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Abstract

The theory of gravitational lensing is reviewed from a spacetime perspective, without
quasi-Newtonian approximations. More precisely, the review covers all aspects of gravita-
tional lensing where light propagation is described in terms of lightlike geodesics of a metric
of Lorentzian signature. It includes the basic equations and the relevant techniques for calcu-
lating the position, the shape, and the brightness of images in an arbitrary general-relativistic
spacetime. It also includes general theorems on the classification of caustics, on criteria for
multiple imaging, and on the possible number of images. The general results are illustrated
with examples of spacetimes where the lensing features can be explicitly calculated, including
the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane
gravitational waves, and others.
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1 Introduction

In its most general sense, gravitational lensing is a collective term for all effects of a gravitational
field on the propagation of electromagnetic radiation, with the latter usually described in terms
of rays. According to general relativity, the gravitational field is coded in a metric of Lorentzian
signature on the 4-dimensional spacetime manifold, and the light rays are the lightlike geodesics
of this spacetime metric. From a mathematical point of view, the theory of gravitational lensing
is thus the theory of lightlike geodesics in a 4-dimensional manifold with a Lorentzian metric.

The first observation of a ‘gravitational lensing’ effect was made when the deflection of star
light by our Sun was verified during a Solar eclipse in 1919. Today, the list of observed phenomena
includes the following:

Multiple quasars.

The gravitational field of a galaxy (or a cluster of galaxies) bends the light from a distant quasar
in such a way that the observer on Earth sees two or more images of the quasar.

Rings.

An extended light source, like a galaxy or a lobe of a galaxy, is distorted into a closed or al-
most closed ring by the gravitational field of an intervening galaxy. This phenomenon occurs in
situations where the gravitational field is almost rotationally symmetric, with observer and light
source close to the axis of symmetry. It is observed primarily, but not exclusively, in the radio range.

Arcs.

Distant galaxies are distorted into arcs by the gravitational field of an intervening cluster of galax-
ies. Here the situation is less symmetric than in the case of rings. The effect is observed in the
optical range and may produce “giant luminous arcs”, typically of a characteristic blue color.

Microlensing.

When a light source passes behind a compact mass, the focusing effect on the light leads to a
temporal change in brightness (energy flux). This microlensing effect is routinely observed since
the early 1990s by monitoring a large number of stars in the bulge of our Galaxy, in the Magellanic
Clouds and in the Andromeda galaxy. Microlensing has also been observed on quasars.

Image distortion by weak lensing.

In cases where the distortion effect on galaxies is too weak for producing rings or arcs, it can be ver-
ified with statistical methods. By evaluating the shape of a large number of background galaxies in
the field of a galaxy cluster, one can determine the surface mass density of the cluster. By evaluat-
ing fields without a foreground cluster one gets information about the large-scale mass distribution.

Observational aspects of gravitational lensing and methods of how to use lensing as a tool in
astrophysics are the subject of the Living Review by Wambsganss [427]. There the reader may
also find some notes on the history of lensing.

The present review is meant as complementary to the review by Wambsganss. While all the
theoretical methods reviewed in [427] rely on quasi-Newtonian approximations, the present review
is devoted to the theory of gravitational lensing from a spaectime perspective, without such approx-
imations. Here the terminology is as follows: “Lensing from a spacetime perspective” means that
light propagation is described in terms of lightlike geodesics of a general-relativistic spacetime met-
ric, without further approximations. (The term “non-perturbative lensing” is sometimes used in
the same sense.) “Quasi-Newtonian approximation” means that the general-relativistic spacetime
formalism is reduced by approximative assumptions to essentially Newtonian terms (Newtonian
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space, Newtonian time, Newtonian gravitational field). The quasi-Newtonian approximation for-
malism of lensing comes in several variants, and the relation to the exact formalism is not always
evident because sometimes plausibility and ad-hoc assumptions are implicitly made. A common
feature of all variants is that they are “weak-field approximations” in the sense that the spacetime
metric is decomposed into a background (“spacetime without the lens”) and a small perturbation
of this background (“gravitational field of the lens”). For the background one usually chooses
either Minkowski spacetime (isolated lens) or a spatially flat Robertson–Walker spacetime (lens
embedded in a cosmological model). The background then defines a Euclidean 3-space, similar to
Newtonian space, and the gravitational field of the lens is similar to a Newtonian gravitational
field on this Euclidean 3-space. Treating the lens as a small perturbation of the background means
that the gravitational field of the lens is weak and causes only a small deviation of the light rays
from the straight lines in Euclidean 3-space. In its most traditional version, the formalism as-
sumes in addition that the lens is “thin”, and that the lens and the light sources are at rest in
Euclidean 3-space, but there are also variants for “thick” and moving lenses. Also, modifications
for a spatially curved Robertson–Walker background exist, but in all variants a non-trivial topo-
logical or causal structure of spacetime is (explicitly or implicitly) excluded. At the center of the
quasi-Newtonian formalism is a “lens equation” or “lens map”, which relates the position of a
“lensed image” to the position of the corresponding “unlensed image”. In the most traditional
version one considers a thin lens at rest, modeled by a Newtonian gravitational potential given
on a plane in Euclidean 3-space (“lens plane”). The light rays are taken to be straight lines in
Euclidean 3-space except for a sharp bend at the lens plane. For a fixed observer and light sources
distributed on a plane parallel to the lens plane (“source plane”), the lens map is then a map from
the lens plane to the source plane. In this way, the geometric spacetime setting of general relativity
is completely covered behind a curtain of approximations, and one is left simply with a map from
a plane to a plane. Details of the quasi-Newtonian approximation formalism can be found not only
in the above-mentioned Living Review [427], but also in the monographs of Schneider, Ehlers, and
Falco [367] and Petters, Levine, and Wambsganss [343].

The quasi-Newtonian approximation formalism has proven very successful for using gravita-
tional lensing as a tool in astrophysics. This is impressively demonstrated by the work reviewed
in [427]. On the other hand, studying lensing from a spacetime perspective is of relevance under
three aspects:

Didactical.

The theoretical foundations of lensing can be properly formulated only in terms of the full formal-
ism of general relativity. Working out examples with strong curvature and with non-trivial causal
or topological structure demonstrates that, in principle, lensing situations can be much more com-
plicated than suggested by the quasi-Newtonian formalism.

Methodological.

General theorems on lensing (e.g., criteria for multiple imaging, characterizations of caustics, etc.)
should be formulated within the exact spacetime setting of general relativity, if possible, to make
sure that they are not just an artifact of approximative assumptions. For those results which do
not hold in arbitrary spacetimes, one should try to find the precise conditions on the spacetime
under which they are true.

Practical.

There are some situations of astrophysical interest to which the quasi-Newtonian formalism does
not apply. For instance, near a black hole light rays are so strongly bent that, in principle, they can
make arbitrarily many turns around the hole. Clearly, in this situation it is impossible to use the
quasi-Newtonian formalism which would treat these light rays as small perturbations of straight
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lines.

The present review tries to elucidate all three aspects. More precisely, the following subjects
will be covered:

• The basic equations and all relevant techniques that are needed for calculating the position,
the shape, and the brightness of images in an arbitrary general-relativistic spacetime are re-
viewed. Part of this material is well-established since decades, like the Sachs equations for the
optical scalars (Section 2.3), which are of crucial relevance for calculating distance measures
(Section 2.4), image distortion (Section 2.5), and the brightness of images (Section 2.6). It
is included here to keep the review self-contained. Other parts refer to more recent devel-
opments which are far from being fully explored, like the exact lens map (Section 2.1) and
variational techniques (Section 2.9). Specifications and simplifications are possible for space-
times with symmetries. The case of spherically symmetric and static spacetimes is treated
in greater detail (Section 4.3).

• General theorems on lensing in arbitrary spacetimes, or in certain classes of spacetimes, are
reviewed. Some of these results are of a local character, like the classification of locally
stable caustics (Section 2.2). Others are related to global aspects, like the criteria for multi-
ple imaging in terms of conjugate points and cut points (Sections 2.7 and 2.8). The global
theorems can be considerably strengthened if one restricts to globally hyperbolic spacetimes
(Section 3.1) or, more specifically, to asymptotically simple and empty spacetimes (Sec-
tion 3.4). The latter may be viewed as spacetime models for isolated transparent lenses.
Also, in globally hyperbolic spacetimes Morse theory can be used for investigating whether
the total number of images is finite or infinite, even or odd (Section 3.3). In a spherically
symmetric and static spacetime, the occurrence of an infinite sequence of images is related
to the occurrence of a “light sphere” (circular lightlike geodesics), like in the Schwarzschild
spacetime at r = 3m (Section 4.3).

• Several examples of spacetimes are considered, where the lightlike geodesics and, thus, the
lensing features can be calculated explicitly. The examples are chosen such that they illustrate
the general results. Therefore, in many parts of the review the reader will find suggestions to
look at pictures in the example section. The best known and astrophysically most relevant
examples are the Schwarzschild spacetime (Section 5.1), the Kerr spacetime (Section 5.8)
and the spacetime of a straight string (Section 5.10). Schwarzschild black hole lensing and
Kerr black hole lensing was intensively investigated already in the 1960s, 1970s, and 1980s,
with astrophysical applications concentrating on observable features of accretion disks. More
recently, the increasing evidence that there is a black hole at the center of our Galaxy (and
probably at the center of most galaxies) has led to renewed and intensified interest in black
hole lensing (see Sections 5.1 and 5.8). This is a major reason for the increasing number of
articles on lensing beyond the quasi-Newtonian approximation.

This introduction ends with some notes on subjects not covered in this review:

Wave optics.

In the electromagnetic theory, light is described by wavelike solutions to Maxwell’s equations. The
ray-optical treatment used throughout this review is the standard high-frequency approximation
(geometric optics approximation) of the electromagnetic theory for light propagation in vacuum
on a general-relativistic spacetime (see, e.g., [279], § 22.5 or [367], Section 3.2). (Other notions
of vacuum light rays, based on a different approximation procedure, have been occasionally sug-
gested [271], but will not be considered here. Also, results specific to spacetime dimensions other
than four or to gravitational theories other than Einstein’s are not covered.) For most applications
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to lensing the ray-optical treatment is valid and appropriate. An exception, where wave-optical
corrections are necessary, is the calculation of the brightness of images if a light source comes very
close to the caustic of the observer’s light cone (see Section 2.6).

Light propagation in matter.

If light is directly influenced by a medium, the light rays are no longer the lightlike geodesics of
the spacetime metric. For an isotropic non-dispersive medium, they are the lightlike geodesics of
another metric which is again of Lorentzian signature. (This “optical metric” was introduced by
Gordon [179]. For a rigourous derivation, starting from Maxwell’s equation in an isotropic non-
dispersive medium, see Ehlers [114].) Hence, the formalism used throughout this review still applies
to this situation after an appropriate re-interpretation of the metric. In anisotropic or dispersive
media, however, the light rays are not the lightlike geodesics of a Lorentzian metric. There are
some lensing situations where the influence of matter has to be taken into account. For instance.,
for the deflection of radio signals by our Sun the influence of the plasma in the Solar corona (to
be treated as a dispersive medium) is very well measurable. However, such situations will not
be considered in this review. For light propagation in media on a general-relativistic spacetime,
see [337] and references cited therein.

Kinetic theory.

As an alternative to the (geometric optics approximation of) electromagnetic theory, light can be
treated as a photon gas, using the formalism of kinetic theory. This has relevance, e.g., for the
cosmic background radiation. For basic notions of general-relativistic kinetic theory see, e.g., [115].
Apart from some occasional remarks, kinetic theory will not be considered in this review.

Derivation of the quasi-Newtonian formalism.

It is not satisfacory if the quasi-Newtonian formalism of lensing is set up with the help of ad-hoc
assumptions, even if the latter look plausible. From a methodological point of view, it is more
desirable to start from the exact spacetime setting of general relativity and to derive the quasi-
Newtonian lens equation by a well-defined approximation procedure. In comparison to earlier such
derivations [367, 362, 373] later effort has led to considerable improvements. For lenses embedded
in a cosmological model, see Pyne and Birkinshaw [352] who consider lenses that need not be thin
and may be moving on a Robertson–Walker background (with positive, negative, or zero spatial
curvature). For the non-cosmological situation, a Lorentz covariant approximation formalism was
derived by Kopeikin and Schäfer [238]. Here Minkowski spacetime is taken as the background, and
again the lenses need not be thin and may be moving.

5



2 Lensing in Arbitrary Spacetimes

By a spacetime we mean a 4-dimensional manifold M with a (C∞, if not otherwise stated) metric
tensor field g of signature (+,+,+,−) that is time-oriented. The latter means that the non-
spacelike vectors make up two connected components in the entire tangent bundle, one of which is
called “future-pointing” and the other one “past-pointing”. Throughout this review we restrict to
the case that the light rays are freely propagating in vacuum, i.e., are not influenced by mirrors,
refractive media, or any other impediments. The light rays are then the lightlike geodesics of
the spacetime metric. We first summarize results on the lightlike geodesics that hold in arbitrary
spacetimes. In Section 3 these results will be specified for spacetimes with conditions on the causal
structure and in Section 4 for spacetimes with symmetries.

2.1 Light cone and exact lens map

In an arbitrary spacetime (M, g), what an observer at an event pO can see is determined by the
lightlike geodesics that issue from pO into the past. Their union gives the past light cone of pO.
This is the central geometric object for lensing from the spacetime perspective. For a point source
with worldline γS, each past-oriented lightlike geodesic λ from pO to γS gives rise to an image of
γS on the observer’s sky. One should view any such λ as the central ray of a thin bundle that is
focused by the observer’s eye lens onto the observer’s retina (or by a telescope onto a photographic
plate). Hence, the intersection of the past light cone with the world-line of a point source (or
with the world-tube of an extended source) determines the visual appearance of the latter on the
observer’s sky.

In mathematical terms, the observer’s sky or celestial sphere SO can be viewed as the set of all
lightlike directions at pO. Every such direction defines a unique (up to parametrization) lightlike
geodesic through pO, so SO may also be viewed as a subset of the space of all lightlike geodesics in
(M, g) (cf. [263]). One may choose at pO a future-pointing vector UO with g(UO, UO) = −1, to be
interpreted as the 4-velocity of the observer. This allows identifying the observer’s sky SO with a
subset of the tangent space TpO

M,

SO '
{
w ∈ TpO

M
∣∣ g(w,w) = 0 and g(w,UO) = 1

}
. (1)

If UO is changed, this representation changes according to the standard aberration formula of
special relativity. By definition of the exponential map exp, every affinely parametrized geodesic
s 7→ λ(s) satisfies λ(s) = exp

(
s λ̇(0)

)
. Thus, the past light cone of pO is the image of the map

(s, w) 7−→ exp(sw), (2)

which is defined on a subset of ]0,∞[×SO. If we restrict to values of s sufficiently close to 0, the
map (2) is an embedding, i.e., this truncated light cone is an embedded submanifold; this follows
from the well-known fact that exp maps a neighborhood of the origin, in each tangent space,
diffeomorphically into the manifold. However, if we extend the map (2) to larger values of s, it is
in general neither injective nor an immersion; it may form folds, cusps, and other forms of caustics,
or transverse self-intersections. This observation is of crucial importance in view of lensing. There
are some lensing phenomena, such as multiple imaging and image distortion of (point) sources into
(1-dimensional) rings, which can occur only if the light cone fails to be an embedded submanifold
(see Section 2.8). Such lensing phenomena are summarized under the name strong lensing effects.
As long as the light cone is an embedded submanifold, the effects exerted by the gravitational
field on the apparent shape and on the apparent brightness of light sources are called weak lensing
effects. For examples of light cones with caustics and/or transverse self-intersections, see Figures 13,
25, and 26. These pictures show light cones in spacetimes with symmetries, so their structure is
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rather regular. A realistic model of our own light cone, in the real world, would have to take into
account numerous irregularly distributed inhomogeneities (“clumps”) that bend light rays in their
neighborhood. Ellis, Bassett, and Dunsby [129] estimate that such a light cone would have at least
1022 caustics which are hierarchically structured in a way that reminds of fractals.

For calculations it is recommendable to introduce coordinates on the observer’s past light
cone. This can be done by choosing an orthonormal tetrad (e0, e1, e2, e3) with e0 = −UO at the
observation event pO. This parametrizes the points of the observer’s celestial sphere by spherical
coordinates (Ψ,Θ),

w = sinΘ cosΨ e1 + sinΘ sinΨ e2 + cosΘ e3 + e0. (3)

In this representation, map (2) maps each (s,Ψ,Θ) to a spacetime point. Letting the observation
event float along the observer’s worldline, parametrized by proper time τ , gives a map that assigns
to each (s,Ψ,Θ, τ) a spacetime point. In terms of coordinates x = (x0, x1, x2, x3) on the spacetime
manifold, this map is of the form

xi = F i(s,Ψ,Θ, τ), i = 0, 1, 2, 3. (4)

It can be viewed as a map from the world as it appears to the observer (via optical observations)
to the world as it is. The coordinates (s,Ψ,Θ, τ) were called optical coordinates by Temple [401]
and observational coordinates by Ellis [128]. A detailed discussion of their properties can be found
in [130]. They are particularly useful in cosmology but can be introduced for any observer in
any spacetime. It is useful to consider observables, such as distance measures (see Section 2.4) or
the ellipticity that describes image distortion (see Section 2.5) as functions of the observational
coordinates. Some observables, e.g., the redshift and the luminosity distance, are not determined
by the spacetime geometry and the observer alone, but also depend on the 4-velocities of the light
sources. If a vector field U with g(U,U) = −1 has been fixed, one may restrict to an observer and
to light sources which are integral curves of U . The above-mentioned observables, like redshift and
luminosity distance, are then uniquely determined as functions of the observational coordinates.
In applications to cosmology one chooses U as tracing the mean flow of luminous matter (“Hubble
flow”) or as the rest system of the cosmic background radiation; present observations are compatible
with the assumption that these two distinguished observer fields coincide [43, 87, 213].

Writing map (4) explicitly requires solving the lightlike geodesic equation. This is usually done,
using standard index notation, in the Lagrangian formalism, with the Lagrangian L = 1

2gij(x)ẋ
iẋj ,

or in the Hamiltonian formalism, with the Hamiltonian H = 1
2g

ij(x)pipj. A non-trivial example
where the solutions can be explicitly written in terms of elementary functions is the string spacetime
of Section 5.10. Somewhat more general, although still very special, is the situation that the
lightlike geodesic equation admits three independent constants of motion in addition to the obvious
one gij(x)pipj = 0. If, for any pair of the four constants of motion, the Poisson bracket vanishes
(“complete integrability”), the lightlike geodesic equation can be reduced to first-order form, i.e.,
the light cone can be written in terms of integrals over the metric coefficients. This is true, e.g.,
in spherically symmetric and static spacetimes (see Section 4.3).

Having parametrized the past light cone of the observation event pO in terms of (s, w), or
more specifically in terms of (s,Ψ,Θ), one may set up an exact lens map. This exact lens map is
analogous to the lens map of the quasi-Newtonian approximation formalism, as far as possible, but
it is valid in an arbitrary spacetime without approximation. In the quasi-Newtonian formalism for
thin lenses at rest, the lens map assigns to each point in the lens plane a point in the source plane
(see, e.g., [367, 343, 427]). When working in an arbitrary spacetime without approximations, the
observer’s sky SO is an obvious substitute for the lens plane. As a substitute for the source plane
we choose a 3-dimensional submanifold T with a prescribed ruling by timelike curves. We assume
that T is globally of the form Q×R, where the points of the 2-manifold Q label the timelike curves
by which T is ruled. These timelike curves are to be interpreted as the worldlines of light sources.
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We call any such T a source surface. In a nutshell, choosing a source surface means choosing a
two-parameter family of light sources.

The exact lens map is a map from SO to Q. It is defined by following, for each w ∈ SO, the past-
pointing geodesic with initial vector w until it meets T and then projecting to Q (see Figure 1).
In other words, the exact lens map says, for each point on the observer’s celestial sphere, which of
the chosen light sources is seen at this point. Clearly, non-invertibility of the lens map indicates
multiple imaging. What one chooses for T depends on the situation. In applications to cosmology,
one may choose galaxies at a fixed redshift z = zS around the observer. In a spherically-symmetric
and static spacetime one may choose static light sources at a fixed radius value r = rS. Also, the
surface of an extended light source is a possible choice for T .
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Figure 1: Illustration of the exact lens map. pO is the chosen observation event, T is the chosen
source surface. T is a hypersurface ruled by timelike curves (worldlines of light sources) which are
labeled by the points of a 2-dimensional manifold Q. The lens map is defined on the observer’s
celestial sphere SO, given by Equation (1), and takes values in Q. For each w ∈ SO, one follows the
lightlike geodesic with this initial direction until it meets T and then projects to Q. For illustrating
the exact lens map, it is an instructive exercise to intersect the light cones of Figures 13, 25, 26,
and 30 with various source surfaces T .

The exact lens map was introduced by Frittelli and Newman [154] and further discussed in [117,
116]. The following global aspects of the exact lens map were investigated in [338]. First, in general
the lens map is not defined on all of SO because not all past-oriented lightlike geodesics that start
at pO necessarily meet T . Second, in general the lens map is multi-valued because a lightlike
geodesic might meet T several times. Third, the lens map need not be differentiable and not even
continuous because a lightlike geodesic might meet T tangentially. In [338], the notion of a simple
lensing neighborhood is introduced which translates the statement that a deflector is transparent
into precise mathematical language. It is shown that the lens map is globally well-defined and
differentiable if the source surface is the boundary of such a simple lensing neighborhood, and that
for each light source that does not meet the caustic of the observer’s past light cone the number of
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images is finite and odd. This result applies, as a special case, to asymptotically simple and empty
spacetimes (see Section 3.4).

For expressing the exact lens map in coordinate language, it is recommendable to choose co-
ordinates (x0, x1, x2, x3) such that the source surface T is given by the equation x3 = x3S, with a
constant x3S, and that the worldlines of the light sources are x0-lines. In this situation the remaining
coordinates x1 and x2 label the light sources and the exact lens map takes the form

(Ψ,Θ) 7−→ (x1, x2). (5)

It is given by eliminating the two variables s and x0 from the four equations (4) with F 3(s,Ψ,Θ, τ) =
x3S and fixed τ . This is the way in which the lens map was written in the original paper by Frittelli
and Newman; see Equation (6) in [154]. (They used complex coordinates (η, η) for the observer’s
celestial sphere that are related to our spherical coordinates (Ψ,Θ) by stereographic projection.)
In this explicit coordinate version, the exact lens map can be succesfully applied, in particular,
to spherically symmetric and static spacetimes, with x0 = t, x1 = ϕ, x2 = ϑ, and x3 = r (see
Section 4.3 and the Schwarzschild example in Section 5.1). The exact lens map can also be used
for testing the reliability of approximation techniques. In [237] the authors find that the standard
quasi-Newtonian approximation formalism may lead to significant errors for lensing configurations
with two lenses.

2.2 Wave fronts

Wave fronts are related to light rays as solutions of the Hamilton–Jacobi equation are related to
solutions of Hamilton’s equations in classical mechanics. For the case at hand (i.e., vacuum light
propagation in an arbitrary spacetime, corresponding to the Hamiltonian H = 1

2g
ij(x)pipj), a wave

front is a subset of the spacetime that can be constructed in the following way:

1. Choose a spacelike 2-surface S that is orientable.

2. At each point of S, choose a lightlike direction orthogonal to S that depends smoothly on
the foot-point. (You have to choose between two possibilities.)

3. Take all lightlike geodesics that are tangent to the chosen directions. These lightlike geodesics
are called the generators of the wave front, and the wave front is the union of all generators.

Clearly, a light cone is a special case of a wave front. One gets this special case by choosing for S
an appropriate (small) sphere. Any wave front is the envelope of all light cones with vertices on
the wave front. In this sense, general-relativistic wave fronts can be constructed according to the
Huygens principle.

In the context of general relativity the notion of wave fronts was introduced by Kermack,
McCrea, and Whittaker [233]. For a modern review article see, e.g., Ehlers and Newman [119].

A coordinate representation for a wave front can be given with the help of (local) coordinates
(u1, u2) on S. One chooses a parameter value s0 and parametrizes each generator λ affinely such
that λ(s0) ∈ S and λ̇(s0) depends smoothly on the foot-point in S. This gives the wave front as
the image of a map

(s, u1, u2) 7−→ F i(s, u1, u2), i = 0, 1, 2, 3. (6)

For light cones we may choose spherical coordinates, (u1 = Ψ, u2 = Θ), (cf. Equation (4) with fixed
τ). Near s = s0, map (6) is an embedding, i.e., the wave front is a submanifold. Orthogonality
to S of the initial vectors λ̇(s0) assures that this submanifold is lightlike. Farther away from S,
however, the wave front need not be a submanifold. The caustic of the wave front is the set of
all points where the map (6) is not an immersion, i.e., where its differential has rank < 3. As the
derivative with respect to s is always non-zero, the rank can be 3− 1 (caustic point of multiplicity
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one, astigmatic focusing) or 3 − 2 (caustic point of multiplicity two, anastigmatic focusing). In
the first case, the cross-section of an “infinitesimally thin” bundle of generators collapses to a line,
in the second case to a point (see Section 2.3). For the case that the wave front is a light cone
with vertex pO, caustic points are said to be conjugate to pO along the respective generator. For
an arbitrary wave front, one says that a caustic point is conjugate to any spacelike 2-surface in
the wave front. In this sense, the terms “conjugate point” and “caustic point” are synonymous.
Along each generator, caustic points are isolated (see Section 2.3) and thus denumerable. Hence,
one may speak of the first caustic, the second caustic, and so on. At all points where the caustic
is a manifold, it is either spacelike or lightlike. For instance, the caustic of the Schwarzschild light
cone in Figure 13 is a spacelike curve; in the spacetime of a transparent string, the caustic of the
light cone consists of two lightlike 2-manifolds that meet in a spacelike curve (see Figure 26).

Near a non-caustic point, a wave front is a hypersurface S = constant where S satisfies the
Hamilton–Jacobi equation

gij(x) ∂iS(x) ∂jS(x) = 0. (7)

In the terminology of optics, Equation (7) is called the eikonal equation.
At caustic points, a wave front typically forms cuspidal edges or vertices whose geometry

might be arbitrarily complicated, even locally. If one restricts to caustics which are stable against
perturbations in a certain sense, then a local classification of caustics is possible with the help
of Arnold’s singularity theory of Lagrangian or Legendrian maps. Full details of this theory can
be found in [14]. For a readable review of Arnold’s results and its applications to wave fronts in
general relativity, we refer again to [119]. In order to apply Arnold’s theory to wave fronts, one
associates each wave front with a Legendrian submanifold in the projective cotangent bundle over
M (or with a Lagrangian submanifold in an appropriately reduced bundle). A caustic point of
the wave front corresponds to a point where the differential of the projection from the Legendrian
submanifold to M has non-maximal rank. For the case dim(M) = 4, which is of interest here,
Arnold has shown that there are only five types of caustic points that are stable with respect
to perturbations within the class of all Legendrian submanifolds. They are known as fold, cusp,
swallow-tail, pyramid, and purse (see Figure 2). Any other type of caustic is unstable in the sense
that it changes non-diffeomorphically if it is perturbed within the class of Legendrian submanifolds.

Fold singularities of a wave front form a lightlike 2-manifold in spacetime, on a sufficiently small
neighborhood of any fold caustic point. The second picture in Figure 2 shows such a “fold surface”,
projected to 3-space along the integral curves of a timelike vector field. This projected fold surface
separates a region covered twice by the wave front from a region not covered at all. If the wave front
is the past light cone of an observation event, and if one restricts to light sources with worldlines in
a sufficiently small neighborhood of a fold caustic point, there are two images for light sources on
one side and no images for light sources on the other side of the fold surface. Cusp singularities of
a wave front form a spacelike curve in spacetime, again locally near any cusp caustic point. Such
a curve is often called a “cusp ridge”. Along a cusp ridge, two fold surfaces meet tangentially.
The third picture in Figure 2 shows the situation projected to 3-space. Near a cusp singularity
of a past light cone, there is local triple-imaging for light sources in the wedge between the two
fold surfaces and local single-imaging for light sources outside this wedge. Swallow-tail, pyramid,
and purse singularities are points where two or more cusp ridges meet with a common tangent, as
illustrated by the last three pictures in Figure 2.

Friedrich and Stewart [149] have demonstrated that all caustic types that are stable in the sense
of Arnold can be realized by wave fronts in Minkowski spacetime. Moreover, they stated without
proof that, quite generally, one gets the same stable caustic types if one allows for perturbations
only within the class of wave fronts (rather than within the larger class of Legendrian submanifolds).
A proof of this statement was claimed to be given in [187] where the Lagrangian rather than the
Legendrian formalism was used. However, the main result of this paper (Theorem 4.4 of [187]) is
actually too weak to justify this claim. A different version of the desired stability result was indeed
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A1 A2A1
A3A1 A2A2 A3 A2A3A4

A3
A2 A2

A2A3 A3 A3D�4A3
A3 A2A2A2 A3A2 D+4A2 A2A2

Figure 2: Wave fronts that are locally stable in the sense of Arnold. Each picture shows the
projection into 3-space of a wave-front, locally near a caustic point. The projection is made along
the integral curves of a timelike vector field. The qualitative features are independent of which
timelike vector field is chosen. In addition to regular, i.e., non-caustic, points (A1), there are five
kinds of stable points, known as fold (A2), cusp (A3), swallow-tail (A4), pyramid (D−

4 ), and purse
(D+

4 ). The Ak and Dk notation refers to a relation to exceptional groups (see [14]). The picture
is taken from [187].
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proven by another approach. In this approach one concentrates on an instantaneous wave front, i.e.,
on the intersection of a wave front with a spacelike hypersurface C. As an alternative terminology,
one calls the intersection of a (“big”) wave front with a hypersurface C that is transverse to all
generators a “small wave front”. Instantaneous wave fronts are special cases of small wave fronts.
The caustic of a small wave front is the set of all points where the small wave front fails to be an
immersed 2-dimensional submanifold of C. If the spacetime is foliated by spacelike hypersurfaces,
the caustic of a wave front is the union of the caustics of its small (= instantaneous) wave fronts.
Such a foliation can always be achieved locally, and in several spacetimes of interest even globally.
If one identifies different slices with the help of a timelike vector field, one can visualize a wave
front, and in particular a light cone, as a motion of small (= instantaneous) wave fronts in 3-space.
Examples are shown in Figures 14, 19, 20, 28, and 29. Mathematically, the same can be done for
non-spacelike slices as long as they are transverse to the generators of the considered wave front
(see Figure 31 for an example). Turning from (big) wave fronts to small wave fronts reduces the
dimension by one. The only caustic points of a small wave front that are stable in the sense of
Arnold are cusps and swallow-tails. What one wants to prove is that all other caustic points are
unstable with respect to perturbations of the wave front within the class of wave fronts, keeping
the metric and the slicing fixed. For spacelike slicings (i.e., for instantaneous wave fronts), this
was indeed demonstrated by Low [264]. In this article, the author views wave fronts as subsets of
the space N of all lightlike geodesics in (M, g). General properties of this space N are derived in
earlier articles by Low [262, 263] (also see Penrose and Rindler [330], volume II, where the space
N is treated in twistor language). Low considers, in particular, the case of a globally hyperbolic
spacetime [264]; he demonstrates the desired stability result for the intersections of a (big) wave
front with Cauchy hypersurfaces (see Section 3.2). As every point in an arbitrary spacetime admits
a globally hyperbolic neighborhood, this local stability result is universal. Figure 29 shows an
instantaneous wave front with cusps and a swallow-tail point. Figure 14 shows instantaneous wave
fronts with caustic points that are neither cusps nor swallow-tails; hence, they must be unstable
with respect to perturbations of the wave front within the class of wave fronts.

