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Abstract—This paper proposes a technique for motion
estimation of groups of targets based on evolving graph
networks. The main novelty over alternative group track-
ing techniques stems from learning the network structure
for the groups. Each node of the graph corresponds to
a target within the group. The uncertainty of the group
structure is estimated jointly with the group target states.
New group structure evolving models are proposed for
automatic graph structure initialisation, incorporation
of new nodes, unexisting nodes removal and the edge
update. Both the state and the graph structure are
updated based on range and bearing measurements. This
evolving graph model is propagated combined with a
sequential Monte Carlo framework able to cope with
measurement origin uncertainty. The effectiveness of the
proposed approach is illustrated over scenarios for group
motion estimation in urban environments. Results with
challenging scenarios with merging, splitting and crossing
of groups are presented with high estimation accuracy.
The performance of the algorithm is also evaluated and
shown on real ground moving target indicator (GMTI)
radar data and in the presence of data origin uncertainty.

Keywords — evolving graphs, random graphs, group tar-
get tracking, nonlinear estimation, Monte Carlo methods,
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I. INTRODUCTION

During the last years group object tracking has been
investigated in various different applications includ-
ing road traffic systems, military surveillance and in
particular for ground moving target indicator (GMTI)
tracking [1] and robotics applications [2]-[5].

Groups of targets can be considered as formations
of entities whose number varies over time because
targets can enter a scene, or disappear at random times.
The groups can split, merge, to be relatively near to
each other or move largely independently on each
other. However, it is typical for group formations to
maintain some patterns of movement [6] and hence the
methods for group tracking differ from the methods of
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standard multiple-target tracking. Although individual
targets in the group can exhibit independent movement
at a certain level, overall the group will move as one
whole, synchronising the movement of the individual
entities and avoiding collisions. In most of the multi-
target tracking methods, as opposed to groups tracking
methods, tracking of individual objects is the common
approach. However, there are strong motivations to
model and to study the behaviour of groups. One
motivation is the ability to statistically infer which
tracks are moving in formation or are having common
movement. We may also want to detect events inside
groups (splitting) and between groups (merging). This
information fits well with a number of modern multi-
target tracking applications where one may want to
differentiate friendly objects from enemies or to predict
the intention, destination and future manoeuvres of
targets. Moreover, another strong motivation for group
tracking is in the possibility of using common informa-
tion about the group to improve the estimation of the
objects’ individual states. For instance, in case of low
detection probabilities and/or very noisy environments,
by modeling the targets’ interactions inside groups,
the detection of stealthy targets can be facilitated [7].
A further motivation is that a user may be unable
to assimilate information relating to large numbers of
individual objects. Group object estimation makes it
possible, for such a user, to detect events or focus on
particular groups with interesting behaviour. Finally, an
additional motivation is to consider common applica-
tions where objects have multiple parts, each of which
generates detections (e.g. when multiple radar scatters
exist in a single extended object). In many cases group
object tracking is the only applicable approach, for
instance when tracking thousands of targets that may
not be possible to be individually tracked [8]. Rescuing
people in earthquakes, floods and disaster events also
necessitate approaches where the whole group motion
is monitored instead of the motion of each individual
person.
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In [9] the benefit of group object tracking over indi-
vidual object tracking is demonstrated over simulated
and real data in terms of estimation accuracy. The
interactions between group members are modelled by
repulsive forces. In these classes of problems, group
modeling offers a natural solution.

Different models of groups of objects have been
proposed in the literature, such as particle models for
flocks of birds [10]-[12], and leader-follower models
[6]. However, estimating the dynamic evolution of the
group structure has not been widely studied in the
literature, although there are similarities with methods
used in evolving network models [13], [14].

Methods for group object tracking also vary widely:
from Kalman filtering approaches, Joint Probability
Data Association (JPDA) [15], [16] to Probability Hy-
pothesis Density (PHD) filtering [17]-[19], and others
[20]-[24]. The influence of the ‘negative’ informa-
tion on group object tracking is considered in [25]
and ground moving target indicator tracking based on
particle filtering in [1]. In [19] a coordinated group
tracking model is presented, comprising a continuous-
time motion of the group and a group structure tran-
sition model. A Markov chain Monte Carlo (MCMC)
particle filter algorithm is proposed to approximate the
posterior probability density function (PDF) of the high
dimensional state.

