms of universal functions F and
G where [Wright and Allan, 1996b]

€ = £0€G(X); G(X) =In(X —i) (3)
ei? -
fy = —grcoky—éB}-(X); f(X) = (.X _ Z) (4)

Here X = (z — z,,)/6B , and

kz,’ wz de
=-2= | —— = Yp —=
)] 2kzr (dwi/dm)h (luo P

>—1
)

(field lines have length 2I, ©p is the height-integrated
Pedersen conductivity, and k, is as given by Wright
and Allan [1996b], having a real part k., which rep-
resents the wave’s standing nature and an imaginary
part k.; describing the ionospheric damping). The fa-
miliar logarithmic &, and 1/z £, eigenmode behavior
is clearly apparent. The toroidal fields of these eigen-
modes (represented by £,) have a spatial scale deter-
mined by the universal function F. The physical spatial
z scale L, of F is given approximately by L,, ~ 46p
and is < ©3'. Hence higher ionospheric conductivities
generate finer spatial scales. Similarly, the v, velocity
shear (vy = d€,/dt) in F occurs over a length scale of
~ 26p ~ Ln/2 [see Wright and Allan, 1996b, Figures
6 and 8]. Again this shear length scale is narrower for
higher X p.

In the case of continually driven pulsations, using a
phase mixing argument, Mann et al. [1995] had earlier
shown how FLR radial widths would decrease in time
(ox t7') and eventually develop a limited radial scale
size. Adopting a dynamical argument in terms of a
superposition of Alfvén waves, Mann et al. [1995] ar-
gued that FLR fields would be continually driven with
relatively large amplitude and spatial scale. The waves
excited at a given time would phase mix more and more
the longer they lived; however, they would also decay
in amplitude and become more insignificant. Conse-
quently, the ionosphere limits the finest spatial scales
which the phase mixing can generate and produces an
asymptotic ionospherically limited radial scale length
Ly.

Assuming that the wave amplitudes become insignifi-
cant after two ionospheric decay times (i.e., after a time
t = 277; 71 = 1/~ and ~ represents the ionospheric
damping) gives
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Physically, L; represents the length scale developed by
phase mixing in a time 27;. Note that Mann et al.
[1995] used t = 77 in their definition of Lj; however, af-
ter this time waves have only decayed to ~ 34% of their
original amplitude. Using ¢t = 277 allows waves to decay
down to ~ 10% (which can be considered insignificant);
the dominant scale of the evolving waves being likely
to be 2 L,n(t = 277) = Ly. The fact that ionospheric
dissipation removes the singularities in the eigenmodes
means that in a dynamically evolving time-dependent
situation we expect the finest scale sizes developed by
the system to be limited to the scalelengths of the eigen-
modes (this is obvious since they can be used as a basis
to construct physical (z,t) solutions). Indeed, using the
time t = 277 to define Ly makes the two expressions for
AX¢ in (32) and (33) of Mann et al. [1995] (represent-
ing Lr and L,,) consistent to within 10% (W. Allan,
personal communication, 1997).

Since fast and Alfvén waves are subject to very dif-
ferent ionospheric boundary conditions, fast waves typ-
ically being much better reflected and less strongly
damped [Kivelson and Southwood, 1988], the bandwidth
of the fast mode driver (be it a cavity /waveguide dis-
turbance, a KH magnetopause surface wave or even a
broadband inwardly propagating fast wave disturbance)
should be relatively unaffected by Xp. Consequently, in
all cases the finest internal radial structure field line res-
onances can develop will be determined by the relative
sizes of AX and L;. In the next section we examine the
likely internal structure of broadband toroidal FLR. os-
cillations (specifically those observed by AMPTE CCE
and reported by Anderson et al. [1989]) and other more
narrowband FLRs.

(6)

3. FLR Radial Scalelengths

3.1. Broadband Toroidal FLR Observations

Anderson et al. [1989] completed a statistical study
of strongly toroidal dayside pulsation events display-
ing the characteristic of L dependent frequencies over
a wide range of L shells, between 0500-0900 magnetic
local time (MLT) and L = 4 —9 (note that for distances
beyond ~ 5RE 0500 MLT field lines map to the day-
side ionosphere). This probably represents a situation
where the waves are being continually driven by some
broadband source. Assuming that the waves oscillated
at the local Alfvén frequency wa(r), Anderson et al.
[1989] assumed a wave variation b ~ by exp #7, where