It is to be emphasized that Low’s work allows to classify the stable caustics of small wave fronts,
but not directly of (big) wave fronts. Clearly, a (big) wave front is a one-parameter family of small
wave fronts. A qualitative change of a small wave front, in dependence of a parameter, is called a
“metamorphosis” in the English literature and a “perestroika” in the Russian literature. Combining
Low’s results with the theory of metamorphoses, or perestroikas, could lead to a classsification of
the stable caustics of (big) wave fronts. However, this has not been worked out until now.

Wave fronts in general relativity have been studied in a long series of articles by Newman,
Frittelli, and collaborators. For some aspects of their work see Sections 2.9 and 3.4. In the quasi-
Newtonian approximation formalism of lensing, the classification of caustics is treated in great
detail in the book by Petters, Levine, and Wambsganss [343]. Interesting related mateial can also
be found in Blandford and Narayan [45]. For a nice exposition of caustics in ordinary optics see
Berry and Upstill [37].

A light source that comes close to the caustic of the observer’s past light cone is seen strongly
magnified. For a point source whose worldline passes exactly through the caustic, the ray-optical
treatment even gives an infinite brightness (see Section 2.6). If a light source passes behind a
compact deflecting mass, its brightness increases and decreases in the course of time, with a
maximum at the moment of closest approach to the caustic. Such microlensing events are routinely
observed by monitoring a large number of stars in the bulge of our Galaxy, in the Magellanic Clouds,
and in the Andromeda Galaxy (see, e.g., [280] for an overview). In his millennium essay on future
perspectives of gravitational lensing, Blandford [44] mentioned the possibility of observing a chosen
light source strongly magnified over a period of time with the help of a space-born telescope. The
idea is to guide the spacecraft such that the worldline of the light source remains in (or close
to) the one-parameter family of caustics of past light cones of the spacecraft over a period of
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time. This futuristic idea of “caustic surfing” was mathematically further discussed by Frittelli
and Petters [159].

2.3 Optical scalars and Sachs equations

For the calculation of distance measures, of image distortion, and of the brightness of images one
has to study the Jacobi equation (= equation of geodesic deviation) along lightlike geodesics. This
is usually done in terms of the optical scalars which were introduced by Sachs et al. [221, 360].
Related background material on lightlike geodesic congruences can be found in many text-books
(see, e.g., Wald [425], Section 9.2). In view of applications to lensing, a particularly useful exposi-
tion was given by Seitz, Schneider and Ehlers [373]. In the following the basic notions and results
will be summarized.

Infinitesimally thin bundles.

Let s 7−→ λ(s) be an affinely parametrized lightlike geodesic with tangent vector field K = λ̇. We
assume that λ is past-oriented, because in applications to lensing one usually considers rays from
the observer to the source. We use the summation convention for capital indices A,B, . . . taking
the values 1 and 2. An infinitesimally thin bundle (with elliptical cross-section) along λ is a set

B =
{
cAYA

∣∣ c1, c2 ∈ R, δAB c
AcB ≤ 1

}
. (8)

Here δAB denotes the Kronecker delta, and Y1 and Y2 are two vector fields along λ with

∇K∇KYA = R(K,YA,K), (9)

g(K,YA) = 0, (10)

such that Y1(s), Y2(s), and K(s) are linearly independent for almost all s. As usual, R denotes
the curvature tensor, defined by

R(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (11)

Equation (9) is the Jacobi equation. It is a precise mathematical formulation of the statement that
“the arrow-head of YA traces an infinitesimally neighboring geodesic”. Equation (10) guarantees
that this neighboring geodesic is, again, lightlike and spatially related to λ. Vector fields YA that
satisfy Equation (9) are known as Jacobi vector fields.

Sachs basis.

For discussing the geometry of infinitesimally thin bundles it is usual to introduce a Sachs basis,
i.e., two vector fields E1 and E2 along λ that are orthonormal, orthogonal to K = λ̇, and parallelly
transported,

g(EA, EB) = δAB, g(K,EA) = 0, ∇KEA = 0. (12)

Apart from the possibility to interchange them, E1 and E2 are unique up to transformations

Ẽ1 = cosαE1 + sinαE2 + a1K, (13)

Ẽ2 = − sinαE1 + cosαE2 + a2K, (14)

where α, a1, and a2 are constant along λ. A Sachs basis determines a unique vector field U with
g(U,U) = −1 and g(U,K) = 1 along λ that is perpendicular to E1, and E2. As K is assumed
past-oriented, U is future-oriented. In the rest system of the observer field U , the Sachs basis
spans the 2-space perpendicular to the ray. It is helpful to interpret this 2-space as a “screen”;
correspondingly, linear combinations of E1 and E2 are often refered to as “screen vectors”.
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Jacobi matrix.

With respect to a Sachs basis, the basis vector fields Y1 and Y2 of an infinitesimally thin bundle
can be represented as

YA = DB
AEB + yAK. (15)

The Jacobi matrix D = (DB
A ) relates the shape of the cross-section of the infinitesimally thin

bundle to the Sachs basis (see Figure 3). Equation (9) implies that D satisfies the matrix Jacobi
equation

D̈ = DR, (16)

where an overdot means derivative with respect to the affine parameter s, and

R =

(
Φ00 0
0 Φ00

)
+

(
−Re(ψ0) Im(ψ0)
Im(ψ0) Re(ψ0)

)
(17)

is the optical tidal matrix, with

Φ00 = −1

2
Ric(K,K), ψ0 = −1

2
C (E1 − iE2,K,E1 − iE2,K) . (18)

Here Ric denotes the Ricci tensor, defined by Ric(X,Y ) = tr (R(·, X, Y )), and C denotes the con-
formal curvature tensor (=Weyl tensor). The notation in Equation (18) is chosen in agreement
with the Newman–Penrose formalism (cf., e.g., [75]). As Y1, Y2, and K are not everywhere linearly
dependent, det(D) does not vanish identically. Linearity of the matrix Jacobi equation implies
that det(D) has only isolated zeros. These are the “caustic points” of the bundle (see below).

Shape parameters.

The Jacobi matrix D can be parametrized according to

D =

(
cosψ − sinψ
sinψ cosψ

)(
D+ 0
0 D−

)(
cosχ sinχ
− sinχ cosχ

)
. (19)

Here we made use of the well-known facts that any matrix can be written as the product of an
orthogonal and a symmetric matrix and that any symmetric matrix can be diagonalized by an
orthogonal transformation. Our definition of infinitesimally thin bundles implies that D+ and D−

are non-zero almost everywhere. In the representation of Equation (19), the extremal points of the
bundle’s elliptical cross-section are given by the position vectors

Y+ = cosψ Y1 + sinψ Y2 ' D+ (cosχE1 + sinχE2) , (20)

Y− = − sinψ Y1 + cosψ Y2 ' D− (− sinχE1 + cosχE2) , (21)

where ' means equality up to multiples of K. Hence, |D+| and |D−| give the semi-axes of the
elliptical cross-section and χ gives the angle by which the ellipse is rotated with respect to the
Sachs basis (see Figure 3). We call D+, D−, and χ the shape parameters of the bundle. This name
is taken from Frittelli, Kling, and Newman [152, 151] who actually use, instead of D+ and D−,
the equivalent quantities D+D− and D+/D−. For the case that the infinitesimally thin bundle
can be embedded in a wave front, the shape parameters D+ and D− have the following interesting
property (see Kantowski et al. [222, 110]). Ḋ+/D+ and Ḋ−/D− give the principal curvatures
of the wave front in the rest system of the observer field U which is perpendicular to the Sachs
basis. The notation D+ and D−, which is taken from [110], is convenient because it often allows
to write two equations in the form of one equation with a ± sign (see, e.g., Equation (27) or
Equation (98) below). The angle χ can be directly linked with observations if a light source emits
linearly polarized light (see Section 2.5).
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For any infinitesimally thin bundle, given in terms of Y1 and Y2, we can choose the Sachs
basis as we like. This freedom leads to two ambiguities in the definition of D+ and D−. Firstly,
the transformation (E1, E2) 7→ (−E1, E2) results in (D+, D−, χ, ψ) 7→ (−D+, D−,−χ, ψ), and the
analogous transformation (E1, E2) 7→ (E1,−E2) results in (D+, D−, χ, ψ) 7→ (D+,−D−,−χ, ψ);
this shows that the signs of D+ and D− are ambiguous. Secondly, the transformation (E1, E2) 7→
(E2,−E1) results in (D+, D−, χ, ψ) 7→ (D−, D+, χ, ψ + π/2); this shows that D+ and D− can be
interchanged. The most interesting case for us is that of an infinitesimally thin bundle that issues
from a vertex at an observation event pO = λ(0) into the past. For such bundles we can remove
the sign ambiguity in the definition of D+(s) and D−(s) by requiring that they are positive for
small positive values of s. The freedom of interchanging them can be removed, e.g., by requiring
that D+(s) ≥ D−(s) for small positive values of s; for spherically symmetric and static spacetimes,
however, another convention is more convenient, see Section 4.3 below. If we have chosen a
convention that makes D+ and D− unique along the bundle, the Sachs basis can still be changed
by a transformation (13, 14). Under such a transformation the shape parameters change according
to D̃± = D±, χ̃ = χ − α, ψ̃ = ψ. This demonstrates the important fact that the shape and the
size of the cross-section of an infinitesimally thin bundle have an invariant (observer-independent)
meaning [360].

PSfrag replacements

Y1
Y2

E1

E2

jD+jjD�j �

Figure 3: Cross-section of an infinitesimally thin bundle. The Jacobi matrix (19) relates the
Jacobi fields Y1 and Y2 that span the bundle to the Sachs basis vectors E1 and E2. The shape
parameters D+, D−, and χ determine the outline of the cross-section; the angle ψ that appears
in Equation (19) does not show in the outline. The picture shows the projection into the 2-space
(“screen”) spanned by E1 and E2; note that, in general, Y1 and Y2 have components perpendicular
to the screen.
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Optical scalars.

Along each infinitesimally thin bundle one defines the deformation matrix S by

Ḋ = DS. (22)

This reduces the second-order linear differential equation (16) for D to a first-order non-linear
differential equation for S,

Ṡ + SS = R. (23)

It is usual to decompose S into antisymmetric, symmetric-tracefree, and trace parts,

S =

(
0 ω
−ω 0

)
+

(
σ1 σ2
σ2 −σ1

)
+

(
θ 0
0 θ

)
. (24)

This defines the optical scalars ω (twist), θ (expansion), and (σ1, σ2) (shear). One usually combines
them into two complex scalars % = θ + iω and σ = σ1 + iσ2. A change (13, 14) of the Sachs basis
affects the optical scalars according to %̃ = % and σ̃ = e−2iασ. Thus, % and |σ| are invariant. If
rewritten in terms of the optical scalars, Equation (23) gives the Sachs equations

%̇ = −%2 − |σ|2 +Φ00, (25)

σ̇ = −σ (%+ %) + ψ0. (26)

One sees that the Ricci curvature term Φ00 directly produces expansion (focusing) and that the
conformal curvature term ψ0 directly produces shear. However, as the shear appears in Equa-
tion (25), conformal curvature indirectly influences focusing (cf. Penrose [328]). With D written in
terms of the shape parameters and S written in terms of the optical scalars, Equation (22) results
in

Ḋ± + iχ̇D± − iψ̇D∓ =
(
ρ± e−2iχσ

)
D±. (27)

Along λ, Equations (25, 26) give a system of 4 real first-order differential equations for the 4 real
variables % and σ; if % and σ are known, Equation (27) gives a system of 4 real first-order differential
equations for the 4 real variables D±, χ, and ψ. The twist-free solutions (% real) to Equations (25,
26) constitute a 3-dimensional linear subspace of the 4-dimensional space of all solutions. This
subspace carries a natural metric of Lorentzian signature, unique up to a conformal factor, and
was nicknamed Minikowski space in [26].

Conservation law.

As the optical tidal matrix R is symmetric, for any two solutions D1 and D2 of the matrix Jacobi
equation (16) we have

Ḋ1D
T
2 −D1Ḋ

T

2 = constant, (28)

where ( )T means transposition. Evaluating the case D1 = D2 shows that for every infinitesimally
thin bundle

ωD+D− = constant. (29)

Thus, there are two types of infinitesimally thin bundles: those for which this constant is non-zero
and those for which it is zero. In the first case the bundle is twisting (ω 6= 0 everywhere) and
its cross-section nowhere collapses to a line or to a point (D+ 6= 0 and D− 6= 0 everywhere).
In the second case the bundle must be non-twisting (ω = 0 everywhere), because our definition
of infinitesimally thin bundles implies that D+ 6= 0 and D− 6= 0 almost everywhere. A quick
calculation shows that ω = 0 is exactly the integrability condition that makes sure that the
infinitesimally thin bundle can be embedded in a wave front. (For the definition of wave fronts see
Section 2.2.) In other words, an infinitesimally thin bundle is twist-free if and only if we can find
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a wave front such that λ is one of the generators and the vector fields Y1 and Y2 connect λ with
infinitesimally neighboring generators. For a (necessarily twist-free) infinitesimally thin bundle,
points where one of the two shape parameters D+ and D− vanishes are called caustic points of
multiplicity one, and points where both shape parameters D+ and D− vanish are called caustic
points of multiplicity two. This notion coincides exactly with the notion of caustic points, or
conjugate points, of wave fronts as introduced in Section 2.2. The behavior of the optical scalars
near caustic points can be deduced from Equation (27) with Equations (25, 26). For a caustic
point of multiplicty one at s = s0 one finds

θ(s) =
1

2(s− s0)
(1 +O(s− s0)) , (30)

|σ(s)| = 1

2(s− s0)
(1 +O(s− s0)) . (31)

By contrast, for a caustic point of multiplicity two at s = s0 the equations read (cf. [373])

θ(s) =
1

s− s0
+O(s− s0), (32)

σ(s) =
1

3
ψ0(s0)(s− s0) +O

(
(s− s0)

2
)
. (33)

Infinitesimally thin bundles with vertex.

We say that an infinitesimally thin bundle has a vertex at s = s0 if the Jacobi matrix satisfies

D(s0) = 0, Ḋ(s0) = 1. (34)

A vertex is, in particular, a caustic point of multiplicity two. An infinitesimally thin bundle with a
vertex must be non-twisting. While any non-twisting infinitesimally thin bundle can be embedded
in a wave front, an infinitesimally thin bundle with a vertex can be embedded in a light cone.
Near the vertex, to within a first-order approximation with respect to s − s0, it has a circular
cross-section. If D1 has a vertex at s1 and D2 has a vertex at s2, the conservation law (28) implies

D
T
2 (s1) = −D1(s2). (35)

This is Etherington’s [133] reciprocity law. The method by which this law was proven here follows
Ellis [127] (cf. Schneider, Ehlers, and Falco [367]). Etherington’s reciprocity law is of relevance, in
particular in view of cosmology, because it relates the luminosity distance to the area distance (see
Equation (47)). It was independently rediscovered in the 1960s by Sachs and Penrose (see [328,
243]).

The results of this section are the basis for Sections 2.4, 2.5, and 2.6.

2.4 Distance measures

In this section we summarize various distance measures that are defined in an arbitrary spacetime.
Some of them are directly related to observable quantities with relevance for lensing. The material
of this section makes use of the results on infinitesimally thin bundles which are summarized in
Section 2.3. All of the distance measures to be discussed refer to a past-oriented lightlike geodesic
λ from an observation event pO to an emission event pS (see Figure 4). Some of them depend
on the 4-velocity UO of the observer at pO and/or on the 4-velocity US of the light source at pS.
If a vector field U with g(U,U) = −1 is distinguished on M, we can choose for the observer an
integral curve of U and for the light sources all other integral curves of U . Then each of the dis-
tance measures becomes a function of the observational coordinates (s,Ψ,Θ, τ) (recall Section 2.1).
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Figure 4: Past-oriented lightlike geodesic λ from an observation event pO to an emission event pS.
γO is the worldline of the observer, γS is the worldline of the light source. UO is the 4-velocity of
the observer at pO and US is the 4-velocity of the light source at pS.

Affine distance.

There is a unique affine parametrization s 7−→ λ(s) for each lightlike geodesic through the obser-

vation event pO such that λ(0) = pO and g
(
λ̇(0), UO

)
= 1. Then the affine parameter s itself can

be viewed as a distance measure. This affine distance has the desirable features that it increases
monotonously along each ray and that it coincides in an infinitesimal neighborhood of pO with
Euclidean distance in the rest system of UO. The affine distance depends on the 4-velocity UO of
the observer but not on the 4-velocity US of the light source. It is a mathematically very convenient
notion, but it is not an observable. (It can be operationally realized in terms of an observer field
whose 4-velocities are parallel along the ray. Then the affine distance results by integration if each
observer measures the length of an infinitesimally short part of the ray in his rest system. However,
in view of astronomical situations this is a purely theoretical construction.) The notion of affine
distance was introduced by Kermack, McCrea, and Whittaker [233].

Travel time.

As an alternative distance measure one can use the travel time. This requires the choice of a time
function, i.e., of a function t that slices the spacetime into spacelike hypersurfaces t = constant.
(Such a time function globally exists if and only if the spacetime is stably causal; see, e.g., [193],
p. 198.) The travel time is equal to t(pO) − t(pS), for each pS on the past light cone of pO. In
other words, the intersection of the light cone with a hypersurface t = constant determines events
of equal travel time; we call these intersections “instantaneous wave fronts” (recall Section 2.2).
Examples of instantaneous wave fronts are shown in Figures 14, 19, 20, 28, and 29. The travel
time increases monotonously along each ray. Clearly, it depends neither on the 4-velocity UO of
the observer nor on the 4-velocity US of the light source. Note that the travel time has a unique

18



value at each point of pO’s past light cone, even at events that can be reached by two different
rays from pO. Near pO the travel time coincides with Euclidean distance in the observer’s rest
system only if UO is perpendicular to the hypersurface t = constant with dt(UO) = 1. (The lat-
ter equation is true if along the observer’s world line the time function t coincides with proper
time.) The travel time is not directly observable. However, travel time differences are observable
in multiple-imaging situations if the intrinsic luminosity of the light source is time-dependent. To
illustrate this, think of a light source that flashes at a particular instant. If the flash reaches the
observer’s wordline along two different rays, the proper time difference ∆τO of the two arrival
events is directly measurable. For a time function t that along the observer’s worldline coincides
with proper time, this observed time delay ∆τO gives the difference in travel time for the two rays.
In view of applications, the measurement of time delays is of great relevance for quasar lensing. For
the double quasar 0957+561 the observed time delay ∆τO is about 417 days (see, e.g., [343], p. 149).

Redshift.

In cosmology it is common to use the redshift as a distance measure. For assigning a redshift to
a lightlike geodesic λ that connects the observation event pO on the worldline γO of the observer
with the emission event pS on the worldline γS of the light source, one considers a neighboring
lightlike geodesic that meets γO at a proper time interval ∆τO from pO and γS at a proper time
interval ∆τS from pS. The redshift z is defined as

z = lim
∆τS→0

∆τO −∆τS
∆τS

. (36)

If λ is affinely parametrized with λ(0) = pO and λ(s) = pS, one finds that z is given by

1 + z =
g
(
λ̇(0), UO

)

g
(
λ̇(s), US

) . (37)

This general redshift formula is due to Kermack, McCrea, and Whittaker [233]. Their proof
is based on the fact that g(λ̇, Y ) is a constant for all Jacobi fields Y that connect λ with an
infinitesimally neighboring lightlike geodesic. The same proof can be found, in a more elegant
form, in [59] and in [389], p. 109. An alternative proof, based on variational methods, was given
by Schrödinger [368]. Equation (37) is in agreement with the Hamilton formalism for photons.
Clearly, the redshift depends on the 4-velocity UO of the observer and on the 4-velocity US of the
light source. If a vector field U with g(U,U) = −1 has been distinguished on M, we may choose
one integral curve of U as the observer and all other integral curves of U as the light sources.
Then the redshift becomes a function of the observational coordinates (s,Ψ,Θ, τ). For s→ 0, the
redshift goes to 0,

z(s,Ψ,Θ, τ) = h(Ψ,Θ, τ)s+O(s2), (38)

with a (generalized) Hubble parameter h(Ψ,Θ, τ) that depends on spatial direction and on time.
For criteria that h and the higher-order coefficients are independent of Ψ and Θ see [190]. If the
redshift is known for one observer field U , it can be calculated for any other U , according to Equa-
tion (37), just by adding the usual special-relativistic Doppler factors. Note that if UO is given,
the redshift can be made to zero along any one ray λ from pO by choosing the 4-velocities Uλ(s)

appropriately. This shows that z is a reasonable distance measure only for special situations, e.g.,
in cosmological models with U denoting the mean flow of luminous matter (“Hubble flow”). In
any case, the redshift is directly observable if the light source emits identifiable spectral lines. For
the calculation of Sagnac-like effects, the redshift formula (37) can be evaluated piecewise along
broken lightlike geodesics [29].
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Angular diameter distances.

The notion of angular diameter distance is based on the intuitive idea that the farther an object
is away the smaller it looks, according to the rule

object diameter = angle× distance. (39)

The formal definition needs the results of Section 2.3 on infinitesimally thin bundles. One considers
a past-oriented lightlike geodesic s −→ λ(s) parametrized by affine distance, i.e., λ(0) = pO and
g
(
λ̇(0), UO

)
= 1, and along λ an infinitesimally thin bundle with vertex at the observer, i.e., at

s = 0. Then the shape parameters D+(s) and D−(s) (recall Figure 3) satisfy the initial conditions
D±(0) = 0 and Ḋ±(0) = 1. They have the following physical meaning. If the observer sees a cir-
cular image of (small) angular diameter α on his or her sky, the (small but extended) light source
at affine distance s actually has an elliptical cross-section with extremal diameters α|D±(s)|. It is
therefore reasonable to call D+ and D− the extremal angular diameter distances. Near the vertex,
D+ and D− are monotonously increasing functions of the affine distance, D±(s) = s + O(s2).
Farther away from the vertex, however, they may become decreasing, so the functions s 7→ D+(s)
and s 7→ D−(s) need not be invertible. At a caustic point of multiplicity one, one of the two
functions D+ and D− changes sign; at a caustic point of multiplicity two, both change sign (re-
call Section 2.3). The image of a light source at affine distance s is said to have even parity if
D+(s)D−(s) > 0 and odd parity if D+(s)D−(s) < 0. Images with odd parity show the neigh-
borhood of the light source side-inverted in comparison to images with even parity. Clearly, D+

and D− are reasonable distance measures only in a neighborhood of the vertex where they are
monotonously increasing. However, the physical relevance of D+ and D− lies in the fact that they
relate cross-sectional diameters at the source to angular diameters at the observer, and this is
always true, even beyond caustic points. D+ and D− depend on the 4-velocity UO of the observer
but not on the 4-velocity US of the source. This reflects the fact that the angular diameter of an
image on the observer’s sky is subject to aberration whereas the cross-sectional diameter of an
infinitesimally thin bundle has an invariant meaning (recall Section 2.3). Hence, if the observer’s
worldline γO has been specified, D+ and D− are well-defined functions of the observational coor-
dinates (s,Ψ,Θ, τ).

Area distance.

The area distance Darea is defined according to the idea

object area = solid angle× distance2. (40)

As a formal definition for Darea, in terms of the extremal angular diameter distances D+ and D−

as functions of affine distance s, we use the equation

Darea(s) =
√
|D+(s)D−(s)|. (41)

Darea(s)
2 indeed relates, for a bundle with vertex at the observer, the cross-sectional area at the

source to the opening solid angle at the observer. Such a bundle has a caustic point exactly at
those points where Darea(s) = 0. The area distance is often called “angular diameter distance”
although, as indicated by Equation (41), the name “averaged angular diameter distance” would
be more appropriate. Just as D+ and D−, the area distance depends on the 4-velocity UO of the
observer but not on the 4-velocity US of the light source. The area distance is observable for a
light source whose true size is known (or can be reasonably estimated). It is sometimes convenient
to introduce the magnification or amplification factor

µ(s) =
s2

D+(s)D−(s)
. (42)
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The absolute value of µ determines the area distance, and the sign of µ determines the parity.
In Minkowski spacetime, D±(s) = s and, thus, µ(s) = 1. Hence, |µ(s)| > 1 means that a (small
but extended) light source at affine distance s subtends a larger solid angle on the observer’s sky
than a light source of the same size at the same affine distance in Minkowski spacetime. Note that
in a multiple-imaging situation the individual images may have different affine distances. Thus,
the relative magnification factor of two images is not directly observable. This is an important
difference to the magnification factor that is used in the quasi-Newtonian approximation formalism
of lensing. The latter is defined by comparison with an “unlensed image” (see, e.g., [367]), a notion
that makes sense only if the metric is viewed as a perturbation of some “background” metric. One
can derive a differential equation for the area distance (or, equivalently, for the magnification
factor) as a function of affine distance in the following way. On every parameter interval where
D+D− has no zeros, the real part of Equation (27) shows that the area distance is related to the
expansion by

Ḋarea = θDarea. (43)

Insertion into the Sachs equation (25) for θ = % gives the focusing equation

D̈area = −
(
|σ|2 + 1

2
Ric(λ̇, λ̇)

)
Darea. (44)

Between the vertex at s = 0 and the first conjugate point (caustic point), Darea is determined by
Equation (44) and the initial conditions

Darea(0) = 0, Ḋarea(0) = 1. (45)

The Ricci term in Equation (44) is non-negative if Einstein’s field equation holds and if the energy
density is non-negative for all observers (“weak energy condition”). Then Equations (44, 45) imply
that

Darea(s) ≤ s, (46)

i.e., 1 ≤ µ(s), for all s between the vertex at s = 0 and the first conjugate point. In Minkowski
spacetime, the equation Darea(s) = s holds. Hence, the inequality (46) says that a gravitational
field has a focusing, as opposed to a defocusing, effect. This is sometimes called the focusing the-
orem.

Corrected luminosity distance.

The idea of defining distance measures in terms of bundle cross-sections dates back to Tolman [404]
and Whittaker [435]. Originally, this idea was applied not to bundles with vertex at the observer
but rather to bundles with vertex at the light source. The resulting analogue of the area distance
is the so-called corrected luminosity distance D′

lum. It relates, for a bundle with vertex at the
light source, the cross-sectional area at the observer to the opening solid angle at the light source.
Owing to Etherington’s reciprocity law (35), area distance and corrected luminosity distance are
related by

D′
lum = (1 + z)Darea. (47)

The redshift factor has its origin in the fact that the definition ofD′
lum refers to an affine parametriza-

tion adapted to US, and the definition of Darea refers to an affine parametrization adapted to UO.
While Darea depends on UO but not on US, D

′
lum depends on US but not on UO.

Luminosity distance.

The physical meaning of the corrected luminosity distance is most easily understood in the photon
picture. For photons isotropically emitted from a light source, the percentage that hit a prescribed
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area at the observer is proportional to 1/(D′
lum)

2. As the energy of each photon undergoes a
redshift, the energy flux at the observer is proportional to 1/(Dlum)

2, where

Dlum = (1 + z)D′
lum = (1 + z)2Darea. (48)

Thus, Dlum is the relevant quantity for calculating the luminosity (apparent brightness) of point-
like light sources (see Equation (52)). For this reason Dlum is called the (uncorrected) luminosity
distance. The observation that the purely geometric quantity D′

lum must be modified by an addi-
tional redshift factor to give the energy flux is due to Walker [426]. Dlum depends on the 4-velocity
UO of the observer and of the 4-velocity US of the light source. Dlum and D′

lum can be viewed as
functions of the observational coordinates (s,Ψ,Θ, τ) if a vector field U with g(U,U) = −1 has
been distinguished, one integral curve of U is chosen as the observer, and the other integral curves
of U are chosen as the light sources. In that case Equation (38) implies that not only Darea(s) but
also Dlum(s) and D′

lum(s) are of the form s + O(s2). Thus, near the observer all three distance
measures coincide with Euclidean distance in the observer’s rest space.

Parallax distance.

In an arbitrary spacetime, we fix an observation event pO and the observer’s 4-velocity UO. We
consider a past-oriented lightlike geodesic λ parametrized by affine distance, λ(0) = pO and

g
(
λ̇(0), UO

)
= 1. To a light source passing through the event λ(s) we assign the (averaged)

parallax distance Dpar(s) = −θ(0)−1, where θ is the expansion of an infinitesimally thin bundle
with vertex at λ(s). This definition follows [221]. Its relevance in view of cosmology was discussed
in detail by Rosquist [357]. Dpar can be measured by performing the standard trigonometric par-
allax method of elementary Euclidean geometry, with the observer at pO and an assistant observer
at the perimeter of the bundle, and then averaging over all possible positions of the assistant. Note
that the method refers to a bundle with vertex at the light source, i.e., to light rays that leave the
light source simultaneously. (Averaging is not necessary if this bundle is circular.) Dpar depends
on the 4-velocity of the observer but not on the 4-velocity of the light source. To within first-order
approximation near the observer it coincides with affine distance (recall Equation (32)). For the
potential obervational relevance of Dpar see [357], and [367], p. 509.

In view of lensing, D+, D−, and Dlum are the most important distance measures because they
are related to image distortion (see Section 2.5) and to the brightness of images (see Section 2.6).
In spacetimes with many symmetries, these quantities can be explicitly calculated (see Section 4.1
for conformally flat spacetimes, and Section 4.3 for spherically symmetric static spacetimes). This
is impossible in a spacetime without symmetries, in particular in a realistic cosmological model
with inhomogeneities (“clumpy universe”). Following Kristian and Sachs [243], one often uses
series expansions with respect to s. For statistical considerations one may work with the focusing
equation in a Friedmann–Robertson–Walker spacetime with average density (see Section 4.1), or
with a heuristically modified focusing equation taking clumps into account. The latter leads to
the so-called Dyer–Roeder distance [112, 113] which is discussed in several text-books (see, e.g.,
[367]). (For pre-Dyer–Roeder papers on optics in cosmological models with inhomogeneities, see the
historical notes in [223].) As overdensities have a focusing and underdensities have a defocusing
effect, it is widely believed (following [428]) that after averaging over sufficiently large angular
scales the Friedmann–Robertson–Walker calculation gives the correct distance-redshift relation.
However, it was argued by Ellis, Bassett, and Dunsby [129] that caustics produced by the lensing
effect of overdensities lead to a systematic bias towards smaller angular sizes (“shrinking”). For a
spherically symmetric inhomogeneity, the effect on the distance-redshift relation can be calculated
analytically [291]. For thorough discussions of light propagation in a clumpy universe also see Pyne
and Birkinshaw [352], and Holz and Wald [203].
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2.5 Image distortion

In special relativity, a spherical object always shows a circular outline on the observer’s sky, in-
dependent of its state of motion [325, 402]. In general relativity, this is no longer true; a small
sphere usually shows an elliptic outline on the observer’s sky. This distortion is caused by the
shearing effect of the spacetime geometry on light bundles. For the calculation of image distortion
we need the material of Sections 2.3 and 2.4. For an observer with 4-velocity UO at an event pO,
there is a unique affine parametrization s 7−→ λ(s) for each lightlike geodesic through pO such
that λ(0) = pO and g

(
λ̇(0), UO

)
= 1. Around each of these λ we can consider an infinitesimally

thin bundle with vertex at s = 0. The elliptical cross-section of this bundle can be characterized
by the shape parameters D+(s), D−(s) and χ(s) (recall Figure 3). As outlined in Section 2.3, we
choose the convention of having D+(s) and D−(s) positive for small positive s. In the terminology
of Section 2.4, s is the affine distance, and D+(s) and D−(s) are the extremal angular diameter
distances. The complex quantity

ε(s) =

(
D+(s)

D−(s)
− D−(s)

D+(s)

)
e2iχ(s) (49)

is called the ellipticity of the bundle. The phase of ε determines the position angle of the elliptical
cross-section of the bundle with respect to the Sachs basis. The absolute value of ε(s) determines
the eccentricity of this cross-section; ε(s) = 0 indicates a circular cross-section and |ε(s)| = ∞
indicates a caustic point of multiplicity one. (It is also common to use other measures for the
eccentricity, e.g., |D+ −D−|/|D+ +D−|.) From Equation (27) with % = θ we get the derivative of
ε with respect to the affine distance s,

ε̇ = 2σ
√
|ε|2 + 4. (50)

The initial conditions D±(0) = 0, Ḋ±(0) = 1 imply

ε(0) = 0. (51)

Equation (50) and Equation (51) determine ε if the shear σ is known. The shear, in turn, is
determined by the Sachs equations (25, 26) and the initial conditions (32, 33) with s0 = 0 for
θ(= %) and σ.