Mabhler [6] outlines that careful group target motion
models should be able to describe target appearance
and disappearance, not just for the motion of individual
targets and the degree to which targets jointly move in
a coordinated manner.

Inspired by some ideas from [13], we consider
the groups of objects as evolving undirected random
graphs. The novelty of this paper is in the proposed
approach for estimating the group structure jointly with
the group target states using a graphical representation.
With this graphical representation, objects are not as-
signed to groups but are connected to one another. This
enables the cohesion of a group to be precisely mod-
eled. The main contributions for this work consist in:
i) the developed graphical representation of the group
structure, ii) a second graphical model is developed
for the groups which gives information about mutually
interacting groups and that is also used in the data
association algorithm, ii7) finally, target state estimates
(from the designed Monte Carlo methods) within the
same group or within interacting groups are compared
in order to update the graph.

The remaining parts of this paper are organised as
follows. Section II presents the evolving network mod-
els. Section IV formulates the group object tracking
problem jointly with the proposed evolving network
model for the groups. Section VI presents results with
simulated data and from real GMTI radar measure-
ments, with measurement origin uncertainty. Finally,
conclusions are given in Section VII.

II. EVOLVING NETWORK MODELS

The evolution of complex network structures has
been studied in the light of different problems, such
as complex networks in communications, biology, so-
cial sciences, economics and Internet (see, e.g., the
surveys [13], [14]). Graph theory represents natural
ways of modeling these network structures. Within this
graphical family, random graphs introduced in the early
sixty by Erdos and Renyi [26] are the first approach
attempting to model these complex evolving networks.
A random graph of size m is simply obtained by
starting with a set of n vertices and by adding randomly
edges between them. In the first model proposed in
[26], every possible edge in the graph occurs with a
chosen common probability. After several studies and
generalisation on random graph network theory, recent
research in networks has been focussed on more sophis-
ticated evolving dynamic systems. The main difference
stems from the necessity to continuously change the
size of the graph (e.g., due to addition of new nodes or
removal of nodes). Another major difference is in the
probabilities associated to the creation of new edges.
For instance, when adding a new node, instead of
using a random process with an equal probability for
the generation of new edges, a preferential creation
of edges can be computed. The preferential strategy
of adding edges is based on the assumption that a
node with a higher impact in the graph network has
a higher probability to be connected to new nodes
than a second node with less impact. For instance, for
a research community network, an article with many
citations has more chances to be cited than a paper
with few citations.

The flexible approach of evolving graphs fits well
to the problem of group object tracking. The closest
application to the group modelling task is the World-
Wide Web (WWW) network representing a large dy-
namic network where nodes and links are continuously
created and removed [13]. However, the network char-
acterising the group object evolution is obviously more
dynamic than the WWW network where the effects of
removed links between nodes are often negligible. A
significant novelty in the evolving group object network
that we develop is that the targets have dynamical
spatial constraints. The preferential approach is con-
sequently irrelevant for the group tracking problem
and more appropriate evolving models need to be
introduced.

In this paper we extend concepts of evolving network
models to group object network in Section III. A graph-
ical representation models the connections between
targets. At each time step new nodes are added, existing
nodes are removed and the set of edges is updated.

III. AN EVOLVING NETWORK MODEL FOR GROUP
MOTION ESTIMATION

One of the challenges in group object tracking is in
the necessity of updating the group structure and mod-
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eling the interactions between separate components.
For this purpose adding components to the groups,
removing others, splitting and merging groups are of
primary importance.

In our paper, G, is chosen to be an evolving
undirected random graph representing both the targets
within the groups (nodes in the graph) and some rela-
tions between the group members, which is reflected by
the edges between the related graph nodes. Symmetric
criteria as distance and velocity are used to create an
edge. However, other criteria can be applied.

A. Graphical Representation for the Group Object
Structure

Consider N targets constituting the set of vertices
{v1,...,vn}. Each vertex v; is associated with the
target state and with the target state’s corresponding
variance. The set of edges linking the set of vertices
is denoted by E. The graph structure can then be
denoted by G = ({v1,...,vn}, E). One edge, in E,
between two nodes v; and v; is denoted by (v;, v;). In
order to characterise the presence or absence of a link
(edge) between two nodes, the distance between these
two considered nodes is calculated, e.g., by the Maha-
lanobis distance criterion. The Mahalanobis distance
is computed from the estimated positions and from
the velocities of the separate objects. This estimated
distance is thresholded and a decision is made about the
connections. In this representation a group corresponds
to a connected component of the graph structure. Note
that, two nodes are in the same connected component if
and only if a path between them exists. In the following
sections, the groups in G'; are denoted {g,...,g,,}
where the groups g, are the connected components of
G and ng is the number of groups in G.