P = wa(r)(t — to(r)) — k(r).r (7
for t > tg, and ¥ = 0 for t < tg. Here to is the on-
set time of the disturbance, and ¢ — to is the time the
field lines have been ringing for. Anderson et al. [1989]

showed that the apparent frequency observed by CCE
(w’) would be shifted relative to the actual local Alfvén
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frequency w4 (ro) due to the phase mixing of the ringing
field lines, so that

(8)

where 7¢ is the position of the observation, and Voog
is the velocity of AMPTE CCE at rg, that is, o' =
w4 (ro) + 6w, where éw is the frequency change resulting
from the phase mixing of the waves. They found that
the frequency shift 6w was opposite for inbound and
outbound trajectories, as would be expected on the ba-
sis of the phase mixing theory, with a typical magnitude
bw/wy ~ 0.1. Figure 6 of Anderson et al. [1989] clearly
illustrates this behavior. It shows the apparent frequen-
cies w as a function of L observed by AMPTE CCE on
inbound and outbound passes, with the inbound and
outbound w(L) curves being displaced relative to the
average over the total ensemble of events from all the
CCE passes.

On the basis of these frequency shifts, Anderson et al.
[1989] calculated an average ringing time of Tgua =
t —1to ~ 800 — 1200 s. Since each event is observed
at an unknown time during the wave’s evolution, an
average of the observed ringing time should give a sta-
tistical estimate for the ionospheric decay time. We
have argued that the radial scales generated by phase
mixing will be limited to Lj, so we can identify 7qa¢a
with 277, and hence calculate the scale lengths of the
waves Lqat, inferred from the CCE observations. Using
the modeling of Allan and Knoz, [1979a,b] in a dipole
magnetic field, we can compare model 277 with 74,a to
test the validity of the theory. The model of Allan and
Knoz, [1979a,b] has a density which varies ox L™9 in
the equatorial plane and o< 7~¢ along the field lines and
generates an Alfvén frequency variation [see also Allan
and Knoz, 1980]

W= % = wA(To) + (t - to)(VCCEV)wA(I')

L'—a
wa(Ll) = C—re=.
(L-1)
Here L is the Mcllwain parameter, C is a constant,
a = (7T-4¢)/2, and we take ¢ = 4 for waves outside
the plasmapause. The Alfvén frequency gradients are
hence given by

(9)

bt

We consider the particular event presented by Ander-
son et al. [1989] in their plate 2, where L dependent
oscillations were seen between L ~ 4 — 7 with frequen-
cies ~ 25— 10 mHz. Using the observed frequency of 10
mHz at L = 7, knowing at L = 7 CCE crosses L shells
at a rate of Vocg ~ 2.6 x 107* Rg s™!, and assuming
Sw/w = 0.1, we find a ringing time for this event of
t—to = 1290 s. Setting this time equal to 277 produces
an estimated damping decrement of v/w ~ 0.025 (using
v =1/645 s”l) and a radial length scale Lga¢, ~ 0.26
Rg. The overall width of the disturbance was observed
to be AX 2 3 Rp, which suggests that these pulsa-

(1v)
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tions had several radial oscillations inside the overall
radial envelope of the wave (since Lgaa < AX). This
is schematically illustrated in Figure la.

We can confirm the hypothesis that the radial scales
inside FLRs are governed by L; by comparing the ob-
served ringing times with the theoretical ionospheric
damping times calculated by Allan and Knoz, [1979a,b].
Using the observed period of 100 s (10 mHz waves) at
L = 7 and considering the waves to be second har-
monic, we find ionospheric damping decrements ~/w
and asymptotic phase mixing lengths Ly as a function
of ¥p as given in Table 1. (Note that the damping
decrements are not strongly dependent on the harmonic
number but are strongly dependent on wave period.)
Higher ¥ p generates smaller length scales Ly, as ex-
pected. Considering a typical dayside conductivity of

(a)
Sy Yy

Figure 1. Schematic diagram of FLR toroidal fields.
Solid lines show the FLR fields; dashed lines depict the
fields half a period later. (a) Broadband FLR: Contin-
ually driven by a broad frequency bandwidth source,
having AX > L;. (b) Narrowband FLR: Displaying
the classical 1/z FLR phase and amplitude signature,
having AX ~ Lj.
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Table 1. Pulsation Radial Widths for Second Har-
monic Waves at L = 7 (100 s Period)

Yp,S Ionospheric y/w L, Rg
1 0.183 1.93
4 0.041 0.43
6 0.028 0.29
8 0.021 0.22
10 0.017 0.18
20 0.008 0.08
30 0.005 0.05

~ 6 — 88 gives a theoretical 7v/w ~ 0.021 — 0.028 (rep-
resenting Ly ~ 0.22 — 0.29 Rg), which is in excellent
agreement with apparent damping decrement (y/w) and
the scale length Lga¢, from the dayside AMPTE CCE
observations presented above. Clearly, the ringing times
estimated from the Doppler shifts in the data are of
the same order as theoretical dayside ionospheric decay
times. This gives good experimental verification to the
suggestion of Mann et al. [1995] that the internal radial
scale lengths for these continually driven oscillations can
be estimated using (6).