It is recommendable to change from the ε determined this way to ε = −ε. This transformation
corresponds to replacing the Jacobi matrix D by its inverse. The original quantity ε(s) gives the
true shape of objects at affine distance s that show a circular image on the observer’s sky. The
new quantity ε(s) gives the observed shape for objects at affine distance s that actually have a
circular cross-section. In other words, if a (small) spherical body at affine distance s is observed,
the ellipticity of its image on the observer’s sky is given by ε(s).

By Equations (50, 51), ε vanishes along the entire ray if and only if the shear σ vanishes
along the entire ray. By Equations (26, 33), the shear vanishes along the entire ray if and only
if the conformal curvature term ψ0 vanishes along the entire ray. The latter condition means
that K = λ̇ is tangent to a principal null direction of the conformal curvature tensor (see, e.g.,
Chandrasekhar [75]). At a point where the conformal curvature tensor is not zero, there are at
most four different principal null directions. Hence, the distortion effect vanishes along all light
rays if and only if the conformal curvature vanishes everywhere, i.e., if and only if the spacetime
is conformally flat. This result is due to Sachs [360]. An alternative proof, based on expressions
for image distortions in terms of the exponential map, was given by Hasse [186].

For any observer, the distortion measure ε = −ε is defined along every light ray from every point
of the observer’s worldline. This gives ε as a function of the observational coordinates (s,Ψ,Θ, τ)
(recall Section 2.1, in particular Equation (4)). If we fix τ and s, ε is a function on the observer’s
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sky. (Instead of s, one may choose any of the distance measures discussed in Section 2.4, provided
it is a unique function of s.) In spacetimes with sufficiently many symmetries, this function can be
explicitly determined in terms of integrals over the metric function. This will be worked out for
spherically symmetric static spacetimes in Section 4.3. A general consideration of image distortion
and example calculations can also be found in papers by Frittelli, Kling and Newman [152, 151].
Frittelli and Oberst [158] calculate image distortion by a “thick gravitational lens” model within
a spacetime setting.

In cases where it is not possible to determine ε by explicitly integrating the relevant differential
equations, one may consider series expansions with respect to the affine parameter s. This tech-
nique, which is of particular relevance in view of cosmology, dates back to Kristian and Sachs [243]
who introduced image distortion as an observable in cosmology. In lowest non-vanishing order,
ε(s,Ψ,Θ, τO) is quadratic with respect to s and completely determined by the conformal curvature
tensor at the observation event pO = γ(τO), as can be read from Equations (50, 51, 33). One
can classify all possible distortion patterns on the observer’s sky in terms of the Petrov type of
the Weyl tensor [78]. As outlined in [78], these patterns are closely related to what Penrose and
Rindler [330] call the fingerprint of the Weyl tensor. At all observation events where the Weyl
tensor is non-zero, the following is true. There are at most four points on the observer’s sky where
the distortion vanishes, corresponding to the four (not necessarily distinct) principal null directions
of the Weyl tensor. For type N , where all four principal null directions coincide, the distortion
pattern is shown in Figure 5.0�=2� 0 � 2� �

�
Figure 5: Distortion pattern. The picture shows, in a Mercator projection with Φ as the horizontal
and Θ as the vertical coordinate, the celestial sphere of an observer at a spacetime point where the
Weyl tensor is of Petrov type N . The pattern indicates the elliptical images of spherical objects
to within lowest non-trivial order with respect to distance. The length of each line segment is a
measure for the eccentricity of the elliptical image, the direction of the line segment indicates its
major axis. The distortion effect vanishes at the north pole Θ = 0 which corresponds to the fourfold
principal null direction. Contrary to the other Petrov types, for type N the pattern is universal up
to an overall scaling factor. The picture is taken from [78] where the distortion patterns for the
other Petrov types are given as well.

The distortion effect is routinely observed since the mid-1980s in the form of arcs and (radio)
rings (see [367, 343, 427] for an overview). In these cases a distant galaxy appears strongly elongated
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in one direction. Such strong elongations occur near a caustic point of multiplicity one where
|ε| → ∞. In the case of rings and (long) arcs, the entire bundle cannot be treated as infinitesimally
thin, i.e., a theoretical description of the effect requires an integration. For the idealized case of a
point source, images in the form of (1-dimensional) rings on the observer’s sky occur in cases of
rotational symmetry and are usually called “Einstein rings” (see Section 4.3). The rings that are
actually observed show extended sources in situations close to rotational symmetry.

For the majority of galaxies that are not distorted into arcs or rings, there is a “weak lensing”
effect on the apparent shape that can be investigated statistically. The method is based on the
assumption that there is no prefered direction in the universe, i.e., that the axes of (approximately
spheroidal) galaxies are randomly distributed. So, without a distortion effect, the axes of galaxy
images should make a randomly distributed angle with the (Ψ,Θ) grid on the observer’s sky. Any
deviation from a random distribution is to be attributed to a distortion effect, produced by the
gravitational field of intervening masses. With the help of the quasi-Newtonian approximation,
this method has been elaborated into a sophisticated formalism for determining mass distributions,
projected onto the plane perpendicular to the line of sight, from observed image distortions. This
is one of the most important astrophysical tools for detecting (dark) matter. It has been used
to determine the mass distribution in galaxies and galaxy clusters, and to probe the large-scale
structure of the universe (see [28, 206] for reviews). From a methodological point of view, it would
be desirable to analyse this important line of astronomical research within a spacetime setting.
This should give prominence to the role of the conformal curvature tensor.

Another interesting way of observing weak image distortions is possible for sources that emit
linearly polarized radiation. This is true for many radio galaxies. (Polarization measurements
are also relevant for strong-lensing situations; see Schneider, Ehlers, and Falco [367], p. 82 for
an example.) The method is based on the geometric optics approximation of Maxwell’s theory.
In this approximation, the polarization direction is parallel along each ray between source and
observer [114] (cf., e.g., [279], p. 577). We may, thus, choose the Sachs basis (E1, E2) such that
the plane spanned by K and E1 gives the polarization direction. This fixes the Sachs basis up to
transformations (14) with α = 0, i.e., it gives an unambiguous (observer-independent) meaning to
the angle χ in Figure 3. If a light source (e.g., a galaxy) shows an approximately elliptic shape
on the observer’s sky, it is reasonable to assume that at the light source the polarization direction
is aligned with one of the axes, i.e., 2χ(s)/π ∈ Z. A distortion effect is verified if the observed
polarization direction is not aligned with an axis of the image, 2χ(0)/π /∈ Z. It is to be emphasized
that such a change of the angle χ along the ray cannot be the result of a rotation; the bundles
under consideration have a vertex and are, thus, twist-free. It can only be the result of successive
shearing processes, governed by the behaviour of the conformal curvature tensor along the ray.
Also, the effect has nothing to do with the rotation of an observer field; we have already stressed
that the angle χ is observer-independent. Related misunderstandings have been clarified by Panov
and Sbytov [322, 323]. So far, this distortion effect has not been observed. (Panov and Sbytov [322]
have clearly shown that an anisotropy observed by Birch [42], even if real, cannot be interpreted
in this way.) Its future detectability is estimated, for distant radio sources, in [396].

The effect of a gravitatational field on the polarization direction of light was first discussed by
Skrotskii [383] in 1957 and is therefore sometimes called the “Skrotskii effect”. If the spacetime is
conformally stationary, and if the worldlines of observers and light sources are integral curves of
the conformal Killing vector field, the effect can be expressed in terms of the “Fermat geometry” of
3-space [189], see Section 4.2 below for the definition of the Fermat geometry. (Note that Figure 1
in [189] is erroneous because it ignores the fact that, in general, the principal shear directions of a
bundle are not parallel along the central ray.) Relative to a frame that is parallel with respect to the
Fermat metric, one finds a rotation of the polarization direction that is analogous to the well-known
Faraday rotation in a magnetic field. In this analogy, the magnetic field corresponds to the rotation
(twist) of the conformal Killing vector field. Because of this analogy, the Skrotskii effect is also
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known as the “gravitational Faraday effect”. It has been quite extensively discussed for stationary
spacetimes and, in particular, for the Kerr metric (see, e.g., [178, 395, 142, 211, 310, 374]). All these
articles give formulas for the rotation of the polarization direction relative to a frame distinguished
by the symmetry assumptions. This rotation should not be confused with the above-mentioned
motion of the polarization direction relative to the orientation of the image. The latter is a
distortion effect, governed by the conformal curvature tensor; the former is a gravitomagnetic
effect, governed by the rotation of a distinguished observer field.

2.6 Brightness of images

For calculating the brightness of images we need the definitions and results of Section 2.4. In
particular we need the luminosity distance Dlum and its relation to other distance measures. We
begin by considering a point source (worldline) that emits isotropically with (bolometric, i.e.,
integrated over all frequencies) luminosity L. By definition of Dlum, in this case the energy flux at
the observer is

F =
L

4πDlum
2
. (52)

F is a measure for the brightness of the image on the observer’s sky. The magnitude m used by
astronomers is essentially the negative logarithm of F ,

m = 2.5 log10
(
Dlum

2
)
− 2.5 log10(L) +m0, (53)

with m0 being a universal constant. In Equation (52), Dlum can be expresed in terms of the area
distance Darea and the redshift z with the help of the general relation (48). This demonstrates that
the magnification factor µ, which is defined by Equation (42), admits the following reinterpretation.
|µ(s)| relates the flux from a point source at affine distance s to the flux from a point source with
the same luminosity at the same affine distance and at the same redshift in Minkowski spacetime.

Dlum can be explicitly calculated in spacetimes where the Jacobi fields along lightlike geodesics
can be explicitly determined. This is true, e.g., in spherically symmetric and static spacetimes
where the extremal angular diameter distances D+ and D− can be calculated in terms of integrals
over the metric coefficients. The resulting formulas are given in Section 4.3 below. Knowledge
of D+ and D− immediately gives the area distance Darea via Equation (41). Darea together with
the redshift determines Dlum via Equation (48). Such an explicit calculation is, of course, possible
only for spacetimes with many symmetries.

By Equation (48), the zeros ofDlum coincide with the zeros ofDarea, i.e., with the caustic points.
Hence, in the ray-optical treatment a point source is infinitely bright (magnitude m = −∞) if it
passes through the caustic of the observer’s past light cone. A wave-optical treatment shows
that the energy flux at the observer is actually bounded by diffraction. In the quasi-Newtonian
approximation formalism, this was demonstrated by an explicit calculation for light rays deflected
by a spheroidal mass by Ohanian [313] (cf. [367], p. 220). Quite generally, the ray-optical calculation
of the energy flux gives incorrect results if, for two different light paths from the source worldline
to the observation event, the time delay is smaller than or approximately equal to the coherence
time. Then interference effects give rise to frequency-dependent corrections to the energy flux that
have to be calculated with the help of wave optics. In multiple-imaging situations, the time delay
decreases with decreasing mass of the deflector. If the deflector is a cluster of galaxies, a galaxy,
or a star, interference effects can be ignored. Gould [181] suggested that they could be observable
if a deflector of about 10−15 Solar masses happens to be close to the line of sight to a gamma-ray
burster. In this case, the angle-separation between the (unresolvable) images would be of the order
10−15 arcseconds (“femtolensing”). Interference effects could make a frequency-dependent imprint
on the total intensity. Ulmer and Goodman [409] discussed related effects for deflectors of up to
10−11 Solar masses. Femtolensing has not been observed so far. However, it is an interesting
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future perspective for lensing effects where wave optics has to be taken into account. This would
give practical relevance to the theoretical work of Herlt and Stephani [196, 197] who calculated
gravitational lensing on the basis of wave optics in the Schwarzschild spacetime. Wave-optical
aspects of gravitational lensing are also discussed in [294].

We now turn to the case of an extended source, whose surface makes up a 3-dimensional
timelike submanifold T of the spacetime. In this case the radiation is characterized by the surface
brightness B (= luminosity L per area) at the source and by the intensity I (= energy flux F per
solid angle) at the observer. For each past-oriented light ray from an observation event pO and to
an event pS on T , we can relate B and I in the following way. By definition, the area distance
Darea relates the area at the source to the solid angle at the observer, so we get from Equation (52)
I = BDarea

2/(4πDlum
2). As area distance and luminosity distance are related by a redshift factor,

according to the general law (48), this gives the relation

I =
B

4π(1 + z)4
. (54)

This result is, of course, valid only if the radiation from different parts of the emitting surface
is incoherent; otherwise interference effects have to be taken into account. The most remarkable
feature of Equation (54) is that all distance measures have dropped out. Save for a redshift factor,
the (observed) intensity of a radiating surface is the same for all observers.

The law for point sources (52) and the law for extended sources (54) refer to bolometric quan-
tities, i.e., to integration over all frequencies. As every astronomical observation is restricted to
a certain frequency range, it is actually necessary to consider frequency-specific quantities. For a
point source, one writes L =

∫∞

0
`(ωS)dωS and F =

∫∞

0
f(ωO)dωO, where the specific luminosity

` is a function of the emitted frequency ωS and the specific flux f is a function of the received
frequency ωO. As ωS and ωO are related by a redshift factor, the frequency-specific version of
Equation (52) reads

f(ωO) =
` (ωO(1 + z)) (1 + z)

4πDlum
2

. (55)

Similarly, for an extended source one introduces a specific surface brightness b and a specific
intensity i such that B =

∫∞

0
b(ωS)dωS and I =

∫∞

0
i(ωO)dωO. Then one gets the following

frequency-specific version of Equation (54).

i(ωO) =
b (ωO(1 + z))

4π(1 + z)3
. (56)

The results summarized in this section can also be derived from the kinetic theory of photons
(see, e.g., [115]). In the photon picture, the three redshift factors in Equation (56) are easily
understood: The first reflects the fact that each photon undergoes a redshift; the second relates
the rate of emission (with respect to proper time at the source) to the rate of reception (with
respect to proper time at the obsever); the third reflects the aberration effect on the angular size
of the source in dependence of the motion of the observer.

As an example for the calculation of the brightness of images we consider the Schwarzschild
spactime (see Figure 18).

2.7 Conjugate points and cut points

In general, the past light cone of an event forms caustics and transverse self-intersections, i.e.,
it is neither an embedded nor an immersed submanifold. The relevance of this fact in view of
lensing was emphasized already in Section 2.1. In the following we demonstrate that caustics
and transverse self-intersections of the light cone are related to extremizing properties of lightlike
geodesics. A light cone with a caustic and a transverse self-intersection is shown in Figure 26.
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In this section and in Section 2.8 we use mathematical techniques which are related to the
Penrose–Hawking singularity theorems. For background material, see Penrose [329], Hawking and
Ellis [193], O’Neill [315], and Wald [425].

Recall from Section 2.2 that the caustic of the past light cone of pO is the set of all points
where this light cone is not an immersed submanifold. A point pS is in the caustic if a generator
λ of the light cone intersects at pS an infinitesimally neighboring generator. In this situation pS
is said to be conjugate to pO along λ. The caustic of the past light cone of pO is also called the
“past lightlike conjugate locus” of pO.

The notion of conjugate points is related to the extremizing properties of lightlike geodesics
in the following way. Let λ be a past-oriented lightlike geodesic with λ(0) = pO. Assume that
pS = λ(s0) is the first conjugate point along this geodesic. This means that pS is in the caustic of
the past light cone of pO and that λ does not meet the caustic at parameter values between 0 and
s0. Then a well-known theorem says that all points λ(s) with 0 < s < s0 cannot be reached from
pO along a timelike curve arbitrarily close to λ, and all points λ(s) with s > s0 can. For a proof
we refer to Hawking and Ellis [193], Proposition 4.5.11 and Proposition 4.5.12. It might be helpful
to consult O’Neill [315], Chapter 10, Proposition 48, in addition.

Here we have considered a past-oriented lightlike geodesic because this is the situation with
relevance to lensing. Actually, Hawking and Ellis consider the time-reversed situation, i.e., with
λ future-oriented. Then the result can be phrased in the following way. A material particle may
catch up with a light ray λ after the latter has passed through a conjugate point and, for particles
staying close to λ, this is impossible otherwise. The restriction to particles staying close to λ is
essential. Particles “taking a short cut” may very well catch up with a lightlike geodesic even if
the latter is free of conjugate points.

For a discussion of the extremizing property in the global sense, not restricted to timelike curves
close to λ, we need the notion of cut points. The precise definition of cut points reads as follows.

As ususal, let I−(pO) denote the chronological past of pO, i.e., the set of all q ∈ M that can
be reached from pO along a past-pointing timelike curve. In Minkowski spacetime, the boundary
∂I−(pO) of I

−(pO) is just the past light cone of pO united with {pO}. In an arbitrary spacetime,
this is not true. A lightlike geodesic λ that issues from pO into the past is always confined to
the closure of I−(pO), but it need not stay on the boundary. The last point on λ that is on the
boundary is by definition [66] the cut point of λ. In other words, it is exactly the part of λ beyond
the cut point that can be reached from pO along a timelike curve. The union of all cut points,
along any past-pointing lightlike geodesic λ from pO, is called the cut locus of the past light cone
(or the past lightlike cut locus of pO). For the light cone in Figure 25 this is the curve (actually
2-dimensional) where the two sheets of the light cone intersect. For the light cone in Figure 26
the cut locus is the same set plus the swallow-tail point (actually 1-dimensional). For a detailed
discussion of cut points in manifolds with metrics of Lorentzian signature, see [32]. For positive
definite metrics, the notion of cut points dates back to Poincaré [349] and Whitehead [434].

For a generator λ of the past light cone of pO, the cut point of λ does not exist in either of the
two following cases:

1. λ always stays on the boundary ∂I−(pO), i.e., it never loses its extremizing property.

2. λ is always in I−(pO), i.e., it fails to be extremizing from the very beginning.

Case 2 occurs, e.g., if there is a closed timelike curve through pO. More precisely, Case 2 is excluded
if the past distinguishing condition is satisfied at pO, i.e., if for q ∈ M the implication

I−(q) = I−(pO) =⇒ q = pO (57)

holds. If the implication (57) is true, the following can be shown:
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(P1) If, along λ, the point λ(s) is conjugate to λ(0), the cut point of λ exists and it comes on or
before λ(s).

(P2) Assume that a point q can be reached from pO along two different lightlike geodesics λ1
and λ2 from pO. Then the cut point of λ1 and of λ2 exists and it comes on or before q.

(P3) If the cut locus of a past light cone is empty, this past light cone is an embedded submanifold
of M.

For proofs see [336]; The proofs can also be found in or easily deduced from [32]. Statement (P1)
says that conjugate points and cut points are related by the easily remembered rule “the cut
point comes first”. Statement (P2) says that a “cut” between two geodesics is indicated by the
occurrence of a cut point. However, it does not say that exactly at the cut point a second geodesic
is met. Such a stronger statement, which truly justifies the name “cut point”, holds in globally
hyperbolic spacetimes (see Section 3.1). Statement (P3) implies that the occurrence of transverse
self-intersections of a light cone are always indicated by cut points. Note, however, that transverse
self-intersections of the past light cone of pO may occur inside I−(pO) and, thus, far away from
the cut locus.

Statement (P1) implies that ∂I−(pO) is an immersed submanifold everywhere except at the
cut locus and, of course, at the vertex pO. It is known (see [193], Proposition 6.3.1) that ∂I−(pO)
is achronal (i.e., it is impossible to connect any two of its points by a timelike curve) and thus a
3-dimensional Lipschitz topological submanifold. By a general theorem of Rademacher (see [143],
Theorem 3.6.1), this implies that ∂I−(pO) is differentiable almost everywhere, i.e., that the cut
locus has measure zero in ∂I−(pO). Note that this argument does not necessarily imply that the
cut locus is a “small” subset of ∂I−(pO). Chruściel and Galloway [79] have demonstrated, by way
of example, that an achronal subset A of a spacetime may fail to be differentiable on a set that is
dense in A. So our reasoning so far does not even exclude the possibility that the cut locus is dense
in an open subset of ∂I−(pO). This possibility can be excluded in globally hyperbolic spacetimes
where the cut locus is always a closed subset of M (see Section 3.1). In general, the cut locus need
not be closed as is exemplified by Figure 25.

In Section 2.8 we investigate the relevance of cut points (and conjugate points) for multiple
imaging.

2.8 Criteria for multiple imaging

To investigate whether multiple imaging occurs in a spacetime (M, g), we choose any point pO
(observation event) and any timelike curve γS (wordline of light source) in M. The following cases
are possible:

1. There is no past-pointing lightlike geodesic from pO to γS. Then the observer at pO does not
see any image of the light source γS. For instance, this occurs in Minkowski spacetime for an
inextendible worldline γS that asymptotically approaches the past light cone of pO.

2. There is exactly one past-pointing lightlike geodesic from pO to γS. Then the observer at pS
sees exactly one image of the light source γS. This is the situation naively taken for granted
in pre-relativistic astronomy.

3. There are at least two but not more than denumerably many past-pointing lightlike geodesics
from pO to γS. Then the observer at pO sees finitely or infinitely many distinct images of γO
at his or her celestial sphere.

4. There are more than denumerably many past-pointing lightlike geodesics from p to γ. This
happens, e.g., in rotationally symmetric situations where it gives rise to the so-called “Ein-
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stein rings” (see Section 4.3). It also happens, e.g., in plane-wave spacetimes (see Sec-
tion 5.11).

If Case 3 or 4 occurs, astronomers speak of multiple imaging. We first demonstrate that Case 4
is exceptional. It is easy to prove (see, e.g., [336], Proposition 12) that no finite segment of the
timelike curve γS can be contained in the past light cone of pO. Thus, if there is a continuous
one-parameter family of lightlike geodesics that connect pO and γO, then all family members
meet γS at the same point, say pS. This point must be in the caustic of the light cone because
through all non-caustic points there is only a discrete number of generators. One can always find
a point p′O arbitrarily close to pO such that γS does not meet the caustic of the past light cone
of p′O (see, e.g., [336], Proposition 10). Hence, by an arbitrarily small perturbation of pO one can
always destroy a Case 4 situation. One may interpret this result as saying that Case 4 situations
have zero probability. This is, indeed, true as long as we consider point sources (worldlines). The
observed rings and arcs refer to extended sources (worldtubes) which are close to the caustic (recall
Section 2.5). Such situations occur with non-zero probability.

We will now show how multiple imaging is related to the notion of cut points (recall Section 2.7).
For any point pO in an arbitrary spacetime, the following criteria for multiple imaging hold:

(C1) Let λ be a past-pointing lightlike geodesic from pO and let pS be a point on λ beyond the
cut point or beyond the first conjugate point. Then there is a timelike curve γS through
pS that can be reached from pO along a second past-pointing lightlike geodesic.

(C2) Assume that at pO the past-distinguishing condition (57) is satisfied. If a timelike curve γS
can be reached from pO along two different past-pointing lightlike geodesics, at least one
of them passes through the cut locus of the past light cone of pO on or before arriving at
γS.

For proofs see [335] or [336]. (In [335] Criterion (C2) is formulated with the strong causality
condition, although the past-distinguishing condition is sufficient.) Criteria (C1) and (C2) say
that the occurrence of cut points is sufficient and, in past-distinguishing spacetimes, also necessary
for multiple imaging. The occurrence of conjugate points is sufficient but, in general, not necessary
for multiple imaging (see Figure 25 for an example without conjugate points where multiple imaging
occurs). So we have the following diagram:

Occurrence of: Sufficient for multiple imaging in: Necessary for multiple imaging in:

cut point arbitrary spacetime past-distinguishing spacetime

conjugate point arbitrary spacetime –

It is well known (see [193], in particular Proposition 4.4.5) that, under conditions which are to
be considered as fairly general from a physical point of view, a lightlike geodesic must either be
incomplete or contain a pair of conjugate points. These “fairly general conditions” are, e.g., the
weak energy condition and the so-called generic condition (see [193] for details). This result implies
the occurrence of conjugate points and, thus, of multiple imaging, for a large class of spacetimes.

The occurrence of conjugate points has an important consequence in view of the focusing
equation for the area distance Darea (recall Section 2.4 and, in particular, Equation (44)). As
Darea vanishes at the vertex s = 0 and at each conjugate point, there must be a parameter value
sm with Ḋarea(sm) = 0 between the vertex and the first conjugate point. An elementary evaluation
of the focusing equation (44) then implies

1 ≤
∫ sm

0

s

(
|σ(s)|2 +

∣∣∣∣
1

2
Ric

(
λ̇(s), λ̇(s)

)∣∣∣∣
)
ds. (58)
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As the Ricci term is related to the energy density via Einstein’s field equation, (58) gives an
estimate of energy-density-plus-shear along the ray. If we observe a multiple imaging situation,
and if we know (or assume) that we are in a situation where conjugate points are necessary for
multiple imaging, we have thus an estimate on energy-density-plus-shear along the ray. This line
of thought was worked out, under additional assumptions on the spacetime, in [318].

2.9 Fermat’s principle for light rays

It is often advantageous to characterize light rays by a variational principle, rather than by a
differential equation. This is particularly true in view of applications to lensing. If we have chosen
a point pO (observation event) and a timelike curve γS (worldline of light source) in spacetime M,
we want to determine all past-pointing lightlike geodesics from pO to γS. When working with a
differential equation for light rays, we have to calculate all light rays issuing from pO into the past,
and to see which of them meet γS. If we work with a variational principle, we can restrict to curves
from pO to γS at the outset.

To set up a variational principle, we have to choose the trial curves among which the solution
curves are to be determined and the functional that has to be extremized. Let LpO,γS

denote the
set of all past-pointing lightlike curves from pO to γS. This is the set of trial curves from which
the lightlike geodesics are to be singled out by the variational principle. Choose a past-oriented
but otherwise arbitrary parametrization for the timelike curve γS and assign to each trial curve
the parameter at which it arrives. This gives the arrival time functional T : LpO,γS

−→ R that is
to be extremized. With respect to an appropriate differentiability notion for T , it turns out that
the critical points (i.e., the points where the differential of T vanishes) are exactly the geodesics
in LpO,γS

. This result (or its time-reversed version) can be viewed as a general-relativistic Fermat
principle:

Among all ways to move from pO to γS in the past-pointing (or future-pointing) direc-
tion at the speed of light, the actual light rays choose those paths that make the arrival
time stationary.

This formulation of Fermat’s principle was suggested in 1990 by Kovner [240], a local version
(restricted to a convex normal neighborhood) can be found already in a 1938 paper by Temple [401].
The crucial idea is to refer to the arrival time which is given only along the curve γS, and not to
some kind of global time which in an arbitrary spacetime does not even exist. The proof that
the solution curves of Kovner’s variational principle are, indeed, exactly the lightlike geodesics
was given in [332]. The proof can also be found, with a slight restriction on the spacetime that
simplifies matters considerably, in [367]. An alternative version, based on making LpO,γS

into a
Hilbert manifold, is given in [334].

As in ordinary optics, the light rays make the arrival time stationary but not necessarily mini-
mal. A more detailed investigation shows that for a geodesic λ ∈ LpOγS

the following holds. (For
the notion of conjugate points see Sections 2.2 and 2.7.)

(A1) If along λ there is no point conjugate to pO, λ is a strict local minimum of T .

(A2) If λ passes through a point conjugate to pO before arriving at γ, it is a saddle of T .

(A3) If λ reaches the first point conjugate to pO exactly on its arrival at γS, it may be a local
minimum or a saddle but not a local maximum.

For a proof see [332] or [334]. The fact that local maxima cannot occur is easily understood from
the geometry of the situation: For every trial curve we can find a neighboring trial curve with
a larger T by putting “wiggles” into it, preserving the lightlike character of the curve. Also for
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Fermat’s principle in ordinary optics, where light propagation is characterized by a positive index
of refraction on Euclidean 3-space, the extremum is never a local maximum, as is mentioned, e.g.,
in Born and Wolf [46], p. 137. Note, however, that in the quasi-Newtonian lensing approximation
with one or more deflector planes, where only broken straight lines are allowed as trial paths, local
maxima do occur, see, e.g., [343]. Also, in the general formalism of ray optics, where the rays are
the solutions of Hamilton’s equations with an unspecified Hamiltonian, local maxima do occur,
unless a certain regularity condition is imposed on the Hamiltonian [337].

The advantage of Kovner’s version of Fermat’s principle is that it works in an arbitrary space-
time. In particular, the spacetime need not be stationary and the light source may arbitrarily move
around (at subluminal velocity, of course). This allows applications to dynamical situations, e.g.,
to lensing by gravitational waves (see Section 5.11). If the spacetime is stationary or conformally
stationary, and if the light source is at rest, a purely spatial reformulation of Fermat’s principle
is possible. This more specific version of Femat’s principle is known since decades and has found
various applications to lensing (see Section 4.2). A more sophisticated application of Fermat’s
principle to lensing theory is to put up a Morse theory in order to prove theorems on the possible
number of images. In its strongest version, this approach has to presuppose a globally hyperbolic
spacetime and will be reviewed in Section 3.3.

For a generalization of Kovner’s version of Fermat’s principle to the case that observer and
light source have a spatial extension see [340].

An alternative variational principle was introduced by Frittelli and Newman [154] and evaluated
in [155, 153]. While Kovner’s principle, like the classical Fermat principle, is a varional principle for
rays, the Frittelli–Newman principle is a variational principle for wave fronts. (For the definition
of wave fronts see Section 2.2.) Although Frittelli and Newman call their variational principle
a version of Fermat’s principle, it is actually closer to the classical Huygens principle than to
the classical Fermat principle. Again, one fixes pO and γS as above. To define the trial maps,
one chooses a set W(pO) of wave fronts, such that for each lightlike geodesic through pO there
is exactly one wave front in W(pO) that contains this geodesic. Hence, W(pO) is in one-to-one
correspondence to the lightlike directions at pO and thus to the 2-sphere. Now let W(pO, γS) denote
the set of all wave fronts in W(pO) that meet γS. We can then define the arrival time functional
T : W(pO, γS) −→ R by assigning to each wave front the parameter value at which it intersects
γS. There are some cases to be excluded to make sure that T is defined on an open subset of
W(pO) ' S2, single-valued and differentiable. If this is the case, one finds that T is stationary at
W ∈ W(pO) if and only if W contains a lightlike geodesic from pO to γS. Thus, to each image of
γS on the sky of pO there corresponds a critical point of T . The great technical advantage of the
Frittelli–Newman principle over the Kovner principle is that T is defined on a finite dimensional
manifold, directly to be identified with (part of) the observer’s celestial sphere. The arrival time
T in the Frittelli–Newman approach is directly analogous to the “Fermat potential” in the quasi-
Newtonian formalism which is discussed, e.g., in [367]. In view of applications, a crucial point is
that the space W(pO) is a matter of choice; there are many wave fronts which have one light ray
in common. There is a natural choice, e.g., in asymptotically simple spacetimes (see Section 3.4).