In [19], G, represents a set of group’s labels for each
target. For example, with five targets, G, = [11 2 2 2]
means that targets 1 and 2 are in group 1 and tar-
gets 3, 4 and 5 are in group 2. With the graphical
representation, one similar group structure is: G; =
({v1,v2,v3,v4,v5},  {(v1,v2), (v3,v4), (v3,v5)})
and the groups correspond to the connected compo-
nents of the graph G.

B. Motivations for the Group Object Structure Graph-
ical Representation

The approach proposed in this paper builds up a
dynamical evolution model instead of using transition
probabilities in the space of possible group structures
(e.g., see Figure 1).

Algorithms of adding components to the groups,
removing others, splitting and merging groups by
taking into account geometric distances and velocity
distances between the groups and between the targets
are proposed.

In [19] the approach with transition probabilities is
followed. In contrast with [19], an evolution model

Evolution model
6= (X %% Gyy)

Fig. 1. Two approaches for modeling dynamical changes on the
graph structure. At left: transition probabilities 71 j, 7 =1,...,5
in the space of possible group structures (built, for this example,
from 3 existing targets with respective states: 1,2 and x3). At
right: an evolution model for G according to the previous graph
structure G¢—1 and according to the current states @1, 2 and @3
of all targets. Bold (blue) ellipses denote the current group structure,
the others ellipses (light-green) denote new group structures that may
be reached in one time step.

is designed for the group structure by incorporating
the information about closeness between the groups
and about closeness between targets within a group,
in a graphical way. At each time instant, based on the
decision made about birth and death targets, nodes are
created or removed inside a group. For each removed
node, all its links to other nodes are deleted, and for
each new node, respective links to neighbour nodes
are added. Similarly, when an object passes from one
group to another, the respective links (edges) in the
considered graph disappear, and one or more links will
appear in the graph of the other group which the object
joins.

A strong motivation for such graphical representation
is illustrated in Figure 2. The graphical representation
allows an easy switch in the group structure space:
removing or adding only one edge can change the
group structure.

A further motivation is illustrated in Figure 3 which
shows two groups g; and g, with the same nodes
{v1,...,v4}. These two groups are identical if con-
sidered as a set of indexes. When propagating these
two groups, using the graph representation, g, is more
likely to split than g,. The graph representation, allows,
thus, to propagate more information than a vector of
group indexes for each target.

C. Evolving Graph Models

The aim is to determine an evolution model G; =
f(G¢-1,X) for the group structure, for time ¢t > 0
and an initialisation process Gy = f(X) for ¢t = 0.
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The vector X; = (x¢1,...,®,) comprises the state
vectors of all the targets and f denotes the desired
evolution model.

The system

{ t:()v GOZ fI(XO)u
t>0, G:= fnso fnro feu(Gi-1,Xy),

shows the decomposition of the evolution model f
according to the time ¢ and according to three distinc-
tive steps: edge update, node incorporation and node
removal where o denotes the composition operation; fr
is an Initialisation model that will be defined in Section
HI-D; fgy is the graph Edge Updating model that will
be defined in Section III-E; fxn is the graph Nodes

6]

Fig. 2. One strong motivation of using a graphical representation.
In this example, with 3 nodes, in (a) a simple removal of one edge
can model a splitting group g, into 2 groups g; ; and g, 5. In (b),
in contrast with (a), one new edge can model merging of two groups
g, and gg in one new group g 3.

Fig. 3. Motivation of using a graphical representation. In this
example, with 4 nodes, 2 graphs represent 2 groups. These two
groups are identical if considered as a set of indexes. At left, the
graph representing g, contains more edges than the one, at right,
representing g,: g, is more likely to split than g;.

Incorporation model that will be defined in Section
HI-F; fng is the graph Nodes Suppression model that
will be defined in Section III-G.