3.2. Narrow Bandwidth FLR Observations

In this section we consider the radial structure of
FLRs driven by more monochromatic fast mode dis-
turbances. Mitchell et al. [1990] observed a FLR with
an overall width AX < 0.5 Rp with ISEE 1 and ISEE
2, which was possibly driven by a KH magnetopause
surface wave disturbance, and which subsequently dis-
played oscillations at the local Alfvén frequency after
the cessation of power input from the KH wave. Conse-
quently, the wave would have an overall width ~ AXj;
the toroidal fields subsequently phase mixing and de-
caying due to ionospheric dissipation. We can compare
this value of AX to the lengths L; developed inside
fundamental mode FLRs. We choose waves with 360 s
period at L = 8 to facilitate a comparison of the obser-
vations of Samson et al. [1996] of a FLR coexisting at
the location of discrete auroral arcs, which we consider
further in section 5.

Again using the results of Allan and Knoz, [1979a,b],
we find damping decrements v/w and lengths L; as
a function of ¥ p as given in Table 2. Interestingly,
this suggests that longer-period (lower harmonic) waves
only have time to generate relatively large phase mixing
scales during their ionospheric lifetime. Based on Ta-
ble 2, we expect long-period (fundamental mode) FLRs
on the dayside to have Ly ~ AX. Waves with the
classical FLR signature of an amplitude enhancement
and a 7 phase change over a narrow range of L shells
(found, for example, by Southwood [1974], and in subse-
quent work using more realistic geometries [e.g., Wright
and Thompson, 1994]) should correspond to these cases
where Ly ~ AX. This scenario is schematically illus-
trated in Figure 1b. Based on Table 2, we suggest that
for fundamental mode FLRs on the dayside Ly is typi-
cally ~ AX. At locations where £p is enhanced (e.g.,
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Table 2. Pulsation Radial Widths for Fundamental
Mode Waves at L = 8 (360 s Period)

Yp,S Ilonosphericy/w Ly, Rg
1 0.698 8.46
4 0.129 1.56
6 0.085 1.03
8 0.064 0.77
10 0.051 0.62
20 0.025 0.31
30 0.017 0.21

in the auroral zone), however, L; will be significantly
reduced and can become < AX.

Interestingly, since Ly o< w™ (combining (6) with
(10)), higher harmonic waves are more likely to have
internal structure inside the width AX because they
can phase mix to finer scales within their ionospheric
lifetimes. The observations of Anderson et al. [1989)
were of harmonic frequency (~ 10-25 mHz) waves which
are likely to have finer internal scales than fundamental
mode waves and hence which are likely to have larger
Doppler shifts when observed in situ by satellites. In all
cases, we anticipate that the finest scales ever developed
inside a FLR can be estimated on the basis of the scale
lengths developed due to ionospheric dissipation. In the
next section we use Ly as an estimate for the equato-
rial radial length scales inside FLRs and hence analyze
their likely Kelvin-Helmholtz stability for conditions of
various Y p.

4. Kelvin-Helmholtz Stability of FLR
Toroidal Fields

The possibility that magnetospheric FLRs might ex-
cite the KH instability because of their azimuthal ve-
locity shear has recently been suggested [Rankin et al.,
1993a; Samson et al., 1996]. In the context of solar
coronal heating, the action of the KH instability inside
FLRs has previously been considered by Hollweg and
Yang [1988], the KH instability being suggested as a
possible mechanism for enhancing the plasma heating
rate. Similarly, Browning and Priest [1984] considered
the KH stability of phase-mixed shear Alfvén waves,
also proposing that the instability could enhance the
heating inside phase-mixed wave fields. Note, however,
that in the solar application, the action of viscosity or
resistivity in the body of the plasma forms the domi-
nant dissipation mechanism, and it is this which limits
the scale lengths of the eigenmodes rather than the re-
sistivity of the (ionospheric) boundaries.