Frittelli, Newman, and collaborators have used their variational principle in combination with
the exact lens map (recall Section 2.1) to discuss thick and thin lens models from a spacetime
perspective [155, 153]. Methods from differential topology or global analysis, e.g., Morse theory,
have not yet been applied to the Frittelli–Newman principle.
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3 Lensing in Globally Hyperbolic Spacetimes

In a globally hyperbolic spacetime, considerably stronger statements on qualitative lensing features
can be made than in an arbitrary spacetime. This includes, e.g., multiple imaging criteria in terms
of cut points or conjugate points, and also applications of Morse theory. The value of these results
lies in the fact that they hold in globally hyperbolic spacetimes without symmetries, where lensing
cannot be studied by explicitly integrating the lightlike geodesic equation.

The most convenient formal definition of global hyperbolicity is the following. In a spacetime
(M, g), a subset C of M is called a Cauchy surface if every inextendible causal (i.e., timelike or
lightlike) curve intersects C exactly once. A spacetime is globally hyperbolic if and only if it admits
a Cauchy surface. The name globally hyperbolic refers to the fact that for hyperbolic differential
equations, like the wave equation, existence and uniqueness of a global solution is guaranteed for
initial data given on a Cauchy surface. For details on globally hyperbolic spacetimes see, e.g.,
[193, 32]. It was demonstrated by Geroch [165] that every gobally hyperbolic spacetime admits
a continuous function t : M −→ R such that t−1(t0) is a Cauchy surface for every t0 ∈ R. A
complete proof of the fact that such a Cauchy time function can be chosen differentiable was given
much later by Bernal and Sánchez [34, 35, 36].

The topology of a globally hyperbolic spacetime is determined by the topology of any of its
Cauchy surfaces, M ' C × R. Note, however, that the converse is not true because C1 × R may
be homeomorphic (and even diffeomorphic) to C2 × R without C1 being homeomorphic to C2. For
instance, one can construct a globally hyperbolic spacetime with topology R

4 that admits a Cauchy
surface which is not homeomorphic to R

3 [305].
In view of applications to lensing the following observation is crucial. If one removes a point,

a worldline (timelike curve), or a world tube (region with timelike boundary) from an arbitrary
spacetime, the resulting spacetime cannot be globally hyperbolic. Thus, restricting to globally
hyperbolic spacetimes excludes all cases where a deflector is treated as non-transparent by cutting
its world tube from spacetime (see Figure 25 for an example). Note, however, that this does
not mean that globally hyperbolic spacetimes can serve as models only for transparent deflectors.
First, a globally hyperbolic spacetime may contain “non-transparent” regions in the sense that a
light ray may be trapped in a spatially compact set. Second, the region outside the horizon of a
(Schwarzschild, Kerr, . . . ) black hole is globally hyperbolic.

3.1 Criteria for multiple imaging in globally hyperbolic spacetimes

In Section 2.7 we have considered the past light cone of an event pO in an arbitrary spacetime. We
have seen that conjugate points (= caustic points) indicate that the past light cone fails to be an
immersed submanifold and that cut points indicate that it fails to be an embedded submanifold.
In a globally hyperbolic spacetime (M, g), the following additional statements are true.

(H1) The past light cone of any event pO, together with the vertex {pO}, is closed in M.

(H2) The cut locus of the past light cone of pO is closed in M.

(H3) Let pS be in the cut locus of the past light cone of pO but not in the conjugate locus
(= caustic). Then pS can be reached from pO along two different lightlike geodesics. The
past light cone of pO has a transverse self-intersection at pS.

(H4) The past light cone of pO is an embedded submanifold if and only if its cut locus is empty.

Analogous results hold, of course, for the future light cone, but the past version is the one that
has relevance for lensing. For proofs of these statements see [32], Propositions 9.35 and 9.29 and
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Theorem 9.15, and [336], Propositions 13, 14, and 15. According to Statement (H3), a “cut point”
indicates a “cut” of two lightlike geodesics. For geodesics in Riemannian manifolds (i.e., in the
positive definite case), an analogous statement holds if the Riemannian metric is complete and is
known as Poincaré theorem [349, 434]. It was this theorem that motivated the name “cut point”.
Note that Statement (H3) is not true without the assumption that pS is not in the caustic. This
is exemplified by the swallow-tail point in Figure 26. However, as points in the caustic of the past
light cone of pO can be reached from pO along two “infinitesimally close” lightlike geodesics, the
name “cut point” may be considered as justified also in this case.

In addition to Statements (H1) and (H2) one would like to know whether in globally hyperbolic
spactimes the caustic of the past light cone of pO (also known as the past lightlike conjugate locus
of pO) is closed.

This question is closely related to the question of whether in a complete Riemannian manifold
the conjugate locus of a point is closed. For both questions, the answer was widely believed to be
‘yes’ although actually it is ‘no’. To the surprise of many, Margerin [269] constructed Riemannian
metrics on the 2-sphere such that the conjugate locus of a point is not closed. Taking the product
of such a Riemannian manifold with 2-dimensional Minkowski space gives a globally hyperbolic
spacetime in which the caustic of the past light cone of an event is not closed.

In Section 2.8 we gave criteria for the number of past-oriented lightlike geodesics from a point
pO (observation event) to a timelike curve γS (worldline of a light source) in an arbitrary spacetime.
With Statements (H1), (H2), (H3), and (H4) at hand, the following stronger criteria can be given.

Let (M, g) be globally hyperbolic, fix a point pO and an inextendible timelike curve γS in M.
Then the following is true:

(H5) Assume that γS enters into the chronological past I−(pO) of pO. Then there is a past-
oriented lightlike geodesic λ from pO to γS that is completely contained in the boundary
of I−(pO). This geodesic does not pass through a cut point or through a conjugate point
before arriving at γS.

(H6) Assume that γS can be reached from pO along a past-oriented lightlike geodesic that passes
through a conjugate point or through a cut point before arriving at γS. Then γS can be
reached from pO along a second past-oriented lightlike geodesic.

Statement (H5) was proven in [408] with the help of Morse theory. For a more elementary proof
see [336], Proposition 16. Statement (H5) gives a characterization of the primary image in globally
hyperbolic spacetimes. (By definition, an image is “primary” if no other image shows the light
source at an older age.) The condition of γS entering into the chronological past of pO is necessary
to exclude the case that pO sees no image of γS. Statement (H5) implies that there is a unique
primary image unless γS passes through the cut locus of the past light cone of pO. The primary
image has even parity. If the weak energy condition is satisfied, the focusing theorem implies that
the primary image has magnification factor ≥ 1, i.e., that it appears brighter than a source of
the same luminosity at the same affine distance and at the same redshift in Minkowski spacetime
(recall Sections 2.4 and 2.6, in particular the inequality (46)).

For a proof of Statement (H6) see [336], Proposition 17.

3.2 Wave fronts in globally hyperbolic spacetimes

In Section 2.2 the notion of wave fronts was discussed in an arbitrary spacetime (M, g). It was
mentioned that a wave front can be viewed as a subset of the space N of all lightlike geodesics in
(M, g). This approach is particularly useful in globally hyperbolic spacetimes, as was demonstrated
by Low [263, 264]. The construction is based on the observations that, if (M, g) is globally
hyperbolic and C is a smooth Cauchy surface, the following is true:

34



(N1) N can be identified with a sphere bundle over C. The identification is made by assigning to
each lightlike geodesic its tangent line at the point where it intersects C. As every sphere
bundle over an orientable 3-manifold is trivializable, N is diffeomorphic to C × S2.

(N2) N carries a natural contact structure. (This contact structure is also discussed, in twistor
language, in [330], volume II.)

(N3) The wave fronts are exactly the Legendre submanifolds of N .

Using Statement (N1), the projection from N to C assigns to each wave front its intersection
with C, i.e., an “instantaneous wave front” or “small wave front” (cf. Section 2.2 for terminology).
The points where this projection has non-maximal rank give the caustic of the small wave front.
According to the general stability results of Arnold (see [14]), the only caustic points that are
stable with respect to local perturbations within the class of Legendre submanifolds are cusps and
swallow-tails. By Statement (N3), perturbing within the class of Legendre submanifolds is the
same as perturbing within the class of wave fronts. For this local stability result the assumption
of global hyperbolicity is irrelevant because every spacelike hypersurface is a Cauchy surface for
an appropriately chosen neighborhood of any of its points. So we get the result that was already
mentioned in Section 2.2: In an arbitrary spacetime, a caustic point of an instantaneous wave front
is stable if and only if it is a cusp or a swallow-tail. Here stability refers to perturbations that keep
the metric and the hypersurface fixed and perturb the wave front within the class of wave fronts.
For a picture of an instantaneous wave front with cusps and a swallow-tail point, see Figure 29. In
Figure 14, the caustic points are neither cusps nor swallow-tails, so the caustic is unstable.

3.3 Fermat’s principle and Morse theory in globally hyperbolic space-

times

In an arbitrary spacetime, the past-oriented lightlike geodesics from a point pO (observation event)
to a timelike curve γS (worldline of light source) are the solutions of a variational principle (Kovner’s
version of Fermat’s principle; see Section 2.9). Every solution of this variational principle corre-
sponds to an image on pO’s sky of γS. Determining the number of images is the same as determining
the number of solutions to the variational problem. If the variational functional satisfies some tech-
nical conditions, the number of solutions to the variational principle can be related to the topology
of the space of trial paths. This is the content of Morse theory. In the case at hand, the “technical
conditions” turn out to be satisfied in globally hyperbolic spacetimes.

To briefly review Morse theory, we consider a differentiable function F : X −→ R on a real
manifold X . Points where the differential of F vanishes are called critical points of F . A critical
point is called non-degenerate if the Hessian of F is non-degenerate at this point. F is called a
Morse function if all its critical points are non-degenerate. In applications to variational problems,
X is the space of trial maps, F is the functional to be varied, and the critical points of F are the
solutions to the variational problem. The non-degeneracy condition guarantees that the character
of each critical point – local minimum, local maximum, or saddle – is determined by the Hessian
of F at this point. The index of the Hessian is called the Morse index of the critical point. It is
defined as the maximal dimension of a subspace on which the Hessian is negative definite. At a
local minimum the Morse index is zero, at a local maximum it is equal to the dimension of X .

Morse theory was first worked out by Morse [285] for the case that X is finite-dimensional
and compact (see Milnor [278] for a detailed exposition). The main result is the following. On a
compact manifold X , for every Morse function the Morse inequalities

Nk ≥ Bk, k = 0, 1, 2, . . . , (59)
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and the Morse relation
∞∑

k=0

(−1)kNk =

∞∑

k=0

(−1)kBk (60)

hold true. Here Nk denotes the number of critical points with Morse index k and Bk denotes the
kth Betti number of X . Formally, Bk is defined for each topological space X in terms of the kth
singular homology space Hk(X ) with coefficients in a field F (see, e.g., [104], p. 32). (The results of
Morse theory hold for any choice of F.) Geometrically, B0 counts the connected components of X
and, for k ≥ 1, Bk counts the “holes” in X that prevent a k-cycle with coefficients in F from being
a boundary. In particular, if X is contractible to a point, then Bk = 0 for k ≥ 1. The right-hand
side of Equation (60) is, by definition, the Euler characteristic of X . By compactness of X , all Nk

and Bk are finite and in both sums of Equation (60) only finitely many summands are different
from zero.

Palais and Smale [319, 320] realized that the Morse inequalities and the Morse relations are also
true for a Morse function F on a non-compact and possibly infinite-dimensional Hilbert manifold,
provided that F is bounded below and satisfies a technical condition known as Condition C or
Palais–Smale condition. In that case, the Nk and Bk need not be finite.

The standard application of Morse theory is the geodesic problem for Riemannian (i.e., positive
definite) metrics: given two points in a Riemannian manifold, to find the geodesics that join them.
In this case F is the “energy functional” (squared-length functional). Varying the energy functional
is related to varying the length functional like Hamilton’s principle is related to Maupertuis’ prin-
ciple in classical mechanics. For the space X one chooses, in the Palais–Smale approach [319], the
H1-curves between the given two points. (An Hn-curve is a curve with locally square-integrable
nth derivative). This is an infinite-dimensional Hilbert manifold. It has the same homotopy type
(and thus the same Betti numbers) as the loop space of the Riemannian manifold. (The loop
space of a connected topological space is the space of all continuous curves joining any two fixed
points.) On this Hilbert manifold, the energy functional is always bounded from below, and its
critical points are exactly the geodesics between the given end-points. A critical point (geodesic)
is non-degenerate if the two end-points are not conjugate to each other, and its Morse index is the
number of conjugate points in the interior, counted with multiplicity (“Morse index theorem”).
The Palais–Smale condition is satisfied if the Riemannian manifold is complete. So one has the
following result: Fix any two points in a complete Riemannian manifold that are not conjugate to
each other along any geodesic. Then the Morse inequalities (59) and the Morse relation (60) are
true, with Nk denoting the number of geodesics with Morse index k between the two points and
Bk denoting the kth Betti number of the loop space of the Riemannian manifold. The same result
is achieved in the original version of Morse theory [285] (cf. [278]) by choosing for X the space of
broken geodesics between the two given points, with N break points, and sending N → ∞ at the
end.

Using this standard example of Morse theory as a pattern, one can prove an analogous result
for Kovner’s version of Fermat’s principle. The following hypotheses have to be satisfied:

(M1) pO is a point and γS is a timelike curve in a globally hyperbolic spacetime (M, g).

(M2) γS does not meet the caustic of the past light cone of pO.

(M3) Every continuous curve from pO to γS can be continuously deformed into a past-oriented
lightlike curve, with all intermediary curves starting at pO and terminating on γS.

The global hyperbolicity assumption in Statement (M1) is analogous to the completeness assump-
tion in the Riemannian case. Statement (M2) is the direct analogue of the non-conjugacy condition
in the Riemannian case. Statement (M3) is necessary for relating the space of trial paths (i.e.,
of past-oriented lightlike curves from pO to γS) to the loop space of the spacetime manifold or,
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equivalently, to the loop space of a Cauchy surface. If Statements (M1), (M2), and (M3) are valid,
the Morse inequalities (59) and the Morse relation (60) are true, with Nk denoting the number of
past-oriented lightlike geodesics from pO to γS that have k conjugate points in its interior, counted
with muliplicity, and Bk denoting the kth Betti number of the loop space of M or, equivalently,
of a Cauchy surface. This result was proven by Uhlenbeck [408] à la Morse and Milnor, and by
Giannoni and Masiello [170] in an infinite-dimensional Hilbert manifold setting à la Palais and
Smale. A more general version, applying to spacetime regions with boundaries, was worked out by
Giannoni, Masiello, and Piccione [171, 172]. In the work of Giannoni et al., the proofs are given
in greater detail than in the work of Uhlenbeck.

If Statements (M1), (M2), and (M3) are satisfied, Morse theory gives us the following results
about the number of images of γS on the sky of pO (cf. [274]):

(R1) If M is not contractible to a point, there are infinitely many images. This follows from
Equation (59) because for the loop space of a non-contractible space either B0 is infinite
or almost all Bk are different from zero [378].

(R2) If M is contractible to a point, the total number of images is infinite or odd. This follows
from Equation (60) because in this case the loop space ofM is contractible to a point, so all
Betti numbersBk vanish with the exception ofB0 = 1. As a consequence, Equation (60) can
be written as N+−N− = 1, where N+ is the number of images with even parity (geodesics
with even Morse index) and N− is the number of images with odd parity (geodesics with
odd Morse index), hence N+ +N− = 2N− + 1.

These results apply, in particular, to the following situations of physical interest:

Black hole spacetimes.

Let (M, g) be the domain of outer communication of the Kerr spacetime, i.e., the region between
the (outer) horizon and infinity (see Section 5.8). Then the assumption of global hyperbolicity is
satisfied and M is not contractible to a point. Statement (M3) is satisfied if γS is inextendible
and approaches neither the horizon nor (past lightlike) infinity for t→ −∞. (This can be checked
with the help of an analytical criterion that is called the “metric growth condition” in [408].) If, in
addition Statement (M2) is satisfied, the reasoning of Statement (R1) applies. Hence, a Kerr black
hole produces infinitely many images, under fairly generic conditions on the motion of the light
source. The details of this argument are worked out, for the more general case of a Kerr-Newman
black hole, in [192].

Asymptotically simple and empty spacetimes.

As discussed in Section 3.4, asymptotically simple and empty spacetimes are globally hyperbolic
and contractible to a point. They can be viewed as models of isolated transparent gravitational
lenses. Statement (M3) is satisfied if γS is inextendible and bounded away from past lightlike infin-
ity I

−. If, in addition, Statement (M2) is satisfied, Statement (R2) guarantees that the number of
images is infinite or odd. If it were infinite, we had as the limit curve a past-inextendible lightlike
geodesic that would not go out to I

−, in contradiction to the definition of asymptotic simplicity.
So the number of images must be finite and odd. The same odd-number theorem can also be
proven with other methods (see Section 3.4).

In this way Morse theory provides us with precise mathematical versions of the statements
“A black hole produces infinitely many images” and “An isolated transparent gravitational lens
produces an odd number of images”. When comparing this theoretical result with observations
one has to be aware of the fact that some images might be hidden behind the deflecting mass, some
might be too faint for being detected, and some might be too close together for being resolved.
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In conformally stationary spacetimes, with γS being an integral curve of the conformal Killing
vector field, a simpler version of Fermat’s principle and Morse theory can be used (see Section 4.2).

3.4 Lensing in asymptotically simple and empty spacetimes

In elementary optics one often considers “light sources at infinity” which are characterized by the
fact that all light rays emitted from such a source are parallel to each other. In general relativity,
“light sources at infinity” can be defined if one restricts to a special class of spacetimes. These
spacetimes, known as “asymptotically simple and empty” are, in particular, globally hyperbolic.
Their formal definition, which is due to Penrose [326], reads as follows (cf. [193], p. 222., and [148],
Section 2.3). (Recall that a spacetime is called “strongly causal” if each neighborhood of an event
p admits a smaller neighborhood that is intersected by any non-spacelike curve at most once.)

A spacetime (M, g, ) is called asymptotically simple and empty if there is a strongly causal
spacetime (M̃, g̃) with the following properties:

(S1) M is an open submanifold of M̃ with a non-empty boundary ∂M.

(S2) There is a smooth function Ω : M̃ −→ R such that M = {p ∈ M̃|Ω(p) > 0}, ∂M = {p ∈
M̃|Ω(p) = 0}, dΩ 6= 0 everywhere on ∂M and g̃ = Ω2g on M.

(S3) Every inextendible lightlike geodesic in M has past and future end-point on ∂M.

(S4) There is a neighborhood V of ∂M such that the Ricci tensor of g vanishes on V ∩M.

Asymptotically simple and empty spacetimes are mathematical models of transparent uncharged
gravitating bodies that are isolated from all other gravitational sources. In view of lensing, the
transparency condition (S3) is particularly important.

We now summarize some well-known facts about asymptotically simple and empty spacetimes
(cf. again [193], p. 222, and [148], Section 2.3). Every asymptotically simple and empty spacetime
is globally hyperbolic. ∂M is a g̃-lightlike hypersurface of M̃. It has two connected components,
denoted I

+ and I
−. Each lightlike geodesic in (M, g) has past end-point on I

− and future
end-point on I

+. Geroch [166] gave a proof that every Cauchy surface C of an asymptotically
simple and empty spacetime has topology R

3 and that I
± has topology S2×R. The original proof,

which is repeated in [193], is incomplete. A complete proof that C must be contractible and that
I

± has topology S2×R was given by Newman and Clarke [305] (cf. [304]); the stronger statement
that C must have topology R

3 needs the assumption that the Poincaré conjecture is true (i.e., that
every compact and simply connected 3-manifold is a 3-sphere). In [305] the authors believed that
the Poincaré conjecture was proven, but the proof they are refering to was actually based on an
error. As the more recent proof of the Poincaré conjecture by Perelman [331] (cf. [281]) has been
generally accepted as being correct, the matter is now settled.

As I
± is a lightlike hypersurface in M̃, it is in particular a wave front in the sense of Section 2.2.

The generators of I
± are the integral curves of the gradient of Ω. The generators of I

− can be
interpreted as the “worldlines” of light sources at infinity that send light into M. The generators
of I

+ can be interpreted as the “worldlines” of observers at infinity that receive light from M.
This interpretation is justified by the observation that each generator of I

± is the limit curve for
a sequence of timelike curves in M.

For an observation event pO inside M and light sources at infinity, lensing can be investigated
in terms of the exact lens map (recall Section 2.1), with the role of the source surface T played by
I

−. (For the mathematical properties of the lens map it is rather irrelevant whether the source
surface is timelike, lightlike or even spacelike. What matters is that the arriving light rays meet
the source surface transversely.) In this case the lens map is a map S2 → S2, namely from the
celestial sphere of the observer to the set of all generators of I

−. One can construct it in two
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steps: First determine the intersection of the past light cone of pO with I
−, then project along

the generators. The intersections of light cones with I
± (“light cone cuts of null infinity”) have

been studied in [242, 241].
One can assign a mapping degree (=Brouwer degree=winding number) to the lens map S2 →

S2 and prove that it must be ±1 [338]. (The proof is based on ideas of [305, 304]. Earlier proofs
of similar statements – [241], Lemma 1, and [336], Theorem 6 – are incorrect, as outlined in [338].)
Based on this result, the following odd-number theorem can be proven for observer and light source
inside M [338]: Fix a point pO and a timelike curve γS in an asymptotically simple and empty
spacetime (M, g). Assume that the image of γS is a closed subset of M̃ \ I

+ and that γS meets
neither the point pO nor the caustic of the past light cone of pO. Then the number of past-pointing
lightlike geodesics from pO to γS in M is finite and odd. The same result can be proven with the
help of Morse theory (see Section 3.3).

We will now give an argument to the effect that in an asymptotically simple and empty space-
time the non-occurrence of multiple imaging is rather exceptional. The argument starts from a
standard result that is used in the Penrose–Hawking singularity theorems. This standard result,
given as Proposition 4.4.5 in [193], says that along a lightlike geodesic that starts at a point pO
there must be a point conjugate to pO, provided that

1. the so-called generic condition is satisfied at pO,

2. the weak energy condition is satisfied along the geodesic, and

3. the geodesic can be extended sufficiently far.

The last assumption is certainly true in an asymptotically simple and empty spacetime because
there all lightlike geodesics are complete. Hence, the generic condition and the weak energy
condition guarantee that every past light cone must have a caustic point. We know from Section 3.1
that this implies multiple imaging for every observer. In other words, the only asymptotically
simple and empty spacetimes in which multiple imaging does not occur are non-generic cases (like
Minkowski spacetime) and cases where the gravitating bodies have negative energy.

The result that, under the aforementioned conditions, light cones in an asymptotically simple
and empty spacetime must have caustic points is due to [208]. This paper investigates the past
light cones of points on I

+ and their caustics. These light cones are the generalizations, to an
arbitrary asymptotically simple and empty spacetime, of the lightlike hyperplanes in Minkowski
spacetime. With their help, the eikonal equation (Hamilton–Jacobi equation) gij∂iS∂jS = 0 in an
asymptotically simple and empty spacetime can be studied in analogy to Minkowski spacetime [157,
156]. In Minkowski spacetime the lightlike hyperplanes are associated with a two-parameter family
of solutions to the eikonal equation. In the terminology of classical mechanics such a family is called
a complete integral. Knowing a complete integral allows constructing all solutions to the Hamilton–
Jacobi equation. In an asymptotically simple and empty spacetime the past light cones of points
on I

+ give us, again, a complete integral for the eikonal equation, but now in a generalized sense,
allowing for caustics. These past light cones are wave fronts, in the sense of Section 2.2, and cannot
be represented as surfaces S = constant near caustic points. The way in which all other wave fronts
can be determined from knowledge of this distinguished family of wave fronts is detailed in [156].
The distinguished family of wave fronts gives a natural choice for the space of trial maps in the
Frittelli–Newman variational principle which was discussed in Section 2.9.
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4 Lensing in Spacetimes with Symmetry

4.1 Lensing in conformally flat spacetimes

By definition, a spacetime is conformally flat if the conformal curvature tensor (=Weyl tensor)
vanishes. An equivalent condition is that every point admits a neighborhood that is conformal to an
open subset of Minkowski spacetime. As a consequence, conformally flat spacetimes have the same
local conformal symmetry as Minkowski spacetime, that is they admit 15 independent conformal
Killing vector fields. The global topology, however, may be different from the topology of Minkowski
spacetime. The class of conformally flat spacetimes includes all (kinematic) Robertson–Walker
spacetimes. Other physically interesting examples are some (generalized) interior Schwarzschild
solutions and some pure radiation spacetimes. All conformally flat solutions to Einstein’s field
equation with a perfect fluid or an electromagnetic field are known (see [388], Section 37.5.3).

If a spacetime is globally conformal to an open subset of Minkowski spacetime, the past light
cone of every event is an embedded submanifold. Hence, multiple imaging cannot occur (recall
Section 2.8). For instance, multiple imaging occurs in spatially closed but not in spatially open
Robertson–Walker spacetimes. In any conformally flat spacetime, there is no image distortion, i.e.,
a sufficiently small sphere always shows a circular outline on the observer’s sky (recall Section 2.5).
Correspondingly, every infinitesimally thin bundle of light rays with a vertex is circular, i.e., the
extremal angular diameter distances D+ and D− coincide (recall Section 2.4). In addition, D+ =
D− also coincides with the area distance Darea, at least up to sign. D+ = D− changes sign at every
caustic point. As D+ has a zero if and only if D− has a zero, all caustic points of an infinitesimally
thin bundle with vertex are of multiplicity two (anastigmatic focusing), so all images have even
parity.

The geometry of light bundles can be studied directly in terms of the Jacobi equation (= equation
of geodesic deviation) along lightlike geodesics. For a detailed investigation of the latter in confor-
mally flat spacetimes, see [341]. The more special case of Friedmann–Lemâıtre-Robertson–Walker
spacetimes (with dust, radiation, and cosmological constant) is treated in [131]. For bundles with
vertex, one is left with one scalar equation for D+ = D− = ±Darea, that is the focusing equa-
tion (44) with σ = 0. This equation can be explicitly integrated for Friedmann–Robertson–Walker
spacetimes (dust without cosmological constant). In this way one gets, for the standard observer
field in such a spacetime, relations between redshift and (area or luminosity) distance in closed
form [273]. There are generalizations for a Robertson–Walker universe with dust plus cosmological
constant [228] and dust plus radiation plus cosmological constant [94]. Similar formulas can be
written for the relation between age and redshift [403].

4.2 Lensing in conformally stationary spacetimes

Conformally stationary spacetimes are models for gravitational fields that are time-independent
up to an overall conformal factor. (The time-dependence of the conformal factor is important, e.g.,
if cosmic expansion is to be taken into account.) This is a reasonable model assumption for many,
though not all, lensing situations of interest. It allows describing light rays in a 3-dimensional (spa-
tial) formalism that will be outlined in this section. The class of conformally stationary spacetimes
includes spherically symmetric and static spacetimes (see Sections 4.3) and axisymmetric station-
ary spacetimes (see Section 4.4). Also, conformally flat spacetimes (see Section 4.1) are confor-
mally stationary, at least locally. A physically relevant example where the conformal-stationarity
assumption is not satisfied is lensing by a gravitational wave (see Section 5.11).

By definition, a spacetime is conformally stationary if it admits a timelike conformal Killing
vector field W . If W is complete and if there are no closed timelike curves, the spacetime must
be a product, M ' R × M̂ with a (Hausdorff and paracompact) 3-manifold M̂ and W parallel
to the R-lines [185]. If we denote the projection from M to R by t and choose local coordinates
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x = (x1, x2, x3) on M̂, the metric takes the form

g = e2f(t,x)
(
−(dt+ φ̂µ(x) dx

µ)2 + ĝµν(x) dx
µ dxν

)
(61)

with µ, ν, . . . = 1, 2, 3. The conformal factor e2f does not affect the lightlike geodesics apart
from their parametrization. So the paths of light rays are completely determined by the metric
ĝ = ĝµν(x)dx

µdxν and the one-form φ̂ = φ̂µ(x)dx
µ which live on M̂. The metric ĝ must be positive

definite to give a spacetime metric of Lorentzian signature. We call f the redshift potential, ĝ the
Fermat metric and φ̂ the Fermat one-form. The motivation for these names will become clear from
the discussion below.

If φ̂µ = ∂µh, where h is a function of x = (x1, x2, x3), we can change the time coordinate

according to t 7−→ t + h(x), thereby transforming φ̂µdx
µ to zero, i.e., making the surfaces t =

constant orthogonal to the t-lines. This is the conformally static case. Also, Equation (61) includes

the stationary case (f independent of t) and the static case (φ̂µ = ∂µh and f independent of t).
In Section 2.9 we have discussed Kovner’s version of Fermat’s principle which characterizes

the lightlike geodesics between a point (observation event) pO and a timelike curve (worldline of
light source) γS. In a conformally stationary spacetime we may specialize to the case that γS
is an integral curve of the conformal Killing vector field, parametrized by the “conformal time”
coordinate t (in the past-pointing sense, to be in agreement with Section 2.9). Without loss of
generality, we may assume that the observation event pO takes place at t = 0. Then for each trial
path (past-oriented lightlike curve) λ from pO to γS the arrival time is equal to the travel time
in terms of the time function t. By Equation (61) this puts the arrival time functional into the
following coordinate form

T (λ) =

∫ `2

`1

(√
ĝµν(x)

dxµ

d`

dxν

d`
− φ̂µ(x)

dxµ

d`

)
d`, (62)

where ` is any parameter along the trial path, ranging over an interval [`1, `2] that depends on

the individual curve. The right-hand side of Equation (62) is a functional for curves in M̂ with

fixed end-points. The projections to M̂ of light rays are the stationary points of this functional.
In general, the right-hand side of Equation (62) is the length functional of a Finsler metric. In

the conformally static case φ̂µ = ∂µh, the integral over φ̂µ(x)dx
µ/d` is the same for all trial paths,

so we are left with the length functional of the Fermat metric ĝ. In this case the light rays, if
projected to M̂, are the geodesics of ĝ. Note that the travel time functional (62) is invariant under
reparametrization; in the terminology of classical mechanics, it is a special case of Maupertuis’
principle. It is often convenient to switch to a parametrization-dependent variational principle
which, in the terminology of classical mechanics, is called Hamilton’s principle. The Maupertuis
principle with action functional (62) corresponds to Hamilton’s principle with a Lagrangian

L =
1

2
ĝµν(x)

dxµ

d`

dxν

d`
− φ̂µ

dxµ

d`
, (63)

(see, e.g., Carathéodory [73], Sections 304 – 307). The pertaining Euler–Lagrange equations read

ĝµν

(
d2xν

d`2
+ Γ̂ν

στ

dxσ

d`

dxτ

d`

)
=
(
∂ν φ̂µ − ∂µφ̂ν

) dxµ
d`

(64)

where Γ̂ν
στ are the Christoffel symbols of the Fermat metric ĝ. The solutions admit the constant

of motion

ĝµν(x)
dxµ

d`

dxν

d`
= constant, (65)
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which can be chosen equal to 1 for each ray, such that ` gives the ĝ-arclength. By Equation (62),

the latter gives the travel time if φ̂ = 0. According to Equation (64), the Fermat two-form

ω̂ = dφ̂ (66)

exerts a kind of Coriolis force on the light rays. This force has the same mathematical structure
as the Lorentz force in a magnetostatic field. In this analogy, φ̂ corresponds to the magnetic
(vector) potential. In other words, light rays in a conformally stationary spacetime behave like
charged particles, with fixed charge-to-mass ratio, in a magnetostatic field ω̂ on a Riemannian
manifold (M̂, ĝ). For linearly polarized light, the Fermat geometry can also be used for describing
the propagation of the polarization plane [189]. One finds that the polarization plane undergoes
a rotation similar to the Faraday rotation in a magnetic field. This observation corroborates the
formal analogy between ω̂ and a magnetic field. The gravitational analogue of the Faraday rotation
was already discussed briefly in Section 2.5 above.