D. Graph Initialisation- Model f

In this Section, we assume that, at time ¢ = 0, the
number of targets and their respective states are known,
given by one of the detection techniques from [16]. Let
us consider N targets constituting the set of vertices
{v1,...,vn}. Each vertex v; is associated with the
target state xo; at time ¢ = 0, as well as the target
state’s corresponding variance matrix Py ;. Model 1,
given below describes the proposed edge initialisation
method where Ej is the set of edges linking the set
of vertices {v1,...,vx}. Initially Ey is the empty set
{@}. The Mahalanobis distance d, j, between vertices
v; and v;, is calculated and we evaluate whether it ex-
ceeds a chosen decision threshold . The edge between
nodes v; and vy, is denoted by (i, k). Using Model 1,

Model 1.f;-The Edge Creation Process.
Eo = {o}
FOR i=1,...,N—1
FOR k=1:¢+1,...,N
CALCULATE d; j,
IFd;r <e, Eo=FEoU {(i,k)}
END
END
END

the initial graph structure Gy = ({v1, ..
then obtained.

., ON}, Eo) is

E. Edge Updating- Model fru

The evolving graph of group of targets is more dy-
namic than those studied in the literature [13]. Existing
edges should be updated at each time instant since
the graph structure is related with the dynamic spatial
configuration. In a straightforward way, Model 1 can
recalculate the distance between any pair of nodes.
However, the computational complexity can be reduced
when some information about group centres (means,
covariances and the distances between them) is used.
For each group g we define its centre O9 = n—lg Z x

Vi €Eg
and its corresponding average covariance matrix P9 =

1 g ;
e ZPk where ng is defined as the number of

Ve €Eg
targets in g. The centre and covariance matrix of each

group can be characterised differently, e.g., based on a
mixture of Gaussian components.

Using the Mahalanobis distance criterion, an ap-
propriate threshold ¢’ >> ¢, and based on Model
1, a second graph G' = ({v},..., v}, }, E’) can be
introduced with nodes v} being characterised by their
position O9:. A couple of connected nodes in the set
E’ can be interpreted as two groups that can possi-
bly have interactions (exchange of targets). Model 2
summarises the edge updating process between neigh-
bouring groups. The graph G’ will also be used in the
node incorporation process.
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Model 2. fry-Edges Updating Process.
FOR i=1,...,ng—1
APPLY Model 1
to the set of nodes in g; and update E/
FOR k=i+1,...,ng
IF edge (i,k) € E/
FOR each node in group g;,
CALCULATE the distance
to each node in group g,
COMPARE with ¢ and update
END
END
END
i = ng APPLY Model 1
to the set of nodes in g, and update E/

Model 2 can be illustrated using the example from
Figure 4. The considered graph contains 3 groups of
12 nodes. In Figure 4 (a), by introducing the centre
of each group, the graph G’ is represented: it contains
3 nodes, corresponding to the centre of each group,
and one edge between g, and g,. Figure 4 (b) and (c)
illustrates the update of Model 2.

Description of

Model 2 (fg,)
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Fig. 4. Model 2: (a) use a second graph structure G’ and, for the
edge updating process, (b) calculate distances between nodes in the
same group and (c) calculate distances between nodes in groups that
are connected through G'.

In each group, distances between any couple of
nodes are calculated as shown in Figure 4 (b). Further-
more, in Figure 4 (¢), for any couple of groups (g;, g,)
connected in graph G’ (in this example, only g, and
g, are connected). The distances between any couple
of nodes (v;, v;), chosen respectively in groups g, and
g;, are calculated. The use of Model 2, in this example,
avoids calculations of distances between nodes in g5
and nodes in g, and g,, respectively.

F. New Node Incorporation-Model fnr

Classical approaches rely on either random or pref-
erential approaches (the mixture of the two also exists)
in order to assign edges to the new nodes. Additionally,
in classical graph techniques, the number of new edges
assigned to each new node is fixed. The approach

proposed in this paper differs from the above mentioned
techniques. For the purposes of group tracking, the

Model 3. fn ;- Incorporation of new nodes.

Consider group 7 = 1
NodeNearGroup = false
DO
CALCULATE dyew,i
IF dpew,; <"
NodeNearGroup = true
FOR each node in g;,
CALCULATE the distance
between vnew and each node in g;
COMPARE with € and update E
END
FOR k=i+1...ng
IF edge (i, k) € E'
CALCULATE the distance
between vnew and each node in g,
COMPARE with € and update E
END
END
i=1+1
WHILE(Z = ng + 1 or NodeNearGroup = true)

distance calculated based on the interaction criterion
should be used to create edges with the existing nodes
and the number of edges is then determined by the
nodes’ spatial configuration. Consider a new node (ver-
tex) denoted as v,¢q and its state x,.,,. Depending on
the state @, and in comparison with the existing ng
nodes, new edges have to be created. A simple way is to
evaluate the criterion for the interaction between every
pair (Vyew, ;). In order to optimise the computational
time, the graph G’ defined in Section III-E can be used.