The KH instability clearly favors large amplitude
shears (which for fundamental mode magnetospheric
FLR occurs in the equatorial plane), with the most un-
stable KH wave being described by azimuthal wavenum-
bers kyxu given by

kykn ~ 0.6/A (11)
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where A is the thickness of the region of velocity shear
[Walker, 1981]. Earlier in this paper we estimated the
finest radial scales which might be developed during
FLR evolution; ionospheric dissipation playing a cru-
cial role in determining their finest radial scales and
hence the length over which the FLR velocity field’s
shear acts. Previous workers using models with per-
fectly conducting ionospheric boundaries have imposed
FLR scales as small as ~ 0.1 Rg [e.g., Rankin et al.,
1993b]. We believe that the effect of the lower bound
on the radial length scales can be critical in determin-
ing whether magnetospheric FLR fields are stable to the
KH instability, and we examine this below.

Assuming that the waves are incompressible for sim-
plicity, KH surface waves have a zero real eigenfre-
quency and have a growth rate governed by their imag-
inary wave frequency w;ku, given by

wikn = kixnviR, (12)
where vy is the FLR azimuthal velocity amplitude (i.e.,
the FLR in this model experiences a shear of 2vyg), see
appendix.

Since the FLR velocities vyg oscillate from having
maximum to zero shear on a timescale of Tr/4, where
Tk is the FLR standing Alfvén wave period, and numer-
ical studies by Rankin et al. [1993a] show how the KH
instability is quenched and does not disrupt the FLR
for waves with growth times longer than this, we can
define a critical e-fold KH growth rate weris = 2wrr/,
where wyg is the real FLR frequency. Using (11) for the
fastest growing KH modes azimuthal (y) wavenumber,
we can define a critical radial scale length A, given
by

Acrlt =0. 37T = 0. 15UyRTR
WrR

(13)

The FLR velocity shear length scale (A,s) must be
greater than A in order for the FLR not to be dis-
rupted by the KH instability. This criterion estimates
how narrow FLR velocity shear layers should be in or-
der for velocity fields of magnitude vyr to drive KH
vortices which destroy the FLR.

Using the results of Allan and Knoz, [1979a,b] in a
dipole geometry, we can use (6) to define the FLR ve-
locity shear length, being given by A,s ~ L/2. For any
particular wave, this will relate ¥ p and vy g to create the
criterion for KH instability from (13) (i.e., Ays < Acrit
for instability). Now

L; 7rL(L - 1)Rg |v

2 7 T2(2L-15) l l (14)

Yo 2, (El

w mwln (EP+CI) (15)
where ¢; = (210A0Z0)", and Ay = 8RgLZy/mTg is

the equatorial Alfvén velocity which is chosen to model
the required wave frequency wyr. Zo = (1 — 1/L)2 and
the numbers m = 2,4,6... represent the field-aligned
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harmonics of half-wavelength modes with ionospheric
velocity nodes. Consequently, the instability criterion

is given by
(2L - 1.5)m " (EP +(1 < 0.15vyrTR.  (16)

Expanding out the logarithm for ¢(;/Zp « 1, then
In[(Zp - ¢1)/(Zp+ ()] ® —2(1/Zp, and considering
fundamental mode waves (m = 2) the instability crite-
rion becomes

[L(L-1)]
1.2u0L(2L — 1.5)Z¢
(Note that the instability criterion is only weakly de-

pendent on L, and in this limit is independent of wyg.)
For example, at L = 8 the instability criterion is

Spuyr > (17)

Ypvyr > 3.66 x 10°, (18)

(Zp in siemens, and vyg in m s~!). Considering £p = 6
S would require vyg > 61 km s™}, implying that a large
total velocity shear in excess of ~ 120 km s~ is required
at the resonance for dayside FLRs to become disrupted
by the KH instability. FLRs whose footpoints lie in
regions of lower ¥ p would require even greater velocity
shears for the KH instability growth rates to be large
enough to destroy the FLR.

In Figure 2 we show the critical vy as a function of
Tp. FLRs with equatorial vyr above these curves, for
given Y p, will be disrupted by KH waves. It should be
stressed that the velocity criterion probably represents
a lower limit because we have assumed incompressibil-
ity and that the FLR velocity fields shear over an in-
finitesimal layer when estimating w;xu. A more realis-
tic treatment to include the effect of the shear layer’s
width on w;xy would require numerical computation
[e.g., Rankin et al., 1993a]. However, our point here
is to emphasize that the effect of ¥ p limiting the FLR

120

T
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80

60 F

v,/ kms™

40F

20 F

Se/S

Figure 2. The critical azimuthal velocity (vyg) re-
quired for fundamental mode FLRs to be disrupted by
driving KH waves plotted as a function of £p (calcu-
lated using (17)).
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scales may be at least as important as the magnitude
of the FLRs azimuthal velocity shear. We discuss the
implications for the KH disruption criterion in the fol-
lowing section.