Fermat’s principle in static spacetimes dates back to Weyl [430] (cf. [260, 397]). The stationary
case was treated by Pham Mau Quan [344], who even took an isotropic medium into account,
and later, in a more elegant presentation, by Brill [60]. These versions of Fermat’s principle are
discussed in several text-books on general relativity (see, e.g., [279, 147, 389] for the static and [253]
for the stationary case). A detailed discussion of the conformally stationary case can be found
in [333]. Fermat’s principle in conformally stationary spacetimes was used as the starting point for
deriving the lens equation of the quasi-Newtonian apporoximation formalism by Schneider [366]
(cf. [367]). As an alternative to the name “Fermat metric” (used, e.g., in [147, 389, 333]), the
names “optical metric” (see, e.g., [176, 105, 175, 177]) and “optical (reference) geometry” (see,
e.g., [4, 244, 390, 392, 201, 3]) are also used.

In the conformally static case, one can apply the standard Morse theory for Riemannian
geodesics to the Fermat metric ĝ to get results on the number of ĝ-geodesics joining two points
in space. This immediately gives results on the number of lightlike geodesics joining a point in
spacetime to an integral curve ofW = ∂t. Completeness of the Fermat metric corresponds to global
hyperbolicity of the spacetime metric. The relevant techniques, and their generalization to (con-
formally) stationary spacetimes, are detailed in a book by Masiello [272]. (Note that, in contrast
to standard terminology, Masiello’s definition of a stationary spacetime includes the assumption
that the hypersurfaces t = constant are spacelike.) The resulting Morse theory is a special case
of the Morse theory for Fermat’s principle in globally hyperbolic spacetimes (see Section 3.3). In
addition to Morse theory, other standard methods from Riemannian geometry have been applied
to the Fermat metric, e.g., convexity techniques [173, 174].

If the metric (61) is conformally static, φ̂µ(x) = ∂µh(x), and if the Fermat metric is conformal
to the Euclidean metric, ĝµν(x) = n(x)2δµν , the arrival time functional (62) can be written as

T (λ) =

∫ `2

`1=0

n(x) d` + constant, (67)

where ` is Euclidean arclength. Hence, Fermat’s principle reduces to its standard optics form
for an isotropic medium with index of refraction n on Euclidean space. As a consequence, light
propagation in a spacetime with the assumed properties can be mimicked by a medium with
an appropriately chosen index of refraction. This remark applies, e.g., to spherically symmetric
and static spacetimes (see Section 4.3) and, in particular, to the Schwarzschild spacetime (see
Section 5.1). The analogy with ordinary optics in media has been used for constructing, in the
laboratory, analogue models for light propagation in general-relativistic spacetimes (see [311]).

Extremizing the functional (67) is formally analogous to Maupertuis’ principle for a particle in
a scalar potential on flat space, which is discussed in any book on classical mechanics. Dropping
the assumption that the Fermat one-form is a differential, but still requiring the Fermat metric to
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be conformal to the Euclidean metric, corresponds to introducing an additional vector potential.
This form of the optical-mechanical analogy, for light rays in stationary spacetimes whose Fermat
metric is conformal to the Euclidean metric, is discussed, e.g., in [7].

The conformal factor e2f in Equation (61) does not affect the paths of light rays. However, it
does affect redshifts and distance measures (recall Section 2.4). If g is of the form (61), for every
lightlike geodesic λ the quantity g(λ̇, ∂t) is a constant of motion. This leads to a particularly simple
form of the general redshift formula (36). We consider an arbitrary lightlike geodesic s 7→ λ(s) in
terms of its coordinate representation s 7→

(
t(s), x1(s), x2(s), x3(s)

)
. If both observer and emitter

are at rest in the sense that their 4-velocities UO and US are parallel to W = ∂t, Equation (36)
can be rewritten as

log (1 + z(s)) = f (t(s), x(s)) − f (t(0), x(0)) . (68)

This justifies calling f the redshift potential. It is shown in [188] that there is a redshift potential
for a congruence of timelike curves in a spacetime if and only if the timelike curves are the integral
curves of a conformal Killing vector field. The notion of a redshift potential or redshift function is
also discussed in [97]. Note that Equation (68) immediately determines the redshift in conformally
stationary spacetimes for any pair of observer and emitter. If the 4-velocity of the observer or of
the emitter is not parallel to W = ∂t, one just has to add the usual special-relativistic Doppler
factor.

Conformally stationary spacetimes can be characterized by another interesting property. Let
W be a timelike vector field in a spacetime and fix three observers whose worldlines are integral
curves of W . Then the angle under which two of them are seen by the third one remains constant
in the course of time, for any choice of the observers, if and only ifW is proportional to a conformal
Killing vector field. For a proof see [188].

4.3 Lensing in spherically symmetric and static spacetimes

The class of spherically symmetric and static spacetimes is of particular relevance in view of lensing,
because it includes models for non-rotating stars and black holes (see Sections 5.1, 5.2, 5.3), but
also for more exotic objects such as wormholes (see Section 5.4), monopoles (see Section 5.5),
naked singularities (see Section 5.6), and Boson or Fermion stars (see Section 5.7). A spherically
symmetric and static spacetime can also be used, as a rough approximation, to model a star cluster,
a galaxy or a cluster of galaxies. Here we collect the relevant formulas for an unspecified spherically
symmetric and static metric. We find it convenient to write the metric in the form

g = e2f(r)
(
−dt2 + S(r)2 dr2 +R(r)2

(
dϑ2 + sin2 ϑ dϕ2

))
. (69)

As Equation (69) is a special case of Equation (61), all results of Section 4.2 for conformally
stationary metrics apply. However, much stronger results are possible because for metrics of the
form (69) the geodesic equation is completely integrable. Hence, all relevant quantities can be
determined explicitly in terms of integrals over the metric coefficients.

Redshift and Fermat geometry.

Comparison of Equation (69) with the general form (61) of a conformally stationary spacetime

shows that here the redshift potential f is a function of r only, the Fermat one-form φ̂ vanishes,
and the Fermat metric ĝ is of the special form

ĝ = S(r)2 dr2 +R(r)2
(
dϑ2 + sin2 ϑ dϕ2

)
. (70)

This Fermat metric has several interesting applications. E.g., Gibbons and Werner [175] have
derived some lensing features of a spherically symmetric static fluid ball by applying the Gauss-
Bonnet theorem to the corresponding Fermat metric (or optical metric). By Fermat’s principle,
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the geodesics of ĝ coincide with the projection to 3-space of light rays. The travel time (in terms
of the time coordinate t) of a lightlike curve coincides with the ĝ-arclength of its projection. By
symmetry, every ĝ-geodesic stays in a plane through the origin. From Equation (70) we read that
the sphere of radius r has area 4πR(r)2 with respect to the Fermat metric. Also, Equation (70)
implies that the second fundamental form of this sphere is a multiple of its first fundamental form,
with a factor −R′(r) (R(r)S(r))

−1
. If

R′(rp) = 0, (71)

the sphere r = rp is totally geodesic, i.e., a ĝ-geodesic that starts tangent to this sphere remains
in it. The best known example for such a light sphere or photon sphere is the sphere r = 3m
in the Schwarzschild spacetime (see Section 5.1). Light spheres also occur in the spacetimes of
wormholes (see Section 5.4). If R′′(rp) < 0, the circular light rays in a light sphere are stable with
respect to radial perturbations, and if R′′(rp) > 0, they are unstable like in the Schwarschild case.
The condition under which a spherically symmetric static spacetime admits a light sphere was first
given by Atkinson [16]. Abramowicz [1] has shown that for an observer traveling along a circular
light orbit (with subluminal velocity) there is no centrifugal force and no gyroscopic precession.
Claudel, Virbhadra, and Ellis [81] investigated, with the help of Einstein’s field equation and energy
conditions, the amount of matter surrounded by a light sphere. Among other things, they found
an energy condition under which a spherically symmetric static black hole must be surrounded by
a light sphere. A purely kinematical argument shows that any spherically symmetric and static
spacetime that has a horizon at r = rH and is asymptotically flat for r → ∞ must contain a light
sphere at some radius between rH and ∞ (see Hasse and Perlick [191]). In the same article, it is
shown that in any spherically symmetric static spacetime with a light sphere there is gravitational
lensing with infinitely many images. Bozza [48] investigated a strong-field limit of lensing in spher-
ically symmetric static spacetimes, as opposed to the well-known weak-field limit, which applies
to light rays that come close to an unstable light sphere. (In later papers, the term “strong-field
limit” was replaced with “strong-deflection limit”. This is, indeed, more appropriate because the
gravitational field, measured in terms of tidal forces, need not be particularly strong near an unsta-
ble light sphere. The characteristic feature is that the bending angle goes to infinity, i.e., that light
rays make arbitrarily many turns around the center if they approach an unstable light sphere.)
This limit applies, in particular, to light rays that approach the sphere r = 3m in the Schwarzschild
spacetime (see [53] and, for illustrations, Figures 16, 17, and 18). The strong-deflection limit has
also been applied to many other spherically symmetric and static metrics; several examples are
discussed in Section 5 below. As demonstrated in the original article by Bozza [48], the parameters
that characterize the strong-deflection limit can be used to distinguish between different black-hole
metrics. These parameters were related to quasi-normal modes in [386].

Index of refraction and embedding diagrams.

Transformation to an isotropic radius coordinate r̃ via

S(r) dr

R(r)
=
dr̃

r̃
(72)

takes the Fermat metric (70) to the form

ĝ = n(r̃)2
(
dr̃2 + r̃2(dϑ2 + sin2 ϑ dϕ2)

)
(73)

where

n(r̃) =
R(r)

r̃
. (74)

On the right-hand side r has to be expressed by r̃ with the help of Equation (72). The results
of Section 4.2 imply that the lightlike geodesics in a spherically symmetric static spacetime are
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equivalent to the light rays in a medium with index of refraction (74) on Euclidean 3-space. For
arbitrary metrics of the form (69), this result is due to Atkinson [16]. It reduces the lightlike
geodesic problem in a spherically symmetric static spacetime to a standard problem in ordinary
optics, as treated, e.g., in [266], §27, and [252], Section 4. One can combine this result with
our earlier observation that the integral in Equation (67) has the same form as the functional
in Maupertuis’ principle in classical mechanics. This demonstrates that light rays in spherically
symmetric and static spacetimes behave like particles in a spherically symmetric potential on
Euclidean 3-space (cf., e.g., [135]).

If the embeddability condition
S(r)2 ≥ R′(r)2 (75)

is satisfied, we define a function Z(r) by

Z ′(r) =
√
S(r)2 −R′(r)2. (76)

Then the Fermat metric (70) reads

ĝ = (dR(r))2 +R(r)2
(
dϑ2 + sin2 ϑ dϕ2

)
+ (dZ(r))2 . (77)

If restricted to the equatorial plane ϑ = π/2, the metric (77) describes a surface of revolution,
embedded into Euclidean 3-space as

(r, ϕ) 7→ (R(r) cosϕ,R(r) sinϕ,Z(r)) . (78)

Such embeddings of the Fermat geometry have been visualized for several spacetimes of interest
(see Figure 12 for the Schwarzschild case and [201, 202] for other examples). This is quite in-
structive because from a picture of a surface of revolution one can read the qualitative features
of its geodesics without calculating them. Note that Equation (72) defines the isotropic radius
coordinate uniquely up to a multiplicative constant. Hence, the straight lines in this coordinate
representation give us an unambiguously defined reference grid for every spherically symmetric and
static spacetime. These straight lines have been called triangulation lines in [84, 85], where their
use for calculating bending angles, exactly or approximately, is outlined.

Light cone.

In a spherically symmetric static spacetime, the (past) light cone of an event pO can be written in
terms of integrals over the metric coefficients. We first restrict to the equatorial plane ϑ = π/2.
The ĝ-geodesics are then determined by the Lagrangian

L =
1

2

(
S(r)2

(
dr

d`

)2

+R(r)2
(
dϕ

d`

)2
)
. (79)

The Euler-Lagrange equations read

d

d`

(
S(r)2

dr

d`

)
= S(r)S′(r)

(
dr

d`

)2

+R(r)R′(r)

(
dϕ

d`

)2

. (80)

d

d`

(
R(r)2

dϕ

d`

)
= 0. (81)

After dividing the first equation by R(r)2(dϕ/d`)2, and using the second equation, we find

d

dϕ

(
S(r)2

R(r)2
dr

dϕ

)
=
S(r)S′(r)

R(r)2

(
dr

dϕ

)2

+
R′(r)

R(r)
. (82)
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Equations (80) and (81) give the light rays parametrized by ĝ-arclength (which equals travel time)
`, Equation (82) can be used for determining the orbits of light rays if the parametrization plays
no role.

For fixed radius value rO, initial conditions

r(0) = rO,
dr

d`
(0) =

cosΘ

S(rO)
,

ϕ(0) = 0,
dϕ

d`
(0) =

sinΘ

R(rO)

(83)

determine a unique solution r = r(`,Θ), ϕ = φ(`,Θ) of the Euler–Lagrange equations (80) and
(81). Θ measures the initial direction with respect to the symmetry axis (see Figure 6). We get all
light rays issuing from the event r = rO, ϕ = 0, ϑ = π/2, t = tO into the past by letting Θ range
from 0 to π and applying rotations around the symmetry axis. This gives us the past light cone of
this event in the form

(`,Ψ,Θ) 7−→




tO − `
r(`,Θ) sinφ(`,Θ) cosΨ
r(`,Θ) sinφ(`,Θ) sinΨ

r(`,Θ) cosφ(`,Θ)


 . (84)

Ψ and Θ are spherical coordinates on the observer’s sky. If we let tO float over R, we get the
observational coordinates (4) for an observer on a t-line, up to two modifications. First, tO is not
the same as proper time τ ; however, along each t-line they are related just by a constant,

dτ

dtO
= e−f(rO). (85)

Second, ` is not the same as the affine parameter s; along a ray with initial direction Θ, they are
related by

ds

d`
= ef(r(`,Θ)). (86)

The constants of motion

R(r)2
dϕ

d`
= R(rO) sinΘ, S(r)2

(
dr

d`

)2

+R(r)2
(
dϕ

d`

)2

= 1 (87)

give us the functions r(`,Θ), φ(`,Θ) in terms of integrals,

` =

∫ ...r(`,Θ)

rO...

R(r)S(r) dr√
R(r)2 −R(rO)2 sin2 Θ

, (88)

φ(`,Θ) = R(rO) sinΘ

∫ ...r(`,Θ)

rO...

S(r) dr

R(r)
√
R(r)2 −R(rO)2 sin2 Θ

. (89)

Here the notation with the dots is a short-hand; it means that the integral is to be decomposed into
sections where r(`,Θ) is a monotonous function of `, and that the absolute value of the integrals over
all sections have to be added up. Turning points occur at radius values where R(r) = R(rO) sinΘ
and R′(r) 6= 0 (see Figure 10). If the metric coefficients S and R have been specified, these integrals
can be calculated and give us the light cone (see Figure 13 for an example). Having parametrized
the rays with ĝ-arclength (= travel time), we immediately get the intersections of the light cone
with hypersurfaces t = constant (“instantaneous wave fronts”); see Figures 14, 19, and 20.
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Exact lens map and various approximation methods.

Recall from Section 2.1 that the exact lens map [154] refers to a chosen observation event pO
and a chosen “source surface” T . In general, for T we may choose any 3-dimensional submanifold
that is ruled by timelike curves. The latter are to be interpreted as wordlines of light sources. In a
spherically symmetric and static spacetime, we may take advantage of the symmetry by choosing
for T a sphere r = rS with its ruling by the t-lines. This restricts the consideration to lensing for
static light sources. Note that, for an observer at rO, all static light sources at radius rS undergo
the same redshift, log(1+ z) = f(rS)− f(rO). Without loss of generality, we place the observation
event pO on the 3-axis. This gives us the past light cone in the representation (84). To each ray
from the observer, with initial direction characterized by Θ, we can assign the total angle Φ(Θ)
the ray sweeps out on its way from rO to rS (see Figure 6). Φ(Θ) is given by Equation (89),

Φ(Θ) = R(rO) sinΘ

∫ ...rS

rO...

S(r) dr

R(r)
√
R(r)2 −R(rO)2 sin2 Θ

, (90)

where the same short-hand notation is used as in Equation (89). Φ(Θ) is not necessarily defined for
all Θ because some light rays that start at rO may not reach rS. Also, Φ(Θ) may be multi-valued
because a light ray may intersect the sphere r = rS several times. Equation (84) gives us the
(possibly multi-valued) lens map

(Ψ,Θ) 7−→



rS sinΦ(Θ) cosΨ
rS sinΦ(Θ) sinΨ
rS cosΦ(Θ)


 . (91)

This version of the exact lens map in spherically symmetric and static spacetimes was first con-
sidered in [339]. It is interesting to compare it with the standard lens map (or lens equation) in
the quasi-Newtonian approximation formalism, see e.g. Wambsganss [427], Section 3.1. In both
cases, rotational symmetry about the axis through the observer has the effect that in essence the
lens map reduces to a map from an angle to another angle; the first angle, here Θ, determines the
position of the image on the observer’s sky, the second angle, here Φ(Θ), gives the actual position
of the light source. If the metric coefficients R(r) and S(r) are given, the integrals in Equation
(90) can be numerically calculated and from the result all lensing features can be determined with
arbitrary accuracy. As an example, the exact lens map will be evaluated for the Schwarzschild
metric in Section 5.1 below. In [339]), the examples of an Ellis wormhole (cf. Section 5.4) and of a
Barriola-Vilenkin monopole (cf. Section 5.5) were treated. – Note that Φ(Θ) may take any value
between 0 and infinity. A value Φ(Θ) > 2π occurs whenever a light ray makes more than one full
turn around the center. For each image we can define the order

i(Θ) = min
{
m ∈ N

∣∣Φ(Θ) < mπ
}
, (92)

which counts how often the ray has crossed the axis. (If the lens map is multi-valued, one should
introduce an index to label different images that correspond to the same angle Θ). In accordance
with the terminology introduced in Section 3.1, an image of order 0 is called primary, an image of
order 1 is called secondary, and so on. The standard example where images of arbitrarily high order
occur is the Schwarzschild spacetime (see Section 5.1). For a light source which is not perfectly
aligned with the observer and the center, images of even order have even parity and line up on
one side of the direction towards the center; images of odd order have odd parity and line up on
the other side of the direction towards the center. In the case of perfect alignment, a sequence of
Einstein rings is seen. An Einstein ring of order 0 is called primary, an Einstein ring of order 1 is
called secondary, and so on. – We can rewrite the exact lens map in a spherically symmetric and
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static spacetime in a form more similar to the standard quasi-Newtonian lens map if we make two
additional assumptions which are satisfied in many, though not all, situations of interest:

• The spacetime is asymptotically flat and both rO and rS are very large.

• The source is almost exactly opposite to the observer, i.e., Φ(Θ) is close to an odd multiple
of π.

The first assumption makes sure that the lens map is single-valued, and both assumptions together
imply that along each (past-oriented) light ray from the observer to the source the radius coordinate
has precisely one turning-point. For a light ray with turning point at rm(Θ), the asymptotic
assumption allows to approximate Equation (90) by

Φ(Θ) = 2

∫ ∞

rm(Θ)

S(r) dr

R(r)
√
R(r)2 −R(rO)2 sin2 Θ

. (93)

To link up with the notation of the standard lens map, we introduce distances Dd and Dds and
angles θ = π − Θ, β(θ) and α̂(θ) according to Figure 7. The alignment assumption implies that
β(θ) is small, and the asymptotic condition implies that the bending angle α̂ can be approximated
as

α̂(θ) = Φ(Θ)− π (94)

After some elementary geometry, one finds that

tanβ(θ) = tan θ − Dds

Dd +Dds

(
tan θ + tan

(
α̂(θ) − θ

))
. (95)

This is the lens equation of Virbhadra and Ellis [420] (cf. [422] for an earlier version). Equation
(95) gives a well-defined (single-valued) lens map θ 7→ β(θ) if we insert Equations (94) and (93).
The Virbhadra-Ellis lens map may be called “almost exact”. It is based on approximations as to
the positions of source and observer, but it is not restricted to the case that the bending angle is
small. As a matter of fact, the bending angle may be arbitrarily large; α̂(θ) diverges to infinity if
the turning point rm(Θ) approaches an unstable light sphere. (It was already mentioned that an
unstable light sphere occurs at a radius value rp if and only if R′(rp) = 0 and R′′(rp) > 0; the
standard example is the sphere at rp = 3m in the Schwarzschild spacetime, see Section 5.1). It was
shown by Bozza [48] that, whenever an unstable light sphere is approached, the divergence of the
bending angle is logarithmic. The Virbhadra-Ellis lens equation was originally introduced for the
Schwarzschild metric [420] where it approximates the exact treatment remarkably well within a
wide range of validity [150]. In comparison to the exact lens map, the Virbhadra-Ellis lens map has
the appealing property of resembling the standard quasi-Newtonian lens map as much as possible.
On the other hand, neither analytical nor numerical evaluation of the “almost exact lens map” is
significantly easier than that of the exact lens map. The Virbhadra-Ellis lens map was successfully
applied to many spherically symmetric and static spacetimes, several examples are considered in
Section 5 below. Bozza [50] compared the Virbhadra-Ellis lens equation with other approximate
lens equations that had been proposed for spherically symmetric and static spacetimes and, in
particular, for the Schwarzschild metric:

• the Ohanian lens equation, which was implicitly contained in Ohanian’s pioneering work [314]
on Schwarzschild lensing,

• a modification of the Virbhadra-Ellis lens equation, introduced by Dab̧rowski and Schunck [93]
in their treatment of lensing by a boson star,
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• a lens equation introduced by Bozza and Sereno [58] that is essentially equivalent to the
Ohanian lens equation but replaces an angle centered at the lens by an angle centered at the
observer,

• a new lens equation that is, again, a slight modification of the Ohanian lens equation.

All these lens equations relax the alignment condition but retain some kind of asymptotic assump-
tion. After discussing the accuracy of these various lens equations in realistic situations, Bozza
argues in favour of the Ohanian lens equation and its modifications. – In addition to approxi-
mative lens equations, several other approximation techniques have been developed for lensing in
spherically symmetric and static spacetimes. Amore and Arceo [9] expressed the bending angle
analytically as a rapidly convergent series; this approach was further developed in [10, 11]. Keeton
and Petters [230] expanded corrections to the weak-deflection limit as a Taylor series in the gravi-
tational radius of the lens. In two follow-up papers, they applied this formalism to post-Newtonian
metrics [231] and to braneworld black holes [232]. A major purpose of all approximation methods
mentioned is to test general relativity by comparing Schwarzschild lensing to lensing in alternative
theories of gravity, see Section 5.1.

source observerrSrO
�(�)

�
Figure 6: Illustration of the exact lens map in spherically symmetric static spacetimes. The picture
shows a spatial plane. The observation event (dot) is at r = rO, static light sources are distributed
at r = rS. Θ is the colatitude coordinate on the observer’s sky. It takes values between 0 and π.
Φ(Θ) is the angle swept out by the ray with initial direction Θ on its way from rO to rS. It takes
values between 0 and ∞. In general, neither existence nor uniqueness of Φ(Θ) is guaranteed for
given Θ. A similar picture is in [339].

Distance measures, image distortion and brightness of images.

For calculating image distortion (see Section 2.5) and the brightness of images (see Section 2.6) we
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source

observer

Dd

Dds

α̂(θ)

θ

β(θ)

Φ(Θ)

Figure 7: Illustration of the “almost exact” lens map of Virbhadra and Ellis [420]. As almost
perfect alignment is assumed, we may think of the light sources as being distributed on a plane,
rather than on a sphere as for the exact lens map. Dd and Dds are measured in terms of the radial
coordinate. The difference between Θ and θ = π −Θ must be observed when comparing with the
exact lens map. β(θ) is the angle between the axis and a straight line, in the coordinate picture,
that connects observer and source. In contrast to the angle Φ(Θ), the angle β(θ) is not invariant
under a transformation of the radial coordinate; neither Φ(Θ) nor β(θ) is observable. Note that
the Virbhadra-Ellis lens map also applies to cases where Φ(Θ) is bigger than 2π.
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have to consider infinitesimally thin bundles with vertex at the observer. In a spherically symmetric
and static spacetime, we can apply the orthonormal derivative operators ∂Θ and sinΘ ∂Ψ to the
representation (84) of the past light cone. Along each ray, this gives us two Jacobi fields Y1 and
Y2 which span an infinitesimally thin bundle with vertex at the observer. Y1 points in the radial
direction and Y2 points in the tangential direction (see Figure 8). The radial and the tangential
direction are orthogonal to each other and, by symmetry, parallel-transported along each ray. Thus,
we can choose the Sachs basis (E1, E2) such that Y1 = D+E1 and Y2 = D−E2. The coefficients D+

and D− are unique if we require them to be positive near the vertex. D+ and D− are the extremal
angular diameter distances of Section 2.4 with respect to a static observer (because the (Ψ,Θ)-grid
refers to a static observer). In the case at hand, they are called the radial and tangential angular
diameter distances. They can be calculated by normalizing Y1 and Y2,

D+(`,Θ) = ef(r(`,Θ))R(rO) cosΘ

√
R (r(`,Θ))

2 −R(r2O) sin
2 Θ

×
∫ ...r(Θ,`)

rO...

S(r)R(r)dr
√
R(r)2 −R(rO)2 sin2 Θ

3 , (96)

D−(`,Θ) = ef(r(`,Θ))R (r(`,Θ))
sinφ(`,Θ)

sinΘ
. (97)

These formulas have been derived first for the special case of the Schwarzschild metric by Dwivedi
and Kantowski [110] and then for arbitrary spherically symmetric static spacetimes by Dyer [111].
(In [111], Equation (97) is erroneously given only for the case that, in our notation, ef(r)R(r) =
r.) From these formulas we immediately get the area distance Darea =

√
|D+D−| for a static

observer and, with the help of the redshift z, the luminosity distance Dlum = (1 + z)2Darea (recall
Section 2.4). In this way, Equation (96) and Equation (97) allow to calculate the brightness of
images according to the formulas of Section 2.6. Similarly, Equation (96) and Equation (97) allow
to calculate image distortion in terms of the ellipticity ε (recall Section 2.5). In general, ε is a
complex quantity, defined by Equation (49). In the case at hand, it reduces to the real quantity
ε = D−/D+ −D+/D−. The expansion θ and the shear σ of the bundles under consideration can
be calculated from Kantowski’s formula [222, 110],

Ḋ± = (θ ± σ)D±, (98)

to which Equation (27) reduces in the case at hand. The dot (= derivative with respect to the
affine parameter s) is related to the derivative with respect to ` by Equation (86). Evaluating
Equations (96, 97) in connection with the exact lens map leads to quite convenient formulas, for
static light sources at r = rS. Setting r(`,Θ) = rS and φ(`,Θ) = Φ(Θ) and comparing with
Equation (90) yields (cf. [339])

D+(Θ) = ef(rS)
√
R(rS)2 −R(rO)2 sin2 Θ Φ′(Θ), (99)

D−(Θ) = ef(rS)R(rS) sinΦ(Θ). (100)

These formulas immediately give image distortion and the brightness of images if the map Θ 7→
Φ(Θ) is known.

Caustics of light cones.

Quite generally, the past light cone has a caustic point exactly where at least one of the extremal
angular diameter distances D+, D− vanishes (see Sections 2.2, 2.3, and 2.4). In the case at hand,
zeros of D+ are called radial caustic points and zeros of D− are called tangential caustic points
(see Figure 9). By Equation (97), tangential caustic points occur if φ(`,Θ) is a multiple of π, i.e.,
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observer
D+D�

Figure 8: Thin bundle around a ray in a spherically symmetric static spacetime. The picture
is purely spatial, i.e., the time coordinate t is not shown. The ray is contained in a plane, so
there are two distinguished spatial directions orthogonal to the ray: the “radial” direction (in the
plane) and the “tangential” direction (orthogonal to the plane). For a bundle with vertex at the
observer, the radial diameter of the cross-section equals 2|D+|, and the tangential diameter of the
cross-section equals 2|D−|. Up to the first caustic point, D+ and D− are positive. In contrast to
the general situation of Figure 3, here the angle χ is always zero (if the Sachs basis (E1, E2) is
chosen appropriately).

whenever a light ray crosses the axis of symmetry through the observer (see Figure 9). Symmetry
implies that a point source is seen as a ring (“Einstein ring”) if its worldline crosses a tangential
caustic point. By contrast, a point source whose wordline crosses a radial caustic point is seen
infinitesimally extended in the radial direction. The set of all tangential caustic points of the past
light cone is called the tangential caustic for short. In general, it has several connected components.
In accordance with the order of images, as defined in Equation (92), these connected components
can be labeled as primary, secondary, etc. tangential caustics. Each connected component is
a spacelike curve in spacetime which projects to (part of) the axis of symmetry through the
observer. The radial caustic is a lightlike surface in spacetime unless at points where it meets the
axis; its projection to space is rotationally symmetric around the axis. The best known example
for a tangential caustic, with infinitely many connected components, occurs in the Schwarzschild
spacetime (see Figure 13). It is also instructive to visualize radial and tangential caustics in terms
of instantaneous wave fronts, i.e., intersections of the light cone with hypersurfaces t = constant.
Examples are shown in Figures 14, 19, and 20. By symmetry, a tangential caustic point of an
instantaneous wave front can be neither a cusp nor a swallow-tail. Hence, the general result of
Section 2.2 implies that the tangential caustic is always unstable. The radial caustic in Figure 20
consists of cusps and is, thus, stable.

4.4 Lensing in axisymmetric stationary spacetimes

Axisymmetric stationary spacetimes are of interest in view of lensing as general-relativistic models
for rotating deflectors. The best known and most important example is the Kerr metric which
describes a rotating black hole (see Section 5.8). For non-collapsed rotating objects, exact solu-
tions of Einstein’s field equation are known only for the idealized cases of infinitely long cylinders
(including string models; see Section 5.10) and disks (see Section 5.9). Here we collect, as a prepa-
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observer
radial caustic point tangential caustic point

Figure 9: Tangential and radial caustic points. Tangential caustic points, D− = 0, occur on the
axis of symmetry through the observer. A (point) source at a tangential caustic point is seen as
a (1-dimensional) Einstein ring on the observer’s sky. A point source at a radial caustic point,
D+ = 0, appears “infinitesimally extended” in the radial direction.

ration for these examples, some formulas for an unspecified axisymmetric stationary metric. The
latter can be written in coordinates (y1, y2, ϕ, t), with capital indices A,B, . . . taking the values 1
and 2, as

g = gtt(y) dt
2 + 2gtϕ(y) dt dϕ+ gϕϕ(y) dϕ

2 + gAB(y) dy
A dyB, (101)

where all metric coefficients depend on y = (y1, y2) only. We assume that the integral curves of
∂ϕ are closed, with the usual (2π)-periodicity, and that the 2-dimensional orbits spanned by ∂ϕ
and ∂t are timelike. Then the Lorentzian signature of g implies that gAB(y) is positive definite.
In general, the vector field ∂t need not be timelike and the hypersurfaces t = constant need not be
spacelike. Our assumptions allow for transformations (ϕ, t) 7→ (ϕ + Ωt, t) with a constant Ω. If,
by such a transformation, we can achieve that gtt < 0 everywhere, we can use the purely spatial
formalism for light rays in terms of the Fermat geometry (recall Section 4.2). Comparison of
Equation (101) with Equation (61) shows that the redshift potential f , the Fermat metric ĝ, and

the Fermat one-form φ̂ are

e2f = −gtt, (102)

ĝ = −gAB

gtt
dxA dxB +

g2tϕ − gtt gϕϕ

g2tt
dϕ2, (103)

φ̂ = −gtϕ
gtt

dϕ, (104)

respectively. If it is not possible to make gtt negative on the entire spacetime domain under
consideration, the Fermat geometry is defined only locally and, therefore, of limited usefulness.
This is the case, e.g., for the Kerr metric where, in Boyer–Lindquist coordinates, gtt is positive in
the ergosphere (see Section 5.8).