Model 3 shows the edge updating process when
incorporating a new node, where dycq,; is the Ma-
halanobis distance between Ve, and Oy, (dnew,i =
Mahalanobis-distance  ((Zynew, Prew), (i Z o

VL€

ﬁ Z P%)); the fixed threshold ¢” > ¢ introduced

Vi€Gi
in order to see whether the new node v,,.,, is interact-

ing with a node in a group g.

Let us illustrate Model 3 using the example from
Figure 5. The considered graph contains 4 groups of
14 nodes. In Figure 5 (a), by introducing the centre of
each group, the graph G’ is represented: it contains 4
nodes, corresponding to the centre of each group, and
two edges between, respectively, g, and g, and g5 and
g, Distances dyc.,; between the new node vje, and
centres of groups O; are computed. The principle of
Model 3 is to calculate distances dy,eq,; until finding
one neighbour group of node vy, according to a
threshold & or until reaching the last index 7 ( = ng).
Note that £ is chosen such that ¢’/ << &’ so that a
new node close to one group g according the threshold
¢’ is far from any group that is not connected with g
according to the threshold &’.

For the example presented on Figure 5, g, and g,
are not neighbours of v,.,, according to the distance
criterion. In contrast, g, satisfies the distance criterion.
Then, the calculated distances of Model 3, used to
update graph G, are illustrated. Distances between
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Description off (b)
Model 3 (fy,)

Fig. 5. Model 3: (a) use graph structure G’ by calculating the
distance from the new node vnew to the centres of all groups.
Once one group g; satisfies the distance threshold, (b) calculate
the distances between vnew and any node in g; in addition to the
distance between vneqw and any node in a group connected to g;
through G’.

Unew and any node in g, are calculated as shown in
Figure 5 (b). Furthermore, since g, is connected to
group g5, in graph G’, distances between v,,.,, and
any node in g, are also calculated.

The use of Model 3, in this example, avoids the
calculation of distances between v,., and nodes in
g; and g,, respectively.

G. Old Node Suppression-Model fns

This is the simplest graphical evolution modeling
part and consists of removing death targets by remov-
ing corresponding nodes and their related edges. A
target in the graph will be removed if the measurements
do not contain any information about it after a certain
period of time.

IV. PROBLEM FORMULATION

Consider the problem of tracking the motion of
groups of targets. Each target ¢ is characterised by its
state vector @, ; = (%14, T4, Yt i, Yt,;) (comprising the
positions ¢ ;, y;; and velocities @ ;, ¥ ; in  and y
directions respectively); / denotes the transpose oper-
ation. Targets which are close to one another tend to
form a group. The Mahalanobis distance d; j is chosen
as a criterion of closeness between the targets within a
group. At each time instant ¢, the set of objects tracked
in a group g can be modeled by a Random Finite Set
(RFS, see [6]) that incorporates the state vectors of the
group members, X7 = {:cgtJ, x99, .. ,mgtvng} (ng
is the random size of group g). Knowing the group
structure Gy = {gy,...,9,,} (ng is the number of
groups), the joint state for the all the targets in the ng
groups has the expression X; = {th...,Xf"G }.

At time ¢t a measurement vector z; is received which
can be described as a function of the state X; =
(X9, .., X7"9}. Assuming that the measurement

P( X, G| Z1.4) =

likelihood function p(z¢|X;) can be calculated, the
purpose is to compute sequentially the state PDF for
each group of objects. The changes of the groups such
as merging and splitting are taken into account during
the graph update process. Additionally, the groups’
movements are assumed independent.

Under the Markovian assumption for the state tran-
sition, the Bayesian prediction and filtering steps can
be written as follows:

(X, Gt|let71) = p(Gt‘Xu Zl:tfl) X p(Xt|Z1:t71)

= fp(Gt|Xt;Gt71) X
p(Xt|Xt—17Gt—1)p(Xt—1,Gt—1 |Z1:t—1)dXt—1th—la

p(2¢| X4, Gi) X p( X4, Gt Z1:4-1)
p(z¢|Z1:4-1)

where Z1.; is the set of measurements up to time ¢ and

z; 18 the current vector of measurements.