5. Discussion

From the analysis presented in the previous section,
we can estimate the likely KH stability of FLR. veloc-
ity fields of particular amplitude in regions of differing
ionospheric Pedersen conductivity £p. Estimating the
magnitudes of FLR velocities from satellite data, how-
ever, is difficult. Fundamental FLRs have equatorial
antinodes in &, v and E, and nodes in b. The majority
of satellite FLR observations plesent wave trains ob-
served in u, which cannot be used to estimate v since
the ratio b/v for these standing waves varies strongly
along the field line, especially near the b field node at
the equator.

Observations of E can be used to calculate v from
the frozen field condition (E + vABg = 0). Poloidal
(rather than toroidal) Alfvén waves observed by Singer
et al. [1982] showed |E,| ~ a few mV m™'. A toroidal
wave with a similar equatorial |Ez] ~ 1 mV m™! at
L = 7 would have vyg ~ 11 km s™!. Similar fundamen-
tal mode wave electric fields were measured using the
GOES 2 satellite by Junginger and Baumjohann [1984],
typical amplitudes being ~ 0.3 mV m™!, representing
typical velocities ~ 2.8 km s~!. More GOES 2 obser-
vations presented by Matthews [1987] showed wave am-
plitudes between 0.5 and 9.0 mV m™!, typically being
~ 2 —5 mV m~!, that is, velocities of ~ 18 — 46 km
s~1. For typical dayside £ p, these waves would proba-
bly not be disrupted by the KHI. The largest event (9.0
mV m™!) observed by Matthews [1987], however, would
have an equatorial velocity amplitude of ~ 80 km s~1.
This could easily be greater than the KH instability
criterion for dayside conductivity.

Probably the best way to estimate the magnitude
of equatorial FLR azimuthal velocities is to map the
ionospheric wave electric fields observed by radar into
the equatorial plane. Using the dipole model of Walker
[1980], we estimate that at L = 7, |SpE;/nd; Eeq| ~
7 x 1073, where E and Eeq are the magnitudes of the
electric fields at the ionosphere and the equator respec-
tively and m.q is the equatorial electron number den-
sity [Walker, 1980, Figure 2b]. Considering the four
FLR events observed with the Scandinavian Twin Au-
roral Radar Experiment (STARE) radar having electric
field amplitudes of 12 (two observations) 16 and 44 mV
m~! reported by Greenwald and Walker [1980] [see also
Walker et al., 1979] produces equatorial azimuthal ve-
locity amplitudes of ~ 20, ~ 26 and ~ 75 km s™! (we
have used By = 91 nT at L = 7, neqg = 3 x 107m™3,
Yp = 6 S and assumed the wave is a fundamental FLR
so that |vygr| = |E/Bo| at the equator in a dipole field).
All but the largest-amplitude event are again probably
too small to cause the KHI growth rates to be sufficient
to disrupt the FLR fields. The 44 mV m™! event, how-
ever, represents a particularly large-amplitude FLR.
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The actual amplitude of the waves in this event may
have been much larger than those apparently observed
by STARE. This is because large electron drift veloci-
ties (Ve 2 400 m s™!, representing £ 2 20 mV m™!) in
the ionospheric F region sampled by STARE are lim-
ited by the action of the ionospheric two-stream insta-
bility [Nielsen and Schlegel, 1985]. The actual F field
(and hence the velocity amplitude) for this event could
be ~ 1 — 3 times greater than the apparent velocity
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sible that this large-amplitude event was disrupted by
the action of the KH instability. We should also note
that in the model of Walker [1980], Eeq increases with
Yp. If the electric fields seen by STARE are typical,
this could also imply larger equatorial velocity shears
for higher ¥p conditions. Combined with the decrease
in Ly with increased ¥ p, this could result in a signif-
icant enhancement of the KHI g1owth rates or FLRs
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The only definite equatorial magnetospheric velocity
observation known to the author comes from Mitchell
et al. [1990). They observed a very large amplitude
FLR with vyr 2 100 km s™! in the dawn flank of the
magnetosphere (dayside ionosphere). Since dayside p
is typically ~ 5-10 S [Wallis and Budzinski, 1981], this
event could possibly have been converted into a vortex
by the KHI. Indeed, as pointed out by Rankin et al.
[1993a], Mitchell et al.’s wave event had comparable ra-
dial and azimuthal velocity components which is not
inconsistent with the wave having developed a KH vor-
tex. Similarly, using radar observations, McDiarmid
et al. [1994] reported a large-amplitude FLR, believed
to have been excited by an impulsively generated cav-
ity /waveguide mode, with signaturesin both the morn-
ing and afternoon flanks. The afternoon sector showed a
classical FLR signature, whilst the morning sector dis-
played a traveling vortex signature, which could have
resulted from the nonlinear development of the FLR
fields via the KHI. For typical magnetospheric condi-
tions, we predict that most FLRs are not disrupted by
the KHI. This is reassuring since FLRs are observed
very frequently in the magnetosphere. Probably, only
the very largest amplitude FLRs, whose footpoints lie
in ionospheric regions of high conductivity, are likely to
decay into KH vortices.