Variational techniques related to Fermat’s principal in stationary spacetimes are detailed in a
book by Masiello [272]. Note that, in contrast to standard terminology, Masiello’s definition of
stationarity includes the assumption that the surfaces t = constant are spacelike.
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For a rotating body with an equatorial plane (i.e., with reflectional symmetry), the Fermat
metric of the equatorial plane can be represented by an embedding diagram, in analogy to the
spherically symmetric static case (recall Figure 12). However, one should keep in mind that in the
non-static case the lightlike geodesics do not correspond to the geodesics of ĝ but are affected, in
addition, by a sort of Coriolis force produced by φ̂. For a review on embedding diagrams, including
several examples (see [201]).
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5 Examples

5.1 Schwarzschild spacetime

The (exterior) Schwarzschild metric

g = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)
(105)

has the form (69) with

e2f(r) = S(r)−1 = 1− 2m

r
, R(r) =

r√
1− 2m

r

. (106)

It is the unique spherically symmetric vacuum solution of Einstein’s field equation. At the same
time, it is the most important and best understood spacetime in which lensing can be explicitly
studied without approximations. Schwarzschild lensing beyond the weak-field approximation has
astrophysical relevance in view of black holes and neutron stars. The increasing evidence that
there is a supermassive black hole at the center of our Galaxy (see [136] for background material)
is a major motivation for a detailed study of Schwarzschild lensing (and of Kerr lensing; see Sec-
tion 5.8). In the following we consider the Schwarzschild metric with a constant m > 0 and we
ignore the region r < 0 for which the singularity at r = 0 is naked. The Schwarzschild metric is
static on the region 2m < r < ∞. (The region r < 0 for m > 0 is equivalent to the region r > 0
for m < 0. It is usually considered as unphysical but has found some recent interest in connection
with lensing by wormholes; see Section 5.4.)

Historical notes.

Shortly after the discovery of the Schwarzschild metric by Schwarzschild [372] and independently
by Droste [106], basic features of its lightlike geodesics were found by Flamm [144], Hilbert [198],
and Weyl [430]. Detailed studies of its timelike and lightlike geodesics were made by Hagihara [183]
and Darwin [95, 96]. For a fairly complete list of the pre-1979 literature on Schwarzschild geodesics
see Sharp [380]. All modern text-books on general relativity include a section on Schwarzschild
geodesics, but not all of them go beyond the weak-field approximation. For a particularly detailed
exposition see Chandrasekhar [75].

Redshift and Fermat geometry.

The redshift potential f for the Schwarzschild metric is given in Equation (106). With the help
of f we can directly calculate the redshift via Equation (68) if observer and light source are static
(i.e., t-lines). If the light source or the observer does not follow a t-line, a Doppler factor has to be
added. Independent of the velocity of observer and light source, the redshift becomes arbitrarily
large if the light source is sufficiently close to the horizon. For light source and observer freely
falling, the redshift formula was discussed by Bażański and Jaranowski [30]. If projected to 3-space,
the light rays in the Schwarzschild spacetime are the geodesics of the Fermat metric which can be
read from Equation (70) (cf. Frankel [147]),

ĝ =
dr2

(1 − 2m
r
)2

+
r2(dϑ2 + sinϑ dϕ2)

1− 2m
r

. (107)

The metric coefficient R(r), as given by Equation (106), has a strict minimum at r = 3m and
no other extrema (see Figure 10). Hence, there is an unstable light sphere at this radius (recall
Equation (71)). The existence of circular light rays at r = 3m was noted already by Hilbert [198].
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The relevance of these circular light rays in view of lensing was clearly seen by Darwin [95, 96]
and Atkinson [16]. They realized, in particular, that a Schwarzschild black hole produces infinitely
many images of each light source, corresponding to an infinite sequence of light rays whose limit
curve asymptotically spirals towards a circular light ray. The circular light rays at r = 3m are also
associated with other physical effects such as centrifugal force reversal and “locking” of gyroscopes.
These effects have been discussed with the help of the Fermat geometry (= optical reference geom-
etry) in various articles by Abramowicz and collaborators (see, e.g., [5, 4, 6, 2]).
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Figure 10: The function R(r) for the Schwarzschild metric. Light rays that start at rO with
initial direction Θ are confined to the region where R(r) ≥ R(rO) sinΘ. The equation R(3m) =
R(rO) sin δ defines for each rO a critical value δ. A light ray from rO with Θ = δ asymptotically
approaches r = 3m.

Index of refraction and embedding diagrams.

We know from Section 4.3 that light rays in any spherically symmetric and static spacetime can be
characterized by an index of refraction. This requires introducing an isotropic radius coordinate r̃
via Equation (72). In the Schwarzschild case, r̃ is related to the Schwarzschild radius coordinate r
by

r̃ =
1

2

(√
r2 − 2mr + r −m

)
, r =

(2r̃ +m)
2

4r̃
. (108)

r̃ ranges from m/2 to infinity if r ranges from 2m to infinity. In terms of the isotropic coordinate,
the Fermat metric (107) takes the form

ĝ = n(r̃)2
(
dr̃2 + r̃2

(
dϑ2 + sin2 ϑ dϕ2

))
(109)

with

n(r̃) =
(
1 +

m

2r̃

)3 (
1− m

2r̃

)−1

. (110)
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Hence, light propagation in the Schwarzschild metric can be mimicked by the index of refrac-
tion (110); see Figure 11. The index of refraction (110) is known since Weyl [432]. It was employed
for calculating lightlike Schwarzschild geodesics, exactly or approximately, e.g., in [16, 296, 134,
258]. This index of refraction can be modeled by a fluid flow [358]. The embeddability condi-
tion (75) is satisfied for r > 2.25m (which coincides with the so-called Buchdahl limit). On this
domain the Fermat geometry, if restricted to the equatorial plane ϑ = π/2, can be represented
as a surface of revolution in Euclidean 3-space (see Figure 12). The entire region r > 2m can be
isometrically embedded into a space of constant negative curvature [3].
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Figure 11: Index of refraction n(r̃), given by Equation (110), for the Schwarzschild metric as a
function of the isotropic coordinate r̃.

Lensing by a Schwarzschild black hole.

To get a Schwarzschild black hole, one joins at r = 2m the static Schwarzschild region 2m < r <∞
to the non-static Schwarzschild region 0 < r < 2m in such a way that ingoing light rays can
cross this surface but outgoing cannot. If the observation event pO is at rO > 2m, only the
region r > 2m is of relevance for lensing, because the past light cone of such an event does
not intersect the black-hole horizon at r = 2m. (For a Schwarzschild white hole see below.)
Such a light cone is depicted in Figure 13 (cf. [236]). The picture was produced with the help
of the representation (84) which requires integrating Equation (88) and Equation (89). For the
Schwarzschild case, these are elliptical integrals. Their numerical evaluation is an exercise for
students (see [65] for a MATHEMATICA program). Note that the evaluation of Equation (88)
and Equation (89) requires knowledge of the turning points. In the Schwarzschild case, there is at
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r = 2:25m r = 3m
Figure 12: Fermat geometry of the equatorial plane of the Schwarzschild spacetime, embedded as a
surface of revolution into Euclidean 3-space. The neck is at r = 3m (i.e., r̃ ≈ 1.87m), the boundary
of the embeddable part at r = 2.25m (i.e., r̃ = m). The geodesics of this surface of revolution give
the light rays in the Schwarzschild spacetime. A similar figure can be found in [4] (also cf. [201]).

most one turning point rm(Θ) along each ray (see Figure 10), and it is given by the cubic equation

rm(Θ)3 (rO − 2m)− rm(Θ) r3O sin2 Θ+ 2mr3O sin2 Θ = 0. (111)

The representation (84) in terms of Fermat arclength ` (= travel time) gives us the intersections of
the light cone with hypersurfaces t = constant. These “instantaneous wave fronts” are depicted in
Figure 14 (cf. [184]). With the light cone explicitly known, one can analytically verify that every
inextendible timelike curve in the region r > 2m intersects the light cone infinitely many times,
provided it is bounded away from the horizon and from (past lightlike) infinity. This shows that
the observer sees infinitely many images of a light source with this worldline. The same result can
be proven with the help of Morse theory (see Section 3.3), where one has to exclude the case that
the worldline meets the caustic of the light cone. In the latter case the light source is seen as an
Einstein ring. Note that a moving source might appear simultaneously as a point image and as an
Einstein ring on the observer’s sky. For static light sources (i.e., t-lines), however, either all images
are Einstein rings or none. For such light sources we can study lensing in the exact-lens-map
formulation of Section 4.3 (see in particular Figure 6). Also, Section 4.3 provides us with formulas
for distance measures, brightness, and image distortion which we just have to specialize to the
Schwarzschild case. For another treatment of Schwarzschild lensing with the help of the exact lens
map, see [150]. We place our static light sources at radius rS. If rO < rS and 3m < rS, only light
rays with Θ < δ,

sin δ :=
R(3m)

R(rO)
=

√
27m2(rO − 2m)

r3O
, (112)

can reach the radius value rS (see Figure 10). Rays with Θ = δ asymptotically spiral towards the
light sphere at r = 3m. δ lies between 0 and π/2 for rO < 3m and between π/2 and π for rO > 3m.
The escape cone defined by Equation (112) is depicted, for different values of rO, in Figure 15. It
gives the domain of definition for the lens map. The lens map is graphically discussed in Figure 16.
The pictures are valid for rO = 5m and rS = 10m. Qualitatively, however, they look the same for
all cases with rS > rO and rS > 3m. From the diagram one can read the position of the infinitely
many images for each light source which, for the two light sources on the axis, degenerate into
infinitely many Einstein rings. For each fixed source, the images are ordered by the number i
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(= 0, 1, 2, 3, . . . ) which counts how often the ray has crossed the axis. This coincides with ordering
according to travel time. With increasing order i, the images come closer and closer to the rim at
Θ = δ (see Figure 16) and their brightness decreases rapidly (see Figure 18). For a light source
not on the axis, images of even order are upright and line up on one side of the direction towards
the center, images of odd order are side-inverted (see Figure 17) and line up on the other side
of the direction towards the center (see Figure 16). These basic features of Schwarzschild lensing
are known since pioneering papers by Darwin [95] and Atkinson [16] (cf. [265, 314, 254]). Various
methods of how multiple imaging by a black hole could be discovered, directly or indirectly, have
been discussed [265, 254, 21, 20, 342, 99]. Related work has also been done for Kerr black holes (see
Section 5.8). An interesting suggestion was made in [204]. A Schwarzschild black hole, somewhere
in the universe, would send photons originating from our Sun back to the vicinity of our Sun
(“boomerang photons” [394]). If the black hole is sufficiently close to our Solar system, this would
produce images of our own Sun on the sky that could be detectable. Quite generally, one speaks
of retrolensing when a gravitating mass sends light back into approximately the same direction
from which it has come in. Retrolensed images have not been observed so far, the perspectives are
discussed, e.g., in [99, 125]. – The lensing effect of a Schwarzschild black hole has been visualized
in two ways:

1. by showing the visual appearance of some background pattern as distorted by the black
hole [89, 365, 300, 18, 290], also cf. [288, 289].

2. by showing the visual appearence of an accretion disk around the black hole [265, 161, 21, 20],
also cf. [62, 63, 67].

In the course of time the ray tracing programs on which these visualizations are based have become
more and more advanced, taking not only redshift and magnification (including higher-order im-
ages) but also Fraunhofer diffraction (due to the finite aperture of the observer’s eye) or scattering
into account. Ray tracing programs have also been developed for the more general case of the Kerr
metric, see Section 5.8. – Interest in Schwarzschild lensing (and Kerr lensing) beyond the weak-
field approximation has greatly increased with the growing evidence that there is a supermassive
black hole at the center of our galaxy, and probably at the center of most galaxies. Higher-order
images, where a light ray makes at least one full turn around the center, have not been observed
so far, but they are thought to be relevant for future observations. It was already emphasized
that, even if the bending angles are arbitrarily large, all lensing properties of a Schwarzschild black
hole can be calculated exactly, in terms of elliptic integrals; then these integrals can be evaluated
numerically with arbitrary accuracy and the results can be discussed graphically, as exemplified
in Figures 16, 17 and 18. However, for practical purposes many authors found it convenient to
develop approximation methods that go beyond, or are complementary to, the weak-field approx-
imation, rather than to work with the exact formulas. Two approximation methods have proven
particularly useful: Virbhadra and Ellis [420] developed a lens equation that applies to the case
that source and observer are in the asymptotic region and approximately aligned with the center,
but is not restricted to light rays that remain in the asymptotic region. Bozza et al. [53, 48]
introduced a strong-field limit (or strong-deflection limit) that describes light rays the better the
more turns they make around the center. Both methods, along with other approximation tech-
niques [9, 10, 11, 230, 231, 232] for light bending in spherically-symmetric and static spacetimes,
have already been discussed in Section 4.3 above. Especially for the Schwarzschild metric, Iyer
and Petters [215] have demonstrated that, by combining a strong-deflection series expansion and
a weak-deflection series expansion, one gets an approximation that is within 1% of the exact
bending angle value for light rays traversing anywhere between the photon sphere and infinity.
A main goal of all these endeavours is to provide a new test of general relativity with the help
of higher-order images, once they have been observed. As shown by Bozza [48], the separation
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of higher-order images and their decrease in magnitude can be used for discriminating between
different black holes. Hence, the observation of higher-order images would reveal if the bending
object can be modeled as a Schwarzschild black hole, or if an alternative model has to be used.
An example for such an alternative model is the Reissner-Nordström black hole (see Section 5.3).
Other spherically-symmetric and static black hole models have found some interest because their
existence is predicted by alternative theories of gravity. E.g., the bending properties have been
worked out for black holes from string theory [39], from braneworld gravity [224, 433, 122, 123, 41],
from Einstein-Born-Infeld theory [124], from dilaton theory [286, 168] and from Hořava-Lifshitz
gravity [76]. Up to now there is no observational indication that any of these black holes exist in
nature. The future observation of higher-order images could help to find out if they exist. For the
time being, all observations are in agreement with the assumption that the existing black holes
are Schwarzschild or Kerr black holes, as predicted by standard general relativity. Schwarzschild
lensing as a tool for probing the supermassive objects at the center of galaxies is discussed in detail
by Virbhadra [419]. For a recent review on black hole lensing in general see Bozza [52].caustic

horizon
pO

Figure 13: Past light cone in the Schwarzschild spacetime. One sees that the light cone wraps
around the horizon, then forms a tangential caustic. In the picture the caustic looks like a transverse
self-intersection because one spatial dimension is suppressed. (Only the hyperplane ϑ = π/2 is
shown.) There is no radial caustic. If one follows the light rays further back in time, the light cone
wraps around the horizon again and again, thereby forming infinitely many tangential caustics
which alternately cover the radius line through the observer and the radius line opposite to the
observer. In spacetime, each caustic is a spacelike curve along which r ranges from 2m to ∞,
whereas t ranges from −∞ to some maximal value and then back to −∞. Equal-time sections of
this light cone are shown in Figure 14.
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t = t1 t = t2 t = t3 t = t4horizoncaustic points
Figure 14: Instantaneous wave fronts of the light cone in the Schwarzschild spacetime. This picture
shows intersections of the light cone in Figure 13 with hypersurfaces t = constant for four t-values,
with t1 > t2 > t3 > t4. The instantaneous wave fronts wrap around the horizon and, after reaching
the first caustic, have two caustic points each. If one goes further back in time than shown in the
picture, the wave fronts another time wrap around the horizon, reach the second caustic, and now
have four caustic points each, and so on. In comparison to Figure 13, the representation in terms
of instantaneous wave fronts has the advantage that all three spatial dimensions are shown.
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rO = 2:1m rO = 2:6m rO = 3m rO = 5m rO = 12m
Figure 15: Escape cones in the Schwarzschild metric, for five values of rO. For an observer at
radius rO, light sources distributed at a radius rS with rS > rO and rS > 3m illuminate a disk
whose angular radius δ is given by Equation (112). The boundary of this disk corresponds to light
rays that spiral towards the light sphere at r = 3m. If rO is big, the bright disk covers almost the
whole sky, leaving a small dark disk that is called the ”shadow” of the black hole. With decreasing
rO, the shadow becomes bigger and bigger until, for rO → 2m, it covers the whole sky. Figure 10
illustrates that the notion of escape cones is meaningful for any spherically symmetric and static
spacetime where R has one minimum and no other extrema [321]. For the Schwarzschild spacetime,
the escape cones were first mentioned in [317, 277], and explicitly calculated in [398]. A picture
similar to this one can be found, e.g., in [75], p.130.

Lensing by a non-transparent Schwarzschild star.

To model a non-transparent star of radius r∗ one has to restrict the exterior Schwarzschild metric
to the region r > r∗. Lightlike geodesics terminate when they arrive at r = r∗. The star’s radius
cannot be smaller than 2m unless it is allowed to be time-dependent. The qualitative features of
lensing depend on whether r∗ is bigger than 3m. Stars with 2m < r∗ ≤ 3m are called ultracom-
pact [214]. Their existence is speculative. The lensing properties of an ultracompact star are the
same as that of a Schwarzschild black hole of the same mass, for observer and light source in the
region r > r∗. In particular, the apparent angular radius δ on the observer’s sky of an ultracom-
pact star is given by the escape cone of Figure 15. Also, an ultracompact star produces the same
infinite sequence of images of each light source as a black hole. For r∗ > 3m, only finitely many of
the images survive because the other lightlike geodesics are blocked. A non-transparent star has a
finite focal length rf > 2m in the sense that parallel light from infinity is focused along a line that
extends from radius value rf to infinity. rf depends on m and on r∗. For the values of our Sun one
finds rf = 550 au (1 au = 1 astronomical unit = average distance from the Earth to the Sun). An
observer at r ≥ rf can observe strong lensing effects of the Sun on distant light sources. The idea
of sending a spacecraft to r ≥ rf was occasionally discussed in the literature [424, 301, 407]. The
lensing properties of a non-transparent Schwarzschild star have been illustrated by showing the
appearance of the star’s surface to a distant observer. For r∗ bigger than but of the same order of
magnitude as 3m, this has relevance for neutron stars (see [436, 324, 160, 355, 275, 307]). r∗ may
be chosen time-dependent, e.g., to model a non-transparent collapsing star. A star starting with
r∗ > 2m cannot reach r = 2m in finite Schwarzschild coordinate time t (though in finite proper
time of an observer at the star’s surface), i.e., for a collapsing star one has r∗(t) → 2m for t→ ∞.
To a distant observer, the total luminosity of a freely (geodesically) collapsing star is attenuated
exponentially, L(t) ∝ exp

(
−t(3

√
3m)−1

)
. This formula was first derived by Podurets [348] with

an incorrect factor 2 under the exponent and corrected by Ames and Thorne [8]. Both papers
are based on kinetic photon theory (Liouville’s equation). An alternative derivation of the lumi-
nosity formula, based on the optical scalars, was given by Dwivedi and Kantowski [110]. Ames
and Thorne also calculated the spectral distribution of the radiation as a function of time and
position on the apparent disk of the star. All these analyses considered radiation emitted at an
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Figure 16: Lens map for the Schwarzschild metric. The observer is at rO = 5m, the light sources
are at rS = 10m. Θ is the colatitude on the observer’s sky and Φ(Θ) is the angle swept out by
the ray (see Figure 6). Φ(Θ) was calculated with the help of Equation (90). Θ is restricted by the
opening angle δ of the observer’s escape cone (see Figure 15). Rays with Θ = δ asymptotically
spiral towards the light sphere at r = 3m. The first diagram (cf. [150], Figure 5) shows that
Φ(Θ) ranges from 0 to ∞ if Θ ranges from 0 to δ. So there are infinitely many Einstein rings
(dashed lines) whose angular radius approaches δ. One can analytically prove [265, 314, 53] that
the divergence of Φ(Θ) for Θ → δ is logarithmic. This is true whenever light rays approach an
unstable light sphere [48]. The second diagram shows Φ(Θ) over a logarithmic Θ-axis. The graph
of Φ approaches a straight line which was called the “strong-field limit” by Bozza et al. [53, 48].
The picture illustrates that it is a good approximation for all light rays that make at least one
full turn. The third diagram shows cosΦ(Θ) over a logarithmic Θ-axis. For every source position
0 < ϑ < π one can read the position of the images (dotted line). There are infinitely many,
numbered by their order (92) that counts how often the light ray has crossed the axis. Images of
odd order are on one side of the black hole, images of even order on the other. For the sources at
ϑ = π and ϑ = 0 one can read the positions of the Einstein rings.
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Figure 17: Radial angular diameter distance D+(Θ), tangential angular diameter distance D−(Θ)
and travel time T (Θ) in the Schwarschild spacetime. The data are the same as in Figure 16.
For the definition of D+ and D− see Figure 8. D±(Θ) can be calculated from Φ(Θ) with the
help of Equation (99) and Equation (100). For the Schwarzschild case, the resulting formulas are
due to [110] (cf. [111, 150]). Zeros of D− indicate Einstein rings. If D+ and D− have different
signs, the observer sees a side-inverted image. The travel time T (Θ) (= Fermat arclength) can be
calculated from Equation (88). One sees that, over the logarithmic Θ-axis used here, the graph of
T approaches a straight line. This illustrates that T (Θ) diverges logarithmically if Θ approaches
its limiting value δ. This can be verified analytically and is characteristic of all cases where light
rays approach an unstable light sphere [56].
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Figure 18: Luminosity distance Dlum(Θ) and ellipticity ε(Θ) (image distortion) in the
Schwarzschild spacetime. The data are the same as in Figures 16 and 17. If point sources of
equal bolometric luminosity are distributed at r = rS, the plotted function 2.5 log10

(
Dlum(Θ)2

)

gives their magnitude on the observer’s sky, modulo an additive constant m0. For the calculation
of Dlum one needs D+ and D− (see Figure 17), and the general relations (41) and (48). This proce-
dure follows [110] (cf. [111, 150]). For source and observer at large radius, related calculations can
also be found in [265, 314, 254, 420]. Einstein rings have magnitude −∞ in the ray-optical treat-
ment. For a light source not on the axis, the image of order i+2 is fainter than the image of order i
by 2.5 log10(e

2π) ≈ 6.8 magnitudes, see [265, 314]. (This is strictly true in the “strong-field limit”,
or “strong-deflection limit”, which is explained in the caption of Figure 16.) The above picture is
similar to Figure 6 in [314]. Note that it refers to point sources and not to a radiating spherical
surface r = rS of constant surface brightness; by Equation (54), the latter would show a constant

intensity. The lower part of the diagram illustrates image distortion in terms of ε = D
−

D+
− D+

D
−

.

Clearly, |ε| is infinite at each Einstein ring. The double-logarithmic representation shows that
beyond the second Einstein ring all images are extremely elongated in the tangential direction,
|ε| > 100. Image distortion in the Schwarzschild spacetime is also treated in [111, 152, 151], an
approximation formula is derived in [308].
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angle ≤ π/2 against the normal of the star as measured by a static (Killing) observer. Actually,
one has to refer not to a static observer but to an observer comoving with the star’s surface. This
modification was worked out by Lake and Roeder [251]. An interesting approximation formula was
derived by Beloborodov [33]. He showed that a light ray that is emitted at radius rS at an angle
α with respect to the radial direction escapes to infinity at an angle ψ, approximately given by
1−cosα =

(
1−cosψ

)(
1−2m/rS

)
. As an application, he discusses the light bending of pulsars. An-

other approximation formula for the bending angle was found by Mutka and Mähöhnen [292, 293].

Lensing by a transparent Schwarzschild star.

To model a transparent star of radius r∗ one has to join the exterior Schwarzschild metric at r = r∗
to an interior (e.g., perfect fluid) metric. Lightlike geodesics of the exterior Schwarzschild metric
are to be joined to lightlike geodesics of the interior metric when they arrive at r = r∗. The
radius r∗ of the star can be time-independent only if r∗ > 2m. For 2m < r∗ ≤ 3m (ultracompact
star), the lensing properties for observer and light source in the region r > r∗ differ from the
black hole case only by the possible occurrence of additional images, corresponding to light rays
that pass through the star. Inside such a transparent ultracompact star, there is at least one
stable photon sphere, in addition to the unstable one at r = 3m outside the star (cf. [191]). In
principle, there may be arbitrarily many photon spheres [227]. For r∗ > 3m, the lensing prop-
erties depend on whether there are light rays trapped inside the star. For a perfect fluid with
constant density, this is not the case; the resulting spacetime is then asymptotically simple, i.e.,
all inextendible light rays come from infinity and go to infinity. General results (see Section 3.4)
imply that then the number of images must be finite and odd. The light cone in this exterior-plus-
interior Schwarzschild spacetime is discussed in detail by Kling and Newman [236]. (In this paper
the authors constantly refer to their interior metric as to a “dust” where obviously a perfect fluid
with constant density is meant.) Effects on light rays issuing from the star’s interior have been
discussed already earlier by Lawrence [257]. The “escape cones”, which are shown in Figure 15 for
the exterior Schwarzschild metric have been calculated by Jaffe [216] for points inside the star. The
focal length of a transparent star with constant density is smaller than that of a non-transparent
star of the same mass and radius. For the mass and the radius of our Sun, one finds 30 au for the
transparent case, in contrast to the above-mentioned 550 au for the non-transparent case [301].
Radiation from a spherically symmetric homogeneous dust star that collapses to a black hole is
calculated in [379], using kinetic theory. A collapsing inhomogeneous spherically symmetric dust
configuration may form a naked singularity. Its visual appearance, and other observable features,
are discussed in [109, 103, 306, 295]. This analysis was generalized from the dust case to more
general matter models in [169, 102].

Lensing by a Schwarzschild white hole.

To get a Schwarzschild white hole one joins at r = 2m the static Schwarzschild region 2m < r <∞
to the non-static Schwarzschild region 0 < r < 2m at r = 2m in such a way that outgoing
light rays can cross this surface but ingoing cannot. In analogy to the gravitational collapse of a
spherically symmetric star into a black hole, one can consider the outburst of a white hole into
a spherically symmetric star. The observable effects for an observer in the region r > 2m are
discussed in [141, 298, 299, 107, 249, 250].

5.2 Kottler spacetime

The Kottler metric

g = −
(
1− 2m

r
− Λr2

3

)
dt2 +

dr2

1− 2m
r

− Λr2

3

+ r2
(
dϑ2 + sin2 ϑ dϕ2

)
(113)
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is the unique spherically symmetric solution of Einstein’s vacuum field equation with a cosmological
constant Λ. It has the form (69) with

e2f(r) = S(r)−1 = 1− 2m

r
− Λr2

3
, R(r) =

r√
1− 2m

r
− Λr2

3

. (114)

It is also known as the Schwarzschild–deSitter metric for Λ > 0 and as the Schwarzschild–anti-
deSitter metric for Λ < 0. The Kottler metric was found independently by Kottler [239] and by
Weyl [431]. For Λ = 0, it reduces to the Schwarzschild metric (105).

In the following we consider the Kottler metric with a constant m > 0 and we ignore the region
r < 0 for which the singularity at r = 0 is naked, for any value of Λ. For Λ < 0, there is one
horizon at a radius rH with 0 < rH < 2m; the staticity condition ef(r) > 0 is satisfied on the
region rH < r < ∞. For 0 < Λ < (3m)−2, there are two horizons at radii rH1 and rH2 with
2m < rH1 < 3m < rH2; the staticity condition ef(r) > 0 is satisfied on the region rH1 < r < rH2.
For Λ > (3m)−2 there is no horizon and no static region. At the horizon(s), the Kottler metric
can be analytically extended into non-static regions. For Λ < 0, the resulting global structure is
similar to the Schwarzschild case. For 0 < Λ < (3m)−2, the resulting global structure is more
complex (see [248]). The extreme case Λ = (3m)−2 is discussed in [347].

For any value of Λ, the Kottler metric has a light sphere at r = 3m. Escape cones and embedding
diagrams for the Fermat geometry (optical geometry) can be found in [391, 201] (cf. Figures 15
and 12 for the Schwarzschild case). Similarly to the Schwarzschild spacetime, the Kottler spacetime
can be joined to an interior perfect-fluid metric with constant density. Embedding diagrams for the
Fermat geometry (optical geometry) of the exterior-plus-interior spacetime can be found in [393].
For the optical appearance of a Kottler black hole see [18], and for the optical appearance of a
Kottler white hole see [249]. The shape of infinitesimally thin light bundles in the Kottler spacetime
is determined in [111].

In view of gravitational lensing, the Kottler metric is of particular interest because it can be
used to answer the question of how the bending angle of light is affected by a cosmological constant.
To that end one has to consider the orbits of light rays in the Kottler spacetime and to investigate
how they differ from the orbits of light rays in the Schwarzschild spacetime. The first person who
looked into this question was, surprisingly late, Islam in 1983 [212]. He found that the bending
angle of light is not affected at all by a cosmological constant. His conclusion, which eventually
turned out to be erroneous, was based on the (correct) observation that the differential equation
for the orbits of light rays in the Kottler spacetime is exactly the same as in the Schwarzschild
spacetime. To verify this, it suffices to insert the metric coefficients S(r) and R(r) from Equation
(114) into Eq. (82). This results in the differential equation

d2r

dϕ
− 2

r

(
dr

dϕ

)2

− r + 3m = 0 (115)

which is, indeed, independent of Λ. Hence, the orbits of light rays in the Kottler spacetime are
given by exactly the same coordinate equations as in the Schwarzschild spacetime. On the basis of
this result, it was generally accepted for more than two decades that the gravitational bending of
light is unaffected by a cosmological constant. (See, however, Lake [247] for an interesting caveat,
as to the question of whether the constant m has the same physical meaning in the Kottler case as
in the Schwarzschild case.) Only in 2007 was it shown, in a paper by Rindler and Ishak [356], that
this conclusion was incorrect. The fact that the coordinate expressions for the orbits of light rays
in the Kottler spacetime are the same as in the Schwarzschild spacetime does not imply that the
bending angles are the same. The reason is that physically measured angles differ from coordinate
angles; the physically measured angles involve the metric, and the metric does depend on Λ. The
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analysis of Rindler and Ishak showed that, in contrast to earlier belief, a positive cosmological
constant would have a diminishing effect on the bending angle. This is in perfect agreement with
the intuitive idea that a positive cosmological constant has a repelling effect (i.e., that it tends
to weaken the gravitational attraction). In terms of the Fermat metric (or optical metric), recall
Equation (70), the Rindler-Ishak result can be rephrased in the following way [177]: The Fermat
metric of the Kottler spacetime is projectively equivalent to the Fermat metric of the Schwarzschild
spacetime (i.e., the unparametrized geodesics are the same), but not conformally equivalent (i.e.,
angles are different). Sereno supported (and slightly modified) the results of Rindler and Ishak
in two papers. In the first one [375] he analyzed the influence of a cosmological constant on the
bending of light in the weak deflection limit. He found that, in the case of a positive Λ, the radius
of an Einstein ring decreases and, in a multiple imaging situation, the images are demagnified
and the time delay increases. In the second paper [376] he demonstrated that the influence of
a cosmological constant on the lens equation can be partly (but not completely) absorbed by an
appropriate redefinition of the angular diameter distance. He argued that, for physical reasons,
one should express all results in terms of angular diameter distances, rather than in terms of the
radial Schwarzschild-like coordinate, as in the Rindler-Ishak paper. In the same paper, Sereno also
calculated the influence of a cosmological constant on the redshifts in a multiple imaging situation.
Further contributions to the subject were made by Schücker [369]. In contrast to Sereno, Schücker
deliberately avoided any reference to a lens equation; instead, he concentrated on the difference
between coordinate angles and physical angles.