The transition PDF p(G;|X;,G¢_1) of the group
structure can be calculated knowing the prediction
of the target state and group structure in the pre-
vious time instant, and using the graph evolution
model introduced in Section III-C. The transition PDF
p(X¢|Xt—1,G¢—1) of the state of all targets is cal-
culated knowing the previous time target states and
group structure PDF p(X;_1,G;_1|Z1.;—1). With the
assumption of independence between group motions,
the PDF p(X ;| X;_1,G+_1) can be decomposed in the
following supplementary equation

(X[ Xi-1,Gi-1) = H (X7
9,€Gt_1

)

where p(X 7| X7 ) is the transition density of the set
of targets from the group g,.

In order to perform the correction step, the likelihood
function p(z:| X, G¢) of the whole state has to be
evaluated by means of a data association approach. In
this paper, the JPDA algorithm [16] is used to resolve
the measurement origin uncertainty.

In addition, in the gating process in the JPDA
algorithm is enhanced by using other information
about the graph structure, such as the distance between
groups. Figure 5 shows an example where groups gs
and g, can be considered separately from groups g,
and g,. Note that the graph G estimated at each
time instant is applied in the edge updating process
and in the nodes incorporation steps which leads
to reduction of the data association computations.
At each time step, the graph G’ can also be used
in the gating process. Indeed groups of the same
graph G’s connected component can be gathered in
separate data association process: the graph G offers
a straightforward method of clustering the targets for
the data association process.

Denote by {g},...,g;,_, }, the set of ngs connected
components in graph G’. Any connected component
g can model a set of groups that are close enough

2

3)
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to be treated in the same data association algorithm.
Under the independence assumption between the g/,
the following equation (5) can be written
p(zi| X1, Gy) = p(z4| X1, G, Gy)
= Hi:l,...,nc/ p(z{ X?il)’ ®)

where X tgil is the set of targets’ states belonging to
the groups in gj. The vector 2z’ comprises the subset
of measurements related with the group in gj. For
example, z7¢ can be chosen by ,gating measurements

using the set of targets state X7 .

A. Model of Individual Targets

The nearly constant velocity model [27], [28] is used
for the update of each node of the graph, i.e., for
modelling the motion of each target within a group.
In two dimensions, the state of the ith target is given
by:

Ty, = Az ,; +I'ny_y, (6)

where A = diag(A1, A1), A1 = ( LT > I =

0 1

T/2 1 0 0

( 0 0 7T/2 1

and 7,_; is the system dynamics noise. In order to
cover a wide range of motions, the velocity should be
approximately constant over straight line trajectories
and the velocity change should be abrupt at each turn
(especially for the direction of the velocity). Then, the
system dynamics noise 77,_ is represented as a sum
of two Gaussian components

!/
, T is the sampling interval

p(m—1) = aN(0,Q1) + (1 — )N (0,Q,), (1)

Q, =diag(0?,0?), Q,=diag(c?,02); o is a standard
deviation assumed common and constant for x and y;
01 < o9 are standard deviations allowing to model
respectively smooth and abrupt changes in the velocity.
The fixed coefficient « has values in the interval [0, 1].

In addition, to model the interaction between objects
in each group, the average velocity of group objects
is used in (6) instead of the velocity of each group
component. For each group g, in the group structure G
and for each x9,,; € XJ = {mgtyl, x90,..., a:gtmg}
we have the following equation

Ng
w?,i = ngl,i + Zl(Bw"t{Lj) +I'm_1, (8)
]:

where and B =
T

0 % . More sophisticated models can be con-

sidered to model targets’ interactions in each group
such as the developed in [19].

diag(B1,B;) with B} =

B. Observation Model

Range and bearing observations from a network
of low cost sensors positioned along the road are
considered as measurements. The measurement vector
z,; for the ith target contains the range r;; to each
target and the bearing /3; ;. The measurement equation
is of the form:

Zt; = (@) + wy i, &)

where h is the nonlinear function

h(z,;) = (\/xfi + yfi,tan_lyt’i> (10)
’ ’ Tti

and the measurement noise w;; is supposed to be
Gaussian, with a known covariance matrix R.