In recent years there has been a resurgence of inter-
est in the possible link between nightside auroral zone
FLR and electron acceleration in discrete auroral arcs.
A body of evidence is developing to suggest that FLR
form an important aspect of auroral physics [Samson
et al., 1991, 1992b; Xu et al., 1993; Samson et al., 1996].
Some recent theoretical work has suggested mode con-
version to electron inertial Alfvén waves may be respon-
sible for the electron acceleration [see, e.g., Streltsov and
Lotko, 1995, 1996, and references therein], although a
causal link remains to be proven conclusively. Sam-
son et al. [1996] provide some particularly convincing
evidence for a link between FLRs and discrete auroral
arcs, using radar, ground-based magnetometer, and op-
tical observations. During their event, at a particular
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time, the discrete arc develops a vortex structure, which
they suggest may be a signature of the FLR develop-
ing into a KH vortex in the equatorial plane, with the
resultant vortex then propagating down to the iono-
sphere. Prior to the onset of the vortex, the discrete
arc was observed to brighten. If the FLR fields are re-
sponsible for the acceleration of the arc’s precipitating
electrons, this could signify an amplitude enhancement
of the FLR. Moreover, enhanced electron precipitation
could also increase ¥p at the FLR footpoints, possi-
bly allowing the radial length scale of the FLR (and
hence the length scale of its velocity shear) to narrow.
The combination of these two effects could result in the
FLR satisfying the KH disruption criteria, resulting in
the observed auroral arc vortex.

Perhaps the most convincing evidence for links be-
tween FLR and discrete auroral arcs comes from the
optical observations of the poleward motion of bands of
discrete arcs. FLRs situated on field lines outside the
plasmapause (where w4 decreases with increasing L) are
expected to show poleward phase propagation [Green-
wald and Walker, 1980; Wright and Allan, 1996b]. The
similarity between radar observations of poleward phase
motion in FLRs, and the optical observations of pole-
ward moving discrete arcs is remarkable (compare, e.g.,
Figure 2 of Fenrich et al. [1995] and Figure 3 of Samson
et al. [1996]). Very recently, Shiokawa et al. [1996] have
shown a Sun-aligned morning flank auroral arc event
where small arc structures repeatedly appeared at the
edge of a coexisting discrete arc and moved poleward
in a quasi-periodic fashion, with a period of several
minutes. Their arc structure mapped to an equato-
rial position well inside the magnetopause and occurred
during a period of northwards interplanetary magnetic
field (IMF). The authors had no explanation for the
poleward motion of the arcs; pointing out that if an
MHD disturbance propagating in from the flank magne-
topause were responsible for the arc motions then they
would have moved equatorward rather than poleward.
If, however, the arcs coexisited at the location of an
FLR, then the motion observed can be naturally ex-
plained by the physics of the poleward phase propaga-
tion of FLR fields. In many optical auroral arc obser-
vations, arc elements appear to show exactly the same
poleward propagation behavior on the same timescales
as FLR fields. This suggests a strong connection be-
tween discrete auroral arcs and FLRs, but the causal
link whereby the electrons are accelerated directly in
the FLR fields remains to be proven conclusively.

The optical observations of Samson et al. [1996] sug-
gest an overall discrete auroral width (containing sev-
eral arcs) of ~ 50 — 60 km in the ionosphere, each
discrete arc being ~ 10 km wide. Mapping these to
the equator to a distance of ~ 8 R produces scales
of ~ 0.7 — 0.8 Rg and ~ 0.13 Rp, respectively. These
figures are in good agreement with the hypothesis that
the overall width of the discrete arc structures is the
same as AX (which can typically be 2 0.5 Rg for FLRs
outside the plasmapause), and the hypothesis that the
individual arc widths are given by ~ Ly/2. Assuming

MANN: FIELD LINE RESONANCE RADIAL STRUCTURE

Yp = 20 S inside the arc structure would predict an
arc width of ~ 0.15 Rp from Table 1, translating to
~ 11 km in the ionosphere, in excellent agreement with
the observations. This suggests that it may be possible
for nightside auroral zone ¥ p to be sufficient to allow
FLRs in this region to have radial structure inside their
overall spatial envelope (i.e., Ly < AX), as was the case
for the broadband dayside FLRs observed by Anderson
et al. [1989] and discussed in section 3.