The Rindler-Ishak paper has caused a fairly large number of follow-up papers. Although some
of them were critical, it sems fair to say that, by now, it is generally accepted that a positive
cosmological constant has a diminishing effect on the bending angle of light. However, there is
still a controversy about the question of whether this effect is actually observable, in realistic
astrophysical situations. In order to answer this question, it is not sufficient to analyze the light
bending in the Kottler metric, which describes the gravitational field around an isolated mass in
a world with a cosmologal constant. It is rather necessary to take the influence of a cosmological
background spacetime into account. This has been done by applying the Einstein-Straus method
with a cosmological constant, i.e., by matching a Kottler vacuole at an outer boundary to a
Robertson-Walker spacetime. Calculations of light bending in such a composed spacetime were
undertaken by Ishak et al. [210], and then, e.g., by Schücker [370]. Whereas these papers come to
the conclusion that the effect of Λ on the light bending by some galaxy clusters could be observable,
some other authors feel that this effect is negligibly small, see e.g. [382]. For a recent review article
on the topic the reader may consult Ishak and Rindler [209].

5.3 Reissner–Nordström spacetime

The Reissner–Nordström metric

g = −
(
1− 2m

r
+
e2

r2

)
dt2 +

dr2

1− 2m
r

+ e2

r2

+ r2
(
dϑ2 + sin2 ϑ dϕ2

)
(116)

is the unique spherically symmetric and asymptotically flat solution of the Einstein–Maxwell equa-
tions. It has the form (69) with

e2f(r) = S(r)−1 = 1− 2m

r
+
e2

r2
, R(r) =

r√
1− 2m

r
+ e2

r2

. (117)

It describes the field around an isolated spherical object with mass m and charge e. The Reissner–
Nordström metric was found independently by Reissner [354], Weyl [430], and Nordström [309]. A
fairly complete list of the pre-1979 literature on Reissner–Nordström geodesics can be found in [380].
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A detailed account of Reissner–Nordström geodesics is given in [75]. (The Reissner–Nordström
spacetime can be modified by introducing a cosmological constant. This generalized Reissner–
Nordström spacetime, whose global structure is investigated in [256], will not be considered here.)

We assume m > 0 and ignore the region r < 0 for which the singularity at r = 0 is naked, for
any value of e. Two cases are to be distinguished:

1. 0 ≤ e2 ≤ m2; in this case the staticity condition ef(r) > 0 is satisfied on the regions
0 < r < m−

√
m2 − e2 and m+

√
m2 − e2 < r <∞, i.e., there are two horizons.

2. m2 < e2; then the staticity condition ef(r) > 0 is satisfied on the entire region 0 < r < ∞,
i.e., there is no horizon and the singularity at r = 0 is naked.

By switching to isotropic coordinates, one can describe light propagation in the Reissner–Nordström
metric by an index of refraction (see, e.g., [135]). The resulting Fermat geometry (optical geometry)
is discussed, in terms of embedding diagrams for the black-hole case and for the naked-singularity
case, in [244, 3] (cf. [201]). The visual appearance of a background, as distorted by a Reissner–
Nordström black hole, is calculated in [276]. Lensing by a charged neutron star, whose exterior
is modeled by the Reissner–Nordström metric, is the subject of [91, 92]. The lensing properties
of a Reissner–Nordström black hole are qualitatively (though not quantitatively) the same as that
of a Schwarzschild black hole. The reason is the following. For a Reissner–Nordström black hole,
the metric coefficient R(r) has one local minimum and no other extremum between horizon and
infinity, just as in the Schwarzschild case (recall Figure 10). The minimum of R(r) indicates
an unstable light sphere towards which light rays can spiral asymptotically, thereby defining the
“shadow” of a Reissner-Nordström black hole. The existence of this minimum, and of no other
extremum, was responsible for all qualitative features of Schwarzschild lensing. Correspondingly,
Figures 16, 17, and 18 also qualitatively illustrate lensing by a Reissner–Nordström black hole. In
particular, there is an infinite sequence of images for each light source, corresponding to an infinite
sequence of light rays whose limit curve asymptotically spirals towards the light sphere. One can
consider the “strong-field limit” [53, 48] of lensing for a Reissner–Nordström black hole, in analogy
to the Schwarzschild case which is indicated by the asymptotic straight line in the middle graph
of Figure 16. Bozza [48] investigates whether quantitative features of the “strong-field limit”, e.g.,
the slope of the asymptotic straight line, can be used to distinguish between different black holes.
For the Reissner–Nordström black hole, image positions and magnifications have been calculated
in [126], and travel times have been calculated in [255]. In both cases, the authors use the “almost
exact lens map” of Virbhadra and Ellis [420] (recall Section 4.3) and analytical methods of Bozza
et al. [53, 48, 56]. The question of whether the “shadow” of a Reissner-Nordström black hole can
be observationally distinguished from that of a Schwarzschild black hole is discussed in [437].

5.4 Morris–Thorne wormholes

We consider a spacetime whose metric is of the form (69) with ef(r)S(r) = 1, i.e.,

g = −e2f(r)dt2 + dr2 + e2f(r)R(r)2
(
dϑ2 + sin2 ϑ dϕ2

)
, (118)

where r ranges from −∞ to ∞. We call such a spacetime a Morris–Thorne wormhole (see [283]) if

f(r) −→
r→±∞

0, r−2R(r)2 −→
r→±∞

1, (119)

such that the metric (118) is asymptotically flat for r → −∞ and for r → ∞.
A particular example of a Morris–Thorne wormhole is the Ellis wormhole [132] where

f(r) = 0, R(r) =
√
r2 + a2 (120)
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with a constant a. The Ellis wormhole has an unstable light sphere at r = 0, i.e., at the “neck”
of the wormhole. It is easy to see that every Morris–Thorne wormhole must have an unstable
light sphere at some radius between r = −∞ and r = ∞. This has the consequence [191] that
every Morris–Thorne wormhole produces an infinite sequence of images of an appropriately placed
light source. This infinite sequence corresponds to infinitely many light rays whose limit curve
asymptotically spirals towards the unstable light sphere.

Lensing by the Ellis wormhole was discussed in [77]; in this paper the authors identified the
region r > 0 with the region r < 0 and they developed a scattering formalism, assuming that
observer and light source are in the asymptotic region. Lensing by the Ellis wormhole was also
discussed in [339] in terms of the exact lens map. The resulting features are qualitatively very
similar to the Schwarzschild case, with the radius values r = −∞, r = 0, r = ∞ in the wormhole
case corresponding to the radius values r = 2m, r = 3m, r = ∞ in the Schwarzschild case. With
this correspondence, Figures 16, 17, and 18 qualitatively illustrate lensing by the Ellis wormhole.
More generally, the same qualitative features occur whenever the metric function R(r) has one
minimum and no other extrema, as in Figure 10. Lensing by the Ellis wormhole (and other types
of wormholes) is also discussed in [297]. For a detailed discussion of lensing by Morris-Thorne
wormholes, including visualizations, see [287, 288].

If observer and light source are on the same side of the wormhole’s neck, and if only light rays in
the asymptotic region are considered, lensing by a wormhole can be studied in terms of the quasi-
Newtonian approximation formalism [235]. However, as wormholes are typically associated with
negative energy densities [283, 284], the usual assumption of the quasi-Newtonian approximation
formalism that the mass density is positive cannot be maintained. This observation has raised some
interest in lensing by negative masses, in particular in the question of whether negative masses can
be detected by their (“microlensing”) effect on the energy flux from sources passing behind them.
So far, related calculations [86, 361] have been done only in the quasi-Newtonian approximation
formalism.

5.5 Barriola–Vilenkin monopole

The Barriola–Vilenkin monopole [27] is given by the metric

g = −dt2 + dr2 + k2r2(dϑ2 + sin2 ϑ dϕ2), (121)

with a constant k < 1. There is a deficit solid angle and a singularity at r = 0; the plane
t = constant, ϑ = π/2 has the geometry of a cone. (Similarly, for k > 1 one gets a surplus solid
angle.) The Einstein tensor has non-vanishing components Gtt = −Grr = (1− k2)/r2.

The metric (121) was briefly mentioned as an example for a conical singularity by Sokolov and
Starobinsky [384]. Barriola and Vilenkin [27] realized that this metric can be used as a model for
monopoles that might exist in the universe, resulting from breaking a global O(3) symmetry. They
also discussed the question of whether such monopoles could be detected by their lensing properties
which were characterized on the basis of some approximative assumptions (cf. [108]). However,
such approximative assumptions are actually not necessary. The metric (121) has the nice property
that the geodesics can be written explicitly in terms of elementary functions. This allows to write
down explicit expressions for image positions and observables such as angular diameter distances,
luminosity distances, image distortion, etc. (see [339]). Note that because of the deficit angle the
metric (121) is not asymptotically flat in the usual sense. (It is “quasi-asymptotically flat” in the
sense of [312].) For this reason, the “almost exact lens map” of Virbhadra and Ellis [420] (see
Section 4.3), is not applicable to this case, at least not without modification.

The metric (121) is closely related to the metric of a static string (see metric (139) with
a = 0). Restricting metric (121) to the hyperplane ϑ = π/2 and restricting metric (139) with
a = 0 to the hyperplane z = constant gives the same (2+ 1)-dimensional metric. Thus, studying
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light rays in the equatorial plane of a Barriola–Vilenkin monopole is the same as studying light
rays in a plane perpendicular to a static string. Hence, the multiple imaging properties of a
Barriola–Vilenkin monopole can be deduced from the detailed discussion of the string example
in Section 5.10. In particular Figures 25 and 26 show the light cone of a non-transparent and
of a transparent monopole if we interpret the missing spatial dimension as circular rather than
linear. This makes an important difference. While in the string case the cone of Figures 25 has a
2-dimensional set of transverse self-intersection points, the corresponding cone for the monopole
has a 1-dimensional radial caustic. The difference is difficult to visualize in spacetime pictures; it
is therefore recommendable to use a purely spatial visualization in terms of instantaneous wave
fronts (intersections of the light cone with hypersurfaces t = constant) (compare Figures 19 and 20
with Figures 28 and 29). t = t1 t = t2 t = t3 t = t4monopolecaustic point
Figure 19: Instantaneous wave fronts in the spacetime of a non-transparent Barriola–Vilenkin
monopole with k = 0.8. The picture shows in 3-dimensional space the intersections of the past
light cone of some event with four hypersurfaces t = constant, at values t1 > t2 > t3 > t4. Only
one half of each instantaneous wave front and of the monopole is shown. When the wave front
passes the monopole, a hole is pierced into it, then a tangential caustic develops. The caustic of
each instantaneous wave front is a point, the caustic of the entire light cone is a spacelike curve in
spacetime which projects to part of the axis in 3-space.
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t = t1 t = t2 t = t3 t = t4monopolecaustic pointcusp ridge

Figure 20: Instantaneous wave fronts in the spacetime of a transparent Barriola–Vilenkin monopole
with k = 0.8. In addition to the tangential caustic of Figure 19, a radial caustic is formed. For
each instantaneous wave front, the radial caustic is a cusp ridge. The radial caustic of the entire
light cone is a lightlike 2-surface in spacetime which projects to a rotationally symmetric 2-surface
in 3-space.
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5.6 Janis–Newman–Winicour spacetime

The Janis–Newman–Winicour metric [217] can be brought into the form [418]

g = −
(
1− 2m

γr

)γ

dt2 +
dr2(

1− 2m
γr

)γ +
r2
(
dϑ2 + sin2 ϑ dϕ2

)
(
1− 2m

γr

)γ−1 , (122)

wherem and γ are constants. It is the most general spherically symmetric static and asymptotically
flat solution of Einstein’s field equation coupled to a massless scalar field. For γ = 1 it reduces to
the Schwarzschild solution; in this case the scalar field vanishes. For m > 0 and γ 6= 1, there is a
naked curvature singularity at r = 2m/γ. Lensing in this spacetime was studied in [422, 421, 417].
The main motivation was to find out whether the lensing characteristics of such a naked singularity
can be distinguished from lensing by a Schwarschild black hole. The result is that the qualitative
features of lensing remain similar to the Schwarzschild case as long as 1/2 < γ < 1. However,
if γ drops below 1/2, they become quite different. The reason is easily understood if we write
Equation (122) in the form (69). The metric coefficient

R(r) = r

(
1− 2m

γr

) 1
2
−γ

(123)

has a minimum between the singularity and infinity as long as 1
2 < γ < 1 (see Figure 21). This

minimum indicates an unstable light sphere (recall Equation (71)), as in the Schwarzschild case at
r = 3m. All qualitative features of lensing carry over from the Schwarzschild case, i.e., Figures 16,
17, and 18 remain qualitatively unchanged. Clearly, the precise shape of the graph of Φ in Figure 16
changes if γ is changed. The question of how the logarithmic asymptote (“strong-field limit”)
depends on γ is dicussed in [48]. If γ drops below 1/2, R(r) has no longer an extremum, i.e.,
there is no light sphere. Owing to a general result proven in [191], this implies that only finitely
many images are possible. In [421] naked singularities of spherically symmetric spacetimes are
called weakly naked if they are surrounded by a light sphere (cf. [81]). In a nutshell, weakly naked
singularities show the same qualitative lensing features as black holes. A generalization of this
result to spacetimes without spherical symmetry has not been worked out so far.

5.7 Boson and fermion stars

Spherically symmetric static solutions of Einstein’s field equation coupled to a scalar field may
be interpreted as (uncharged, non-rotating) boson stars if they are free of singularities. Because
of the latter condition, the Janis–Newman–Winicour metric (see Section 5.6) does not describe a
boson star. The theoretical concept of boson stars goes back to [229, 359]. The analogous idea
of a fermion star, with the scalar field replaced by a spin 1/2 (neutrino) field, is even older [270].
Until today there is no observational evidence for the existence of either a boson or a fermion
star. However, they are considered, e.g., as hypothetical candidates for supermassive objects at
the center of galaxies (see [371, 405] for the boson and [416, 406] for the fermion case). For the
supermassive object at the center of our own galaxy, evidence points towards a black hole, but the
possibility that it is a boson or fermion star cannot be completely excluded so far.

Exact solutions that describe boson or fermion stars have been found only numerically (in
3+ 1 dimensions). For this reason there is no boson star model for which the lightlike geodesics
could be studied analytically. Numerical studies of lensing have been carried out by Da̧browski
and Schunck [93] for a transparent spherically symmetric static maximal boson star, and by Bilić,
Nikolić, and Viollier [40] for a transparent spherically symmetric static maximal fermion star. For
the case of a fermion-fermion star (two components) see [220]. In all three articles the authors use
the “almost exact lens map” of Virbhadra and Ellis (see Section 4.3) which is valid for observer
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Figure 21: Metric coefficient R(r) for the Janis–Newman–Winicour metric. For 1
2 < γ < 1, R(r) is

similar to the Schwarzschild case γ = 1 (see Figure 10). For γ ≤ 1
2 , R(r) has no longer a minimum,

i.e., there is no longer a light sphere which can be asymptotically approached by light rays.
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and light source in the asymptotic region and almost aligned. Da̧browski and Schunck [93] also
discuss how the alignment assumption can be dropped. The lensing features found in [93] for
the boson star and in [40] for the fermion star have several similarities. In both cases, there is a
tangential caustic and a radial caustic (recall Figure 9 for terminology). A (point) source on the
tangential caustic (i.e., on the axis of symmetry through the observer) is seen as a (1-dimenional)
Einstein ring plus a (point) image in the center. If the (point) source is moved away from the
axis the Einstein ring breaks into two (point) images, so there are three images altogether. Two
of them merge and vanish if the radial caustic is crossed. So the qualitative lensing features are
quite different from a Schwarzschild black hole with (theoretically) infinitely many images (see
Section 5.1). The essential difference is that in the case of a boson or fermion star there are no
circular lightlike geodesics towards which light rays could asymptotically spiral.

5.8 Kerr spacetime

Next to the Schwarzschild spacetime, the Kerr spacetime is the physically most relevant example
of a spacetime in which lensing can be studied explicitly in terms of the lightlike geodesics. The
Kerr metric is given in Boyer–Lindquist coordinates (r, ϑ, ϕ, t) as

g = %(r, ϑ)2
(
dr2

∆(r)
+ dϑ2

)
+ (r2 + a2) sin2 ϑ dϕ2 − dt2 +

2mr

%(r, ϑ)2
(
a sin2 ϑ dϕ− dt

)2
, (124)

where % and ∆ are defined by

%(r, ϑ)2 = r2 + a2 cos2 ϑ, ∆(r) = r2 − 2mr + a2, (125)

and m and a are two real constants. We assume 0 < a < m, with the Schwarzschild case a = 0
and the extreme Kerr case a = m as limits. Then the Kerr metric describes a rotating uncharged
black hole of mass m and specific angular momentum a. (The case a > m, which describes a
naked singularity, will be briefly considered at the end of this section.) The domain of outer
communication is the region between the (outer) horizon at

r+ = m+
√
m2 − a2 (126)

and r = ∞. It is joined to the region r < r+ in such a way that past-oriented ingoing lightlike
geodesics cannot cross the horizon. Thus, for lensing by a Kerr black hole only the domain of outer
communication is of interest unless one wants to study the case of an observer who has fallen into
the black hole. The lensing properties of a Kerr black hole will be reviewed below. For the effect
of a Kerr black hole on the propagation of the polarization plane of light (cf. Section 2.5) see,
e.g., [178, 395, 142, 211, 310, 374].

Historical notes.

The Kerr metric was found by Kerr [234]. The coordinate representation (124) is due to Boyer and
Lindquist [47]. The literature on lightlike (and timelike) geodesics of the Kerr metric is abundant
(for an overview of the pre-1979 literature, see Sharp [380]). Detailed accounts on Kerr geodesics
can be found in the books by Chandrasekhar [75] and O’Neill [316].

Fermat geometry.

The Killing vector field ∂t is not timelike on that part of the domain of outer communication where
%(r, ϑ)2 ≤ 2mr. This region is known as the ergosphere. Thus, the general results of Section 4.2 on
conformally stationary spacetimes apply only to the region outside the ergosphere. On this region,
the Kerr metric is of the form (61), with redshift potential

e2f(r,ϑ) = 1− 2mr

%(r, ϑ)2
, (127)
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Fermat metric

ĝ =
%(r, ϑ)4

%(r, ϑ)2 − 2mr

(
dr2

∆(r)
+ dϑ2

)
+
%(r, ϑ)4 ∆(r) sin2 ϑ dϕ2

(%(r, ϑ)2 − 2mr)2
, (128)

and Fermat one-form

φ̂ =
2mra sin2 ϑ dϕ

%(r, ϑ)2 − 2mr
. (129)

(Equation (128) corrects a misprint in [333], Equation (66), where a square is missing.) With the
Fermat geometry at hand, the optical-mechanical analogy (Fermat’s principle versus Maupertuis’
principle) allows to write the equation for light rays in the form of Newtonian mechanics (cf. [7]).
Certain embedding diagrams for the Fermat geometry (optical reference geometry) of the equato-
rial plane have been constructed [390, 201]. However, they are less instructive than in the static
case (recall Figure 12) because they do not represent the light rays as geodesics of a Riemannian
manifold.

First integrals for lightlike geodesics.

Carter [74] discovered that the geodesic equation in the Kerr metric admits another independent
constant of motion K, in addition to the constants of motion L and E associated with the Killing
vector fields ∂ϕ and ∂t. This reduces the lightlike geodesic equation to the following first-order
form:

%(r, ϑ)2 ṫ = a
(
L− Ea sin2 ϑ

)
+

(r2 + a2)
(
(r2 + a2)E − aL

)

∆(r)
, (130)

%(r, ϑ)2ϕ̇ =
L− Ea sin2 ϑ

sin2 ϑ
+

(r2 + a2)aE − a2L

∆(r)
, (131)

%(r, ϑ)4ϑ̇2 = K − (L− Ea sin2 ϑ)2

sin2 ϑ
, (132)

%(r, ϑ)4ṙ2 = −K∆(r) +
(
(r2 + a2)E − aL

)2
. (133)

Here an overdot denotes differentiation with respect to an affine parameter s. This set of equations
allows writing the lightlike geodesics in terms of elliptic integrals [22]. Clearly, ϑ̇ and ṙ may
change sign along a ray; thus, the integration of Equation (132) and Equation (133) must be
done piecewise. The determination of the turning points where ϑ̇ and ṙ change sign is crucial for
numerical evaluation of these integrals and, thus, for ray tracing in the Kerr spacetime (see, e.g.,
[411, 353, 138]). With the help of Equations (132, 133) one easily verifies the following important
fact (cf. [192]). Through each point of the region

K :
(
2r∆(r) − (r −m) %(r, ϑ)2

)2 ≤ 4a2r2∆(r) sin2 ϑ (134)

there is spherical light ray, i.e., a light ray along which r is constant (see Figure 22). These spherical
light rays are unstable with respect to radial perturbations. For the spherical light ray at radius
rp the constants of motion E, L, and K satisfy

a
L

E
= r2p + a2 − 2rp∆(rp)

rp −m
, (135)

K

E2
=

4r2p∆(rp)

(rp −m)2
. (136)

The region K is the Kerr analogue of the “light sphere” r = 3m in the Schwarzschild spacetime.
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Figure 22: The region K, defined by Equation (134), in the Kerr spacetime. This picture, which
can also be found in [192], is purely spatial and shows a meridional section ϕ = constant, with
the axis of symmetry at the left-hand boundary. Through each point of K there is a spherical
geodesic. Along each of these spherical geodesics, the coordinate ϑ oscillates between extremal
values, corresponding to boundary points of K, whereas the coordinate ϕ proceeds according to
Eq. (131). The region K meets the axis at radius rc, given by r3c − 3mr2c + a2rc + ma2 = 0.

Its boundary intersects the equatorial plane in circles of radius rph+ (corotating circular light ray)

and rph− (counter-rotating circular light ray). rph± are determined by rph± (rph± − 3m)2 = 4ma2 and

r+ < rph+ < 3m < rph− < 4m. In the Schwarzschild limit a → 0 the region K shrinks to the light
sphere r = 3m. In the extreme Kerr limit a → m the region K extends to the horizon because
in this limit both rph+ → m and r+ → m. For a caveat, as to geometric misinterpretations of this
limit, see Figure 3 in [22].
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Light cone.

With the help of Equations (130, 131, 132, 133), the past light cone of any observation event pO can
be explicitly written in terms of elliptic integrals. In this representation the light rays are labeled
by the constants of motion L/E and K/E2. In accordance with the general idea of observational
coordinates (4), it is desirable to relabel them by spherical coordinates (Ψ,Θ) on the observer’s
celestial sphere. This requires choosing an orthonormal tetrad (e0, e1, e2, e3) at pO. It is convenient
to choose e1 ∝ ∂ϑ, e2 ∝ ∂ϕ, e3 ∝ ∂r and, thus, e0 perpendicular to the hypersurface t = constant
(“zero-angular-momentum observer”). For an observation event in the equatorial plane, ϑO = π/2,
at radius rO, one finds

L

E
= a+

(
(rO(r

2
O + a2) sinΘ sinΨ− arO

√
∆(rO)

)

rO
√
∆(rO) + 2ma sinΘ sinΨ

, (137)

K

E2
=
r2O

(
r2O + a2 − a

√
∆(rO) sinΘ sinΨ

)2
− r3O

(
rO(r

2
O + a2) + 2ma2

)
cos2 Θ

(
rO
√
∆(rO) + 2ma sinΘ sinΨ

)2 . (138)

As in the Schwarzschild case, some light rays from pO go out to infinity and some go to the horizon.
In the Schwarzschild case, the borderline between the two classes corresponds to light rays that
asymptotically approach the light sphere at r = 3m. In the Kerr case, it corresponds to light rays
that asymptotically approach a spherical light ray in the region K of Figure 22. The constants
of motion for such light rays are given by Equation (135, 136), with rp varying between its ex-

tremal values rph+ and rph− (see again Figure 22). Thereupon, Equation (137) and Equation (138)
determine the celestial coordinates Ψ and Θ of those light rays that approach a spherical light
ray in K. The resulting curve on the observer’s celestial sphere gives the apparent shape of the
Kerr black hole (see Figure 23). For an observation event on the axis of rotation, sinϑO = 0, the
Kerr light cone is rotationally symmetric. The caustic consists of infinitely many spacelike curves,
as in the Schwarzschild case. A light source passing through a point of the caustic is seen as an
Einstein ring. For observation events not on the axis, the light cone has no rotational symmetry
and the caustic structure is quite different from the Schwarzschild case. The caustic still consists
of infinitely many connected subsets (a primary caustic and infinitely many higher-order caustics),
but these are no longer spacelike curves. This fact is somewhat disguised if one restricts to light
rays in the equatorial plane ϑ = π/2 (which is possible, of course, only if the observation event
is in the equatorial plane). Then the resulting 2-dimensional light cone looks indeed qualitatively
similar to the Schwarzschild cone of Figure 13 (cf. [184]), where intersections of the light cone with
hypersurfaces t = constant are depicted. However, in the Kerr case the transverse self-intersection
of this 2-dimensional light cone does not occur on an axis of symmetry. Therefore, the caustic of
the full (3-dimensional) light cone is more involved than in the Schwarzschild case. The primary
caustic turns out to be not a spatially straight line, as in the Schwarzschild case, but rather a tube,
with astroid cross-section, that winds a certain number of times around the black hole; for a→ m
it approaches the horizon in an infinite spiral motion. The primary caustic of a Kerr light cone,
with vertex in the equatorial plane far away from the black hole, was numerically calculated and
depicted, for a = m, by Rauch and Blandford [353]. A detailed study of primary and higher-order
caustics, for a Kerr light cone with vertex far away from the black hole but not necessarily in the
equatorial plane, was presented by Bozza [51]. This work, which contains several pictures of Kerr
caustics in 3+0 dimensions, is based on numerical calculations. The results are in good agreement
with analytical approximation methods for studying the caustics. Two such methods exist which
are complementary to each other in the sense that the first is valid for light rays that come close
to a spherical light ray in the region K and the second is valid for light rays that stay far away
from the black hole: The first method is due to Bozza, de Luca, Scarpetta and Sereno [55, 57]
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who analytically studied higher-order caustics in the strong deflection limit; this approach is not
applicable to the primary caustic. The second method is due to Sereno and de Luca [377] who
developed an analytic formula for the primary caustic that is valid up to fourth order in m/b and
a/b, where b is the impact parameter. Taking all this together, a fairly clear picture of the caustics
of Kerr light cones has now emerged. Also, attempts have been made to visualize the Kerr light
cones in terms of their intersections with hypersurfaces t = constant, see Figure 1 in [182]. From
the study of light cones one may switch to the study of arbitrary wave fronts. (For the definition
of wave fronts see Section 2.2.) Pretorius and Israel [351] determined all axisymmetric wave fronts
in the Kerr geometry. In this class, they investigated in particular those members that are asymp-
totic to Minkowski light cones at infinity (“quasi-spherical light cones”) and they found, rather
surprisingly, that they are free of caustics. Special families of wave fronts in the Kerr spacetime
are also considered, e.g., in [145, 194, 17].

Lensing by a Kerr black hole.

For an observation event pO and a light source with worldline γS, both in the domain of outer com-
munication of a Kerr black hole, several qualitative features of lensing are unchanged in comparison
to the Schwarzschild case. If γS is past-inextendible, bounded away from the horizon and from
(past lightlike) infinity, and does not meet the caustic of the past light cone of pO, the observer
sees an infinite sequence of images; for this sequence, the travel time (e.g., in terms of the time
coordinate t) goes to infinity. These statements have been proven in [192] with the help of Morse
theory (cf. Section 3.3). On the observer’s sky the sequence of images approaches the apparent
boundary of the black hole which is shown in Figure 23. This follows from the fact that

• the infinite sequence of images must have an accumulation point on the observer’s sky, by
compactness, and

• the lightlike geodesic with this initial direction cannot go to infinity or to the horizon, by
assumption on γS.

If γS meets the caustic of pO’s past light cone, the image is not an Einstein ring, unless pO is
on the axis of rotation. It has only an “infinitesimal” angular extension on the observer’s sky.
As always when a point source meets the caustic, the ray-optical calculation gives an infinitely
bright image. Numerical studies show that in the Kerr spacetime, where the caustic is a tube with
astroid cross-section, the image is very bright whenever the light source is inside the tube [353].
In principle, with the lightlike geodesics given in terms of elliptic integrals, image positions on the
observer’s sky can be calculated explicitly. This has been worked out for several special wordlines
γS. The case that γS is a circular timelike geodesic in the equatorial plane of the extreme Kerr
metric, a = m, was treated by Cunningham and Bardeen [90, 23]. This example is of relevance
in view of accretion disks. Viergutz [411] developed a formalism for the case that γS has constant
r and ϑ coordinates, i.e., for a light source that stays on a ring around the axis. One aim of
this approach, which could easily be rewritten in terms of the exact lens map (recall Section 2.1),
was to provide a basis for numerical studies. The case of a stationary light source (i.e., the case
that γS is an integral curve of ∂t) was investigated in great detail in a series of papers by Bozza,
de Luca, Scarpetta and Sereno [49, 55, 54, 57]. In all these papers the authors derive analytic
approximation formulas using the strong-deflection limit, i.e., the approximation is good for light
rays that undergo a deflection of π or more. Such light rays come close to one of the spherical
light rays in the region K, recall Figure 22. The first two papers in the series make the additional
assumption that the light source and the observer are in the equatorial plane and that not only
the observer but also the light source is far away from the black hole; in the last two papers these
assumptions are relaxed. This series of papers gives a fairly complete analysis of Kerr lensing for
stationary light sources under the strong deflection hypothesis. An alternative approach to Kerr
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Figure 23: Apparent shape of a Kerr black hole for an observer at radius rO in the equatorial
plane. (For the Schwarzschild analogue, see Figure 15.) The spin vector of the black hole is pointing
downwards. The pictures show the celestial sphere of an observer whose 4-velocity is perpendicular
to a hypersurface t = constant. (If the observer is moving one has to correct for aberration.) The
dashed circle is the celestial equator, Θ = π/2, and the crossing axes indicate the direction towards
the center, Θ = π. Past-oriented light rays go to the horizon if their initial direction is in the
black disk and to infinity otherwise. Thus the black disk, known as the “shadow” of the black
hole, shows that part of the sky which is not illuminated by light sources at a large radius. The
boundary of this disk corresponds to light rays that asymptotically approach a spherical light ray
in the region K of Figure 22. For an observer in the equatorial plane at infinity, the shadow of a
Kerr black hole was correctly calculated and depicted by Bardeen [22] (cf. [75], p. 358). Earlier
work by Godfrey [178] contains a mathematical error. Observability of the shadow of a Kerr black
hole is discussed, e.g., in [137, 438, 199].
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lensing with stationary light sources, partly based on numerical results, was brought forward by
Vazquez and Esteban [410]. All these articles also calculate the brightness of images. This requires
determining the cross-section of infinitesimally thin bundles with a vertex, e.g., in terms of the
shape parameters D+ and D− (recall Figure 3). For a bundle around an arbitrary light ray in
the Kerr metric, all relevant equations were worked out analytically by Pineault and Roeder [345].
However, the equations are much more involved than for the Schwarzschild case and will not
be given here. Lensing by a Kerr black hole has been visualized (i) by showing the apparent
distortion of a background pattern [346, 381] and (ii) by showing the visual appearence of an
accretion disk [346, 350, 381, 31]. The main difference, in comparison to the Schwarzschild case, is
in the loss of the left-right symmetry. In view of observations, Kerr black holes are considered as
candidates for active galactic nuclei (AGN) since many years. In particular, the X-ray variability
of AGN is interpreted as coming from a “hot spot” in an accretion disk that circles around a
Kerr black hole. Starting with the pioneering work in [90, 23], many articles have been written on
calculating the light curves and the spectrum of such “hot spots”, as seen by a distant observer (see,
e.g., [98, 15, 225, 218, 138]). The spectrum can be calculated in terms of a transfer function that
was tabulated, for some values of a, in [88] (cf. [411, 412]). A Kerr black hole is also considered
as the most likely candidate for the supermassive object at the center of our own galaxy. (For
background material see [136].) In this case, the predicted angular diameter of the black hole on
our sky, in the sense of Figure 23, is about 30 microarcseconds; this is not too far from the reach
of current VLBI technologies [137]. Also, the fact that the radio emission from our galactic center
is linearly polarized gives a good motivation for calculating polarimetric images as produced by a
Kerr black hole [64]. The calculation is based on the geometric-optics approximation according to
which the polarization vector is parallel along the light ray. In the Kerr spacetime, this parallel-
transport law can be explicitly written with the help of constants of motion [83, 345, 395] (cf. [75],
p. 358). As to the large number of numerical codes that have been written for calculating imaging
properties of a Kerr black hole the reader may consult [226, 411, 353, 138].