C. Farticle Filtering Algorithms for Group Motion
Estimation

In this paper, two approaches are proposed. The
impact of incorporating or not the group structure in
the state is studied, also from the point of view of its
computational complexity. One way of considering the
group structure is to propagate, at each time step, a
deterministic group structure using the previous group
structure G;_1 and the _current estimate of all /\the
target states denoted by X, i.e., Gy = f(Gi—1, X¢).
Although the complexity of such an approach is re-
duced, it does not provide information about the group
structure uncertainty. This group structure evolution
model has been introduced in [29].

In contrast, by considering an augmented state (in-
stead of X, the state is now (X}, G¢)), the group
structure uncertainty can be accounted for in a better
way. This group structure evolution model with an aug-
mented state has been studied in [30]. In the next two
subsections, particle filtering algorithms are presented
combined with these two approaches.

1) Deterministic Update of the Graph Structure:

We denote by N, the number of particles and L is the
current index of a particle. Having in mind equations
(2)-(5), the implemented algorithm is described as
Algorithm 1, where the proposal PDF is of the form:
0o (XP X550 2041) = p(XT|XT0{Y) (where
p(X?|X fj’l(L)) is the transition PDF, for the target’s
state in the group g;, under the assumption that the
interaction between targets is with respect to the
group structure G;_1). In order to sample from this
transition PDF, a nearly constant velocity model (6)

is used for each component thi’l(L) of the particle

XD o obtain X915,

JPDA Combined with the Estimated Group Structure

In step 2 of Algorithm 1, the data association problem
is resolved by the JPDA algorithm [16]. The graph
structure is used in the first step of the JPDA algorithm.
Information contained in the graph structure is used to
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Algorithm 1. The particle filter with deterministic update of
the group structure
1. Prediction step (Eq. (4))
FOR all g, € G
FOR L =1...Np,
DRAW samples from the proposal
PDF
9i»
X3
END
END
CALCULATE the average predicted state vector X ¢|;_1

ESTIMATE G using Gt = f(Gi—1, X ¢_1)

) (Xg1|Xg7t’(li)7zOt 1)

2. Updating step (Eq. (3))
FORL=1...Np
CALCULATE the likelihood function according to:
equation (5) and using a JPDA algorithm [16]
END
UPDATE and NORMALISE the weights
CALCULATE the estimate _/X\t of the current state
vector X ¢
UPDATE G; using Gt = f(Gi_1, X 1)
3. Resampling
Perform the resampling step if Ne rf < Ninr

cluster the data association problem into distinct sub-
problems (Eq. (5)). This clustering stage helps reducing
the computation time during the gating process (this
gating process, in turn, is important for reducing the
number of data associations hypotheses). The weight
update is then performed by multiplying the likelihood
by the previous time weights (Eq. (3))

Finally, in step 3 for each target we estimate the
corresponding efficient components in the particles
X EL) and resample if the number of efficient particles
]\Afeff is less than a threshold Nyy,,: Neff < Ny [31].

2) Augmented State for a Graph Structure Uncer-
tainty Estimation: In this Section we present a particle
filtering technique with a Metropolis-Hastings (MH)
step for group object motion estimation. Due to the
augmented state with the graph structure, each particle
contains the targets state and the group structure. In
general, the MH steps are known to allow using less
number of particles than the classical particle filter. We
are, then introducing these MH steps in order to reduce
the size of the particle cloud.

Having in mind (2)-(5), the implemented evolving
group model is described as Algorithm 2, where the
samples X tg"’(L) are drawn from the proposal PDF
a5 (XPONXE ) z000) = p(XP XY,
The samples GﬁL) for the graph structure are drawn
from the PDF Q(G¢| X o.t, Gi—1) = p(G¢| X, Gi—1).

To sample from the proposal PDF ¢g,, a nearly con-
stant velocity model (6)-(7) is used for each component
X9 of a particle X' to obtain X¥¢("

The interactions within each group are modeled
based on the mean velocity of group components (from
the constant velocity model instead of the velocity of
each group component).

To sample from the proposal PDF @, the group struc-

Algorithm 2. Particle filtering with a state augmented by the
group structure

1. Prediction step
FORL=1...N,p

FOR all g!") € G,
DRAW a sample X tgi’(L> from the proposal

PDF ¢{"):
x0 B g x B x84y D z0a1)
END
DRAW a sample GEL> from a proposal
PDF Q
G" ~e@x(l 6
END

2. Updating step

FORL=1...N,p
CALCULATE the likelihood function according to:
equation (5) and using a JPDA algorithm [16]

END

Run the Metropolis-Hastings algorithm