We have shown above that FLR physics can explain
both the occurrence of multiple discrete arcs inside an
overall arc structure (when L; < AX) and can account
for the observed poleward arc phase motions. An im-
portant question which remains, however, is by which
mechanism the FLR interacts with the discrete arcs. If
FLRs fields are responsible for discrete arc electron ac-
celeration via mode conversion to inertial Alfvén waves
then this could explain the observations and provide
a causal connection between FLRs and discrete arcs.
However, we should be cautious about this interpreta-
tion. Current theories proposing FLRs as accelerators
of precipitating discrete arc electrons via mode conver-
sion to inertial Alfvén waves rely on the generation of
very fine spatial scales of the order of the electron in-
ertia length. As we have discussed in this paper, iono-
spheric dissipation prevents the creation of spatial scales
finer than ~ Ly, and this will have a profound effect on
whether FLR scales can become sufficiently small for
the mode conversion to occur.

FLR simulations performed by Wei et al. [1994],.
which included electron inertial effects, showed the elec-
tron inertia was important once scales were < 2ml,,
where [, is the electron inertia length given by l. =
c/wpe = \/me/ponce?. Using typical ionospheric and
equatorial electron number densities of 10'! m™3 and
10" m™3 respectively, requires the FLRs to possess
length scales L; < 2mle, that is, < 10 km at the equa-
tor and < 100 m at the ionosphere. Even allowing
for dipole field line convergence, these length scales are
2 100 times smaller than the Lj likely to be generated
inside FLRs by phase mixing (both at the equator and
at the ionosphere).

Consequently, some other additional mechanism is re-
quired if FLRs are to be responsible for discrete arc
electron precipitation. For example, a significant addi-
tional electron density depletion in the auroral acceler-
ator region (~ 2 Rp above the ionosphere) might al-
low I, to become sufficiently large for mode conversion
to occur. For example, assuming n, = 0.5 cm™3 [cf.
Borovsky, 1993] at an altitude of 2 Rg above the iono-
sphere at L = 7, then I, = 7.5 km, whilst an equatorial
L; = 0.3 Rp (representing Xp = 20 S) would map to
~ 150 km. In this case L in the accelerator region
would be now only ~ 3.25 times larger than 27l,. How-
ever, as discussed by Borovsky [1993], if the wave length
scales are only a factor of 4 larger than 27/, then the
wave dispersion and the resultant electron acceleration
are reduced by orders of magnitude. Another possibil-
ity is the presence of unusually high Alfvén frequency
gradients (called “isolated density boundary layers” by
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Streltsov and Lotko [1995]). These might allow the lo-
cal Alfvén frequency gradients to become large enough
to reduce Ly sufficiently to induce the mode conversion
(L1 « (dwa/dzx)™!; see (6)). Observational evidence for
the existence of these gradient enhancements is limited,
although density enhancements were seen by Hughes
and Grard [1984].

An alternative explanation is that the features of FLR
structure and phase motion are apparent in the opti-
cal auroral observations because the FLR wave fields
modulate the electron precipitation but are not them-
selves responsible for the actual electron acceleration
via mode conversion to electron inertial Alfvén waves.
The modulation of optical auroral light at the same
frequency as coexisting giant ULF pulsations (Pgs) in
the early morning MLT sector is well known [see, e.g.,
Chisham et al., 1990, and references therein]. A vari-
ety of mechanisms have been proposed to explain the
observed modulation [see, e.g., Southwood and Hughes,
1983; Xu et al., 1993, and references therein], some of
which might be operative in discrete arcs.

Another possibility is that the intense field-aligned
currents (FACs) present inside FLRs induce plasma
waves such as electrostatic ion-cyclotron waves via. top-
side current instabilities [Kindel and Kennel, 1971].
These secondary plasma waves could provide the anom-
alous resistivity required to generate the field-aligned
electric fields which accelerate the precipitating elec-
trons [e.g., Greenwald and Walker, 1980]. If the auro-
ral zone FLRs have internal structure of the form illus-
trated in Figure la, they would possess several upward
and downward FAC current pairs, which could result in
the production of several discrete arc structures. This
would avoid the requirement for the arcs to have widths
as small as electron inertial scale lengths. Certainly, the
discrete arcs observed by Samson et al. [1996] appear
to have widths greater than the likely electron inertial
lengths, unless there is a sufficently low electron density
somewhere along the field line. More detailed observa-
tions in the auroral accelerator region might allow these
theories to be tested further.