Notes on Kerr naked singularities.

The Kerr metric with a > m describes a naked singularity. Until now there is no observational
indication that such objects exist in nature. The lightlike geodesics in a Kerr spacetime with a > m
have been studied in [68, 70] (cf. [75], p. 375). Observable effects of accretion disks around a Kerr
naked singularity, in comparison to a Kerr black hole, were discussed in [400]. The “shadow” of a
Kerr naked singularity was calculated in [100, 199] and, under different assumptions, in [19].

Notes on the Kerr–Newman spacetime.

The Kerr–Newman spacetime (charged Kerr spacetime) is usually thought to be of little astro-
physical relevance because the net charge of celestial bodies is small. For the lightlike geodesics in
this spacetime the reader may consult [69, 71]. Embeddability diagrams of the equatorial plane of
a Kerr-Newman spacetime can be found in [392]. The shadow of a Kerr-Newman black hole, and
of a Kerr-Newman naked singularity, was discussed in [100, 399]. A Morse-theoretical analysis of
lensing in the Kerr-Newman spacetime can be found in [192].

5.9 Rotating disk of dust

The stationary axisymmetric spacetime around a rigidly rotating disk of dust was first studied in
terms of a numerical solution to Einstein’s field equation by Bardeen and Wagoner [24, 25]. The
exact solution was found much later by Neugebauer and Meinel [303]. It is discussed, e.g., in [302].
The metric cannot be written in terms of elementary functions because it involves the solution
to an ultraelliptic integral equation. It depends on a parameter µ which varies between zero and
µc = 4.62966 . . . . For small µ one gets the Newtonian approximation, for µ → µc the extreme
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Kerr metric (a = m) is approached. The lightlike geodesics in this spacetime have been studied
numerically and the appearance of the disk to a distant observer has been visualized [429]. It would
be desirable to support these numerical results with exact statements. From the known properties
of the metric, only a few qualitative lensing features of the disk can be deduced. As Minkowski
spacetime is approached for µ → 0, the spacetime must be asymptotically simple and empty as
long as µ is sufficiently small. (This is true, of course, only if the disk is treated as transparent.)
The general results of Section 3.4 imply that in this case the gravitational field of the disk produces
finitely many images of each light source, and that the number of images is odd, provided that
the worldline of the light source is past-inextendible and does not go out to past lightlike infinity.
For larger values of µ, this is no longer true. For µ > 0.5 there are two counter-rotating circular
lightlike geodesics in the equatorial plane, a stable one at a radius ρ̃1 inside the disk and an unstable
one at a radius ρ̃2 outside the disk. (This follows from [13] where it is shown that for µ > 0.5
timelike counter-rotating circular geodesics do not exist in a radius interval [ρ̃1, ρ̃2]. The boundary
values of this interval give the radii of lightlike circular geodesics.) The existence of circular light
rays has the consequence that the number of images must be infinite; this is obviously true if light
source and observer are exactly on the spatial track of such a circular light ray and, by continuity,
also in a neighborhood. For a better understanding of lensing by the disk of dust it is desirable
to investigate, for each value of µ and each event pO: Which past-oriented lightlike geodesics that
issue from pO go out to infinity and which are trapped? Also, it is desirable to study the light
cones and their caustics.

5.10 Straight spinning string

Cosmic strings (and other topological defects) are expected to exist in the universe, resulting from
a phase transition in the early universe (see, e.g., [415] for a detailed account). So far, there is
no direct observational evidence for the existence of strings. In principle, they could be detected
by their lensing effect. The general perspective is discussed in [207, 164, 282]. The object CSL-1,
which consists of a pair of galaxies, was discussed as a candidate for lensing by a string for some
time [364]. However, more recent observations by the Hubble Space Telescope led to the conclusion
that it is not a lensed image [363].

Basic lensing features for various string configurations are briefly summarized in [12]. Here we
consider the simple case of a straight string that is isolated from all other masses. This is one
of the most attractive examples for investigating lensing from the spacetime perspective without
approximations. In particular, studying the light cones in this metric is an instructive exercise.
The geodesic equation is completely integrable, and the geodesics can even be written explicitly in
terms of elementary functions.

We consider the spacetime metric

g = −(dt− a dϕ)2 + dz2 + dρ2 + k2ρ2 dϕ2, (139)

with constants a and k > 0. As usual, the azimuthal coordinate ϕ is defined modulo 2π. For a = 0
and k = 1, metric (139) is the Minkowski metric in cylindrical coordinates. For any other values of
a and k, the metric is still (locally) flat but not globally isometric to Minkowski spacetime; there
is a singularity along the z-axis. For a = 0 and 0 < k < 1, the plane t = constant, z = constant
has the geometry of a cone with a deficit angle

δ = (1− k)2π. (140)

(see Figure 24); for k > 1 there is a surplus angle. Note that restricting the metric (139) with
a = 0 to the hyperplane z = constant gives the same result as restricting the metric (121) of the
Barriola–Vilenkin monopole to the hyperplane ϑ = π/2.
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The metric (139) describes the spacetime around a straight spinning string. The constant k is
related to the string’s mass-per-length µ, in Planck units, via

k = 1− 4µ, (141)

whereas the constant a is a measure for the string’s spin. Equation (141) shows that we have
to restrict to the deficit-angle case k < 1 to have µ positive. One may treat the string as a line
singularity, i.e., consider the metric (139) for all ρ > 0. (This “wire approximation”, where the
energy-momentum tensor of the string is concentrated on a 2-dimensional submanifold, is math-
ematically delicate; see [167].) For a string of finite radius ρ∗ one has to match the metric (139)
at ρ = ρ∗ to an interior solution, thereby getting a metric that is regular on all of R4. In view of
lensing it is important to distinguish between a transparent string, where light rays are allowed to
pass through the interior solution, and a non-transparent string, where light rays are blocked at
the boundary of the string.

PSfrag replacements

Æp p

q
Figure 24: On a cone with deficit angle 0 < δ < π, the point p can be connected to every point q
in the double-imaging region (shaded) by two geodesics and to a point in the single-imaging region
(non-shaded) by one geodesic.

Historical notes.

With a = 0, the metric (139) and its geodesics were first studied by Marder [267, 268]. He
also discussed the matching to an interior solution, without, however, associating it with strings
(which were no issue at that time). The same metric was investigated by Sokolov and Starobin-
sky [384] as an example for a conic singularity. Later Vilenkin [413, 414] showed that within the
linearized Einstein theory the metric (139) with a = 0 describes the spacetime outside a straight
non-spinning string. Hiscock [200], Gott [180], and Linet [261] realized that the same is true in
the full (non-linear) Einstein theory. Basic features of lensing by a non-spinning string were found
by Vilenkin [414] and Gott [180]. The matching to an interior solution for a spinning string,
a 6= 0, was worked out by Jensen and Soleng [219]. Already earlier, the restriction of the met-
ric (139) with a 6= 0 to the hyperplane z = 0 was studied as the spacetime of a spinning particle
in 2+1 dimensions by Deser, Jackiw, and ’t Hooft [101]. The geodesics in this (2+1)-dimensional
metric were first investigated by Clément [82] (cf. Krori, Goswami, and Das [245] for the (3+ 1)-
dimensional case). For geodesics in string metrics one may also consult Galtsov and Masar [162].

83



The metric (139) can be generalized to the case of several parallel strings (see Letelier [259] for
the non-spinning case, and Krori, Goswami, and Das [245] for the spinning case). Clarke, Ellis
and Vickers [80] found obstructions against embedding a string model close to metric (139) into
an almost-Robertson–Walker spacetime. This is a caveat, indicating that the lensing properties of
“real” cosmic strings might be significantly different from the lensing properties of the metric (139).

Redshift and Fermat geometry.

The string metric (139) is stationary, so the results of Section 4.2 apply. Comparison of metric (139)
with metric (61) shows that the redshift potential vanishes, f = 0. Hence, observers on t-lines see

each other without redshift. The Fermat metric ĝ and Fermat one-form φ̂ read

ĝ = dz2 + dρ2 + k2ρ2 dϕ2, (142)

φ̂ = −a dϕ. (143)

As the Fermat one-form is closed, dφ̂ = 0, the spatial paths of light rays are the geodesics of the
Fermat metric ĝ (cf. Equation (64)), i.e., they are not affected by the spin of the string. φ̂ can be
transformed to zero by changing from t to the new time function t − aϕ. Then the influence of
the string’s spin on the travel time (62) vanishes as well. However, the new time function is not
globally well-behaved (if a 6= 0), because ϕ is either discontinuous or multi-valued on any region

that contains a full circle around the z-axis. As a consequence, φ̂ can be transformed to zero on
every region that does not contain a full circle around the z-axis, but not globally. This may be
viewed as a gravitational analogue of the Aharonov–Bohm effect (cf. [385]). The Fermat met-
ric (142) describes the product of a cone with the z-line. Its geodesics (spatial paths of light rays)
are straight lines if we cut the cone open and flatten it out into a plane (see Figure 24). The metric
of a cone is (locally) flat but not (globally) Euclidean. This gives rise to another analogue of the
Aharonov–Bohm effect, to be distinguished from the one mentioned above, which was discussed,
e.g., in [146, 38, 195].

Light cone.

For the metric (139), the lightlike geodesics can be explicitly written in terms of elementary func-
tions. One just has to apply the coordinate transformation (t, ϕ) 7−→ (t− aϕ, kϕ) to the lightlike
geodesics in Minkowski spacetime. As indicated above, the new coordinates are not globally well-
behaved on the entire spacetime. However, they can be chosen as continuous and single-valued
functions of the affine parameter s along all lightlike geodesics through some chosen event, with ϕ
taking values in R. In this way we get the following representation of the lightlike geodesics that
issue from the observation event (ρ = ρ0, ϕ = 0, z = 0, t = 0) into the past:

ρ(s) =

√
s2 sin2 Θ+ 2sρ0 sinΘ cosΨ + ρ20, (144)

tan (kϕ(s)) =
s sinΘ sinΨ

ρ0 + s sinΘ cosΨ
, (145)

z(s) = s cosΘ, (146)

t(s) = −s+ aϕ(s). (147)

The affine parameter s coincides with ĝ-arclength `, and (Ψ,Θ) parametrize the observer’s celestial
sphere,

d

ds



ρ(s) cosϕ(s)
ρ(s) sinϕ(s)

z(s)



∣∣∣∣∣∣
s=0

=



cosΨ sinΘ
sinΨ sinΘ

cosΘ


 . (148)

Equations (144, 145, 146, 147) give us the light cone parametrized by (s,Θ,Ψ). The same equa-
tions determine the intersection of the light cone with any timelike hypersurface (source surface)
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and thereby the exact lens map in the sense of Frittelli and Newman [154] (recall Section 2.1).
For k = 0.8 and a = 0, the light cone is depicted in Figure 25; intersections of the light cone
with hypersurfaces t = constant (“instantaneous wave fronts”) are shown in Figure 28. In both
pictures we consider a non-transparent string of finite radius ρ∗, i.e., the light rays terminate if
they meet the boundary of the string. Figures 26 and 29 show how the light cone is modified if
the string is transparent. This requires matching the metric (139) to an interior solution which is
everywhere regular and letting light rays pass through the interior. For the non-transparent string,
the light cone cannot form a caustic, because the metric is flat. For the transparent string, light
rays that pass through the interior of the string do form a caustic. The special form of the interior
metric is not relevant. The caustic has the same features for all interior metrics that monotonously
interpolate between a regular axis and the boundary of the string. Also, there is no qualitative
change of the light cone for a spinning string as long as the spin a is small. Large values of a,
however, change the picture drastically. For a2 > k2ρ2∗, where ρ∗ is the radius of the string, the
ϕ-lines become timelike on a neighborhood of the string. As the ϕ-lines are closed, this indicates
causality violation. In this causality-violating region the hypersurfaces t = constant are not ev-
erywhere spacelike and, in particular, not transverse to all lightlike geodesics. Thus, our notion of
instantaneous wave fronts becomes pathological. pOstring

cut locus
Figure 25: Past light cone of an event pO in the spacetime of a non-transparent string of finite
radius ρ∗ with k = 0.8 and a = 0. The metric (139) is considered on the region ρ > ρ∗, and the
light rays are cut if they meet the boundary of this region. The z coordinate is not shown, the
vertical coordinate is time t. The “chimney” indicates the region ρ < ρ∗ which is occupied by the
string. The light cone has no caustic but a transverse self-intersection (cut locus). The cut locus,
in the (2+1)-dimensional picture represented as a curve, is actually a 2-dimensional spacelike
submanifold. When passing through the cut locus, the lightlike geodesics leave the boundary of
the chronological past I−(pO). Note that the light cone is not a closed subset of the spacetime.
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pOstring
cut locus caustic

Figure 26: Past light cone of an event pO in the spacetime of a transparent string of finite radius
ρ∗ with k = 0.8 and a = 0. The metric (139) is matched at ρ = ρ∗ to an interior metric,
and light rays are allowed to pass through the interior region. The perspective is analogous to
Figure 25. The light rays which were blocked by the string in the non-transparent case now form
a caustic. In the (2+ 1)-dimensional picture the caustic consists of two lightlike curves that meet
in a swallow-tail point (see Figure 27 for a close-up). Taking the z-dimension into account, the
caustic actually consists of two lightlike 2-manifolds (fold surfaces) that meet in a spacelike curve
(cusp ridge). The third picture in Figure 2 shows the situation projected to 3-space. Each of the
past-oriented lightlike geodesics that form the caustic first passes through the cut locus (transverse
self-intersection), then smoothly slips over one of the fold surfaces. The fold surfaces are inside the
chronological past I−(pO), the cusp ridge is on its boundary.
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swallow-tail
cut locus caustic

Figure 27: Close-up of the caustic of Figure 26. The string is not shown. Taking the z-dimension
into account, the swallow-tail point is actually a spacelike curve (cusp ridge).
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t = t1 t = t2 t = t3stringcut locus
Figure 28: Instantaneous wave fronts in the spacetime of a non-transparent string of finite radius ρ∗
with k = 0.8 and a = 0. The picture shows in 3-dimensional space the intersections of the light cone
of Figure 25 with three hypersurfaces t = constant, at values t1 > t2 > t3. The vertical coordinate
is the z-coordinate which was suppressed in Figure 25. Only one half of each instantaneous wave
front is shown so that one can look into its interior. There is a transverse self-intersection (cut
locus) but no caustic.
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t = t1 t = t2 t = t3stringcut locus
caustic

Figure 29: Instantaneous wave fronts in the spacetime of a transparent string of finite radius ρ∗
with k = 0.8 and a = 0. The picture is related to Figure 26 as Figure 28 is related to Figure 25.
Instantaneous wave fronts that have passed through the string have a caustic, consisting of two
cusp ridges that meet in a swallow-tail point. This caustic is stable (see Section 2.2). The caustic
of the light cone in Figure 26 is the union of the caustics of its instantaneous wave fronts. It
consists of two fold surfaces that meet in a cusp ridge, like in the third picture of Figure 2.
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Lensing by a non-transparent string.

With the lightlike geodesics known in terms of elementary functions, positions and properties of
images can be explicitly determined without approximation. We place the observation event at
ρ = ρ0, ϕ = 0, z = 0, t = 0, and we consider a light source whose worldline is a t-line at ρ = ρS,
ϕ = ϕS, z = zS with 0 ≤ ϕS ≤ π. From Equations (144, 145, 146) we find that the images are in
one-to-one correspondence with integers n such that

|ϕS + 2nπ| < π/k. (149)

They can be numbered by the winding number n in the order n = 0,−1, 1,−2, 2, . . . The total
number of images depends on k. Let N1(k) be the largest integer and N2(k) be the smallest integer
such that N1(k) ≤ 1/k < N2(k). Of the two integers N1(k) and N2(k), denote the odd one by
Nodd(k) and the even one by Neven(k). Then we find from Equation (149)

0 ≤ ϕS < |Neven − 1/k|π : Nodd(k) images, (150)

|Neven − 1/k|π < ϕS ≤ π : Neven(k) images. (151)

Thus, the number of images is even in a wedge-shaped region behind the string and odd everywhere
else. If the light source approaches the boundary between the two regions, one image vanishes
behind the string (see Figure 24 for the case 1 ≤ 1/k < 2). (If the non-transparent string has
finite thickness, there is also a region with no image at all, in the “shadow” of the string.) The
coordinates (Ψn,Θn) on the observer’s sky of an image with winding number n and the affine
parameter sn at which the light source is met can be determined from Equations (144, 145, 146).
We just have to insert ρ(s) = ρS, ϕ(s) = ϕS + 2nπ, z(s) = zS and to solve for tanΨ = tanΨn,
tanΘ = tanΘn, s = sn:

tanΨn =
ρS sin (k(ϕS + 2nπ))

ρS cos (k(ϕS + 2nπ))− ρ0
, (152)

tanΘn =

√
ρ2S + ρ20 − 2ρSρ0 cos (k(ϕS + 2nπ))

zS
, (153)

sn =
√
z2S + ρ2S + ρ20 − 2ρSρ0 cos (k(ϕS + 2nπ)). (154)

The travel time follows from Equation (147):

Tn = sn − a(ϕS + 2nπ). (155)

It is the only relevant quantity that depends on the string’s spin a. With the observer on a t-line,
the affine parameter s coincides with the area distance, Darea(s) = s, because in the (locally) flat
string spacetime the focusing equation (44) reduces to D̈area = 0. For observer and light source on
t-lines, the redshift vanishes, so s also coincides with the luminosity distance, Dlum(s) = s, owing
to the general law (48). Hence, Equation (154) gives us the brightness of images (see Section 2.6
for the relevant formulas). The string metric produces no image distortion because the curvature
tensor (and thus, the Weyl tensor) vanishes (recall Section 2.5). Realistic string models yield a
mass density µ that is smaller than 10−4. So, by Equation (141), only the case Nodd(k) = 1 and
Neven(k) = 2 is thought to be of astrophysical relevance. In that case we have a single-imaging
region, 0 ≤ ϕS < 2π − π/k, and a double-imaging region, 2π − π/k < ϕS ≤ π (see Figure 24).
The occurrence of double-imaging and of single imaging can also be read from Figure 25. In
the double-imaging region we have a (“primary”) image with n = 0 and a (“secondary”) image
with n = −1. From Equations (153, 154) we read that the two images have different latitudes
and different brightnesses. However, for k close to 1 the difference is small. If we express k by
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Equation (140) and linearize Equations (152, 153, 154, 155) with respect to the deficit angle (140),
we find

Ψ0 =
ρ0π − ρSϕS

ρS + ρ0
− ϕSρSδ

(ρS + ρ0)2π
(156)

Ψ−1 = Ψ0 +
ρSδ

ρS + ρ0
, (157)

Θ−1 −Θ0 = 0, (158)

s−1 − s0 = 0, (159)

T−1 − T0 = 2aπ. (160)

Hence, in this approximation the two images have the same Θ−coordinate; their angular distance
∆ on the sky is given by Vilenkin’s [414] formula

∆ =
ρSδ sinΘ0

ρS + ρ0
, (161)

and is thus independent of ϕS; they have equal brightness and their time delay is given by the
string’s spin a via Equation (160). All these results apply to the case that the worldlines of the
observer and of the light source are t-lines. Otherwise redshift factors must be added.

Lensing by a transparent string.

In comparison to a non-transparent string, a transparent string produces additional images. These
additional images correspond to light rays that pass through the string. We consider the case a = 0
and 1 < 1/k < 2, which is illustrated by Figures 25 and 26. The general features do not depend
on the form of the interior metric, as long as it monotonously interpolates between a regular axis
and the boundary of the string. In the non-transparent case, there is a single-imaging region and
a double-imaging region. In the transparent case, the double-imaging region becomes a triple-
imaging region. The additional image corresponds to a light ray that passes through the interior
of the string and then smoothly slips over one of the cusp ridges. The point where this light ray
meets the worldline of the light source is on the sheet of the light cone between the two cusp ridges
in Figure 26, i.e., on the sheet that does not exist in the non-transparent case of Figure 25. From
the picture it is obvious that the additional image shows the light source at a younger age than the
other two images (so it is a “tertiary image”). A light source whose worldline meets the caustic
of the observer’s past light cone is on the borderline between single-imaging and triple-imaging.
In this case the tertiary image coincides with the secondary image and it is particularly bright
(even infinitely bright according to the ray-optical treatment; recall Section 2.6). Under a small
perturbation of the worldline the bright image either splits into two or vanishes, so one is left either
with three images or with one image.

5.11 Plane gravitational waves

A plane gravitational wave is a spacetime with metric

g = −2 du dv −
(
f(u)(x2 − y2) + 2g(u)xy

)
du2 + dx2 + dy2, (162)

where f(u)2 + g(u)2 is not identically zero. For any choice of f(u) and g(u), the metric (162)
has vanishing Ricci tensor, i.e., Einstein’s vacuum field equation is satisfied. The lightlike vector
field ∂v is covariantly constant. Non-flat spacetimes with a covariantly constant lightlike vector
field are called plane-fronted waves with parallel rays or pp-waves for short. They made their first
appearance in a purely mathematical study by Brinkmann [61].
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In spite of their high idealization, plane gravitational waves are interesting mathematical models
for studying the lensing effect of gravitational waves. In particular, the focusing effect of plane
gravitational waves on light rays can be studied quite explicitly, without any weak-field or small-
angle approximations. This focusing effect is reflected by an interesting light cone structure.

The basic features with relevance to lensing can be summarized in the following way. If the
profile functions f and g are differentiable, and the coordinates (x, y, u, v) range over R

4, the
spacetime with the metric (162) is geodesically complete [118]. With the exception of the integral
curves of ∂v, all inextendible lightlike geodesics contain a pair of conjugate points. Let q be the first
conjugate point along a past-oriented lightlike geodesic from an observation event pO. Then the
first caustic of the past light cone of pO is a parabola through q. (It depends on the profile functions
f and g whether or not there are more caustics, i.e., second, third, etc. conjugate points.) This
parabola is completely contained in a hyperplane u = constant. All light rays through pO, with
the exception of the integral curve of ∂v, pass through this parabola. In other words, the entire
sky of pO, with the exception of one point, is focused into a curve (see Figure 30). This astigmatic
focusing effect of plane gravitational waves was discovered by Penrose [327] who worked out the
details for “sufficiently weak sandwich waves”. (The name “sandwich wave” refers to the case that
f(u) and g(u) are different from zero only in a finite interval u1 < u < u2.) Full proofs of the
above statements, for arbitrary profile functions f and g, were given by Ehrlich and Emch [120, 121]
(cf. [32], Chapter 13). The latter authors also demonstrate that plane gravitational wave spacetimes
are causally continuous but not causally simple. This strengthens Penrose’s observation [327] that
they are not globally hyperbolic. (For the hierarchy of causality notions see [32].) The generators
of the light cone leave the boundary of the chronological past I−(pO) when they reach the caustic.
Thus, the above-mentioned parabola is also the cut locus of the past light cone. By the general
results of Section 2.8, the occurrence of a cut locus implies that there is multiple imaging in the
plane-wave spacetime. The number of images depends on the profile functions. We may choose
the profile functions such that there is no second caustic. (The “sufficiently weak sandwich waves”
considered by Penrose [327] are of this kind.) Then Figure 30 demonstrates that an appropriately
placed worldline (close to the caustic) intersects the past light cone exactly twice, so there is
double-imaging. Thus, the plane waves demonstrate that the number of images need not be odd,
even in the case of a geodesically complete spacetime with trivial topology.

The geodesic and causal structure of plane gravitational waves and, more generally, of pp-waves
is also studied in [205, 72].

One often considers profile functions f and g with Dirac-delta-like singularities (“impulsive
gravitational waves”). Then a mathematically rigorous treatment of the geodesic equation, and of
the geodesic deviation equation, is delicate because it involves operations on distributions which
are not obviously well-defined. For a detailed mathematical study of this situation see [387, 246].

Garfinkle [163] discovered an interesting example for a pp-wave which is singular on a 2-
dimensional worldsheet. This exact solution of Einstein’s vacuum field equation can be interpreted
as a wave that travels along a cosmic string. Lensing in this spacetime was numerically discussed
by Vollick and Unruh [423].

The vast majority of work on lensing by gravitational waves is done in the weak-field approxi-
mation. Both for the exact treatment and for the weak-field approximation one may use Kovner’s
version of Fermat’s principle (see Section 2.9), which has the advantage that it allows for time-
dependent situations. Applications of this principle to gravitational waves have been worked out
in the original article by Kovner [240] and by Faraoni [139, 140].

92



pO q�
v � u v + ux

Figure 30: Past light cone of an event pO in the spacetime (162) of a plane gravitational wave.
The picture was produced with profile functions f(u) > 0 and g(u) = 0. Then there is focusing
in the x-direction and defocusing in the y-direction. In the (2+1)-dimensional picture, with the
y-coordinate not shown, the past light cone is completely refocused into a single point q, with the
exception of one generator λ. It depends on the profile functions whether there is a second, third,
and so on, caustic. In any case, the generators leave the boundary of the chronological past I−(pO)
when they pass through the first caustic. Taking the y-coordinate into account, the first caustic
is not a point but a parabola (“astigmatic focusing”) (see Figure 31). An electromagnetic plane
wave (vanishing Weyl tensor rather than vanishing Ricci tensor) can refocus a light cone, with the
exception of one generator, even into a point in 3+ 1 dimensions (“anastigmatic focusing”) (cf.
Penrose [327] where a hand-drawing similar to the picture above can be found).
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(c) (a) (b) yv
x

Figure 31: “Small wave fronts” of the light cone in the spacetime (162) of a plane gravitational
wave. The picture shows the intersection of the light cone of Figure 30 with the lightlike hyperplane
u = constant for three different values of the constant: (a) exactly at the caustic (parabola), (b)
at a larger value of u (hyperbolic paraboloid), and (c) at a smaller value of u (elliptic paraboloid).
In each case, the hyperplane u = constant does not intersect the one generator λ tangent to ∂v;
all other generators are intersected transversely and exactly once.
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[29] Bażański, S.L., “Some properties of light propagation in relativity”, in Rembieliński, J.,
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nerowicz on his 60th birthday, pp. 215–224, (Reidel, Dordrecht; Boston, 1976).
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ing, (Birkhäuser, Basel; Boston, 1998).
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[372] Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(XII), 189–196, (1916).

[373] Seitz, S., Schneider, P., and Ehlers, J., “Light propagation in arbitrary spacetimes and
the gravitational lens approximation”, Class. Quantum Grav., 11, 2345–2373, (1994).
[astro-ph/9403056].

[374] Sereno, M., “Detecting gravitomagnetism with rotation of polarization by a gravitational
lens”, Mon. Not. R. Astron. Soc., 356, 381–385, (2005). [0410015].

[375] Sereno, M., “Influence of the cosmological constant on gravitational lensing in small systems”,
Phys. Rev. D, 77, 043004, (2008). [0711.1802].

[376] Sereno, M., “Role of Λ in the cosmological lens equation”, Phys. Rev. Lett., 102, 021301,
(2009). [0807.5123].

116

http://arxiv.org/abs/gr-qc/0105070
http://arxiv.org/abs/astro-ph/0611744
http://arxiv.org/abs/astro-ph/0302547
http://adsabs.harvard.edu/abs/1985A&A...143..413S
http://arxiv.org/abs/0712.1559
http://arxiv.org/abs/0807.0380
http://arxiv.org/abs/astro-ph/9403056
http://arxiv.org/abs/0410015
http://arxiv.org/abs/0711.1802
http://arxiv.org/abs/0807.5123


[377] Sereno, M., and de Luca, F., “Primary caustics and critical points behind a Kerr black hole”,
Phys. Rev. D, 78, 023008, (2008). [0710.5923].

[378] Serre, J.P., “Homologie singulière des espaces fibrés. Applications.”, Ann. Math., 54, 425–
505, (1951).

[379] Shapiro, S.L., “Radiation from stellar collapse to a black hole”, Astrophys. J., 472, 308–326,
(1996).

[380] Sharp, N.A., “Geodesics in black hole space-times”, Gen. Relativ. Gravit., 10, 659–670,
(1979).

[381] Sikora, M., “On light propagation near a rotating black hole. II”, Acta Astron., 29, 87–92,
(1979).

[382] Simpson, F., Peacock, J.A., and Heavens, A.F., “On lensing by a cosmological constant”,
Mon. Not. R. Astron. Soc., 402, 2009–2016, (2010). [0809.1819].

[383] Skrotskii, G. V., “The influence of gravitation on the propagation of light”, Sov. Phys. Dokl.,
2, 226–229, (1957).

[384] Sokolov, D.D., and Starobinsky, A.A., “The structure of the curvature tensor at conical
singularities.”, Sov. Phys. Dokl., 22, 312–313, (1977).

[385] Stachel, J., “Globally stationary but locally static spacetimes: A gravitational analog of the
Aharonov–Bohm effect”, Phys. Rev. D, 26, 1281–1290, (1982).

[386] Stefanov, I.Zh., Yazadjiev, S.S., and Gyulchev, G.G., “Connection between black-hole quasi-
normal modes andlensing in the strong deflection limit”, Phys. Rev. Lett., 104, 251103,
(2010). [1003.1609].

[387] Steinbauer, R., “Geodesics and geodesic deviation for impulsive gravitational waves”, J.
Math. Phys., 39, 2201–2212, (1998). [gr-qc/9710119].

[388] Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of
Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2003), 2nd edition.

[389] Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York,
1984).
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