6. Conclusions

In this paper we have analyzed the widths likely to be
developed by FLRs, including the effects of ionospheric
dissipation in limiting their radial scale lengths. We
concluded that FLR morphology can be summaiized as
follows:

1. The overall width AX of a FLR is determined pre-
dominantly by the bandwidth of the driving fast mode
wave source (i.e.,, AX ~ Aw(dwa/dz)™1).

2. Once the fast mode energy has been deposited at
the resonance, so that the fast mode forcing has been
removed, the field lines oscillate at their local Alfvén
eigenfrequencies generating fine scales ~ Ly;(t) o t71.

3. Phase mixing proceeds for a finite time, cor-
responding to the ionospheric lifetime of the waves,
and generates ionospherically limited length scales Lj.
These scales are as narrow as those developed due to
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ionospheric dissipation in the eigenmodes of the system.

4. For all FLRs, the finest scales, and hence the finest
length scales over which the toroidal velocities shear, is
determined by ionospheric dissipation.

5. The length scales which are phase mixed to in
an ionospheric lifetime are shorter for higher-frequency
waves. Waves with L; < AX can have internal nodes
and antinodes of wave velocity; this internal structure
being more likely for harmonic rather than fundamen-
tal mode FLRs in regions of dayside X p. In regions of
strongly enhanced ¥ p, such as in the auroral zone, fun-
damental mode Ly can be < AX generating internal
radial fine structure.

6. Even for very strongly enhanced active auroral
ionospheric Pedersen conductivities (e.g., ¥p ~ 20 S),
L appears to be very much greater than the likely elec-
tron inertial length scales required if FLRs are to be re-
sponsible for the direct acceleration of discrete arc elec-
trons via mode conversion to electron inertial Alfvén
waves.

7. For the majority of FLRs, we estimate that the
growth rates of KH vortices driven by FLR azimuthal
velocity shear are too small for them to disrupt the FLR
structure. Consequently, FLR radial structure can be
expected to be similar to the schematic presented in
Figure 1. It has recently been suggested, however, that
the resulting small-amplitude KH waves might act as
seeds for energetic particle-driven high-m Alfvén waves
[Allan and Wright, 1997], which are sometimes observed
on the same L shells as low-m FLRs [Fenrich et al.,
1995].

8. For large-amplitude FLRs with footpoints in re-
gions of high ionospheric £p it may be possible for the
Kelvin-Helmholtz instability to be sufficiently strong to
disrupt the FLR to form a vortical KH wave.

Appendix A: Kelvin-Helmholtz Stability
of FLR Velocity Fields

We consider magnetic fields B;, densities p;, and
background shear velocities U; in the yz plane across
an infinitesimal layer at z = 0 (i = 1,2 for z < 0
and z > 0, respectively). Assuming that the waves
are incompressible for simplicity, KH surface waves are
governed by the equation

p1(w — kg U1)? + p2(w — kgn . Us)?

= pg ' {(kxn-B1)® + (kxu-B2)*} (A1)
where kg = (0, kyku, k-xu). Consequently the growth
rate of the KH disturbance wiky is described by [e.g.,
Cowling, 1976]
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Considering instabilities occurring in the azimuthal
FLR velocity shear vyg, in the presence of both the
Earth’s background magnetic field By = Bz and the
FLR wave magnetic field b, = byr¥, (since byr domi-
nates the FLR magnetic field) so that By 2 = By £ b,
and taking p; = p2 = p and Uy 3 = dwyry then

2
2 1.2 2 2 2 2 yR
wika = kykuVyr — kzxava — kyku——- (A3)

Samson et al. [1996] show how the stabilizing effect of
byr is negligible in comparison to the destabilizing ef-
fect of the FLR vyg velocity fields for a dipole model of
the Earth’s magnetosphere (except very near the iono-

sphere), that is, b2 /uop <« vZp (especially near the

equatorial antinode of b,). Since the KH instability fa-
vors waves with k.B = 0, we can assume k.xu < kykn
for the fastest growing modes near the equatorial plane
so that

(A4)

2 12 2
WikH = kyKHvyR'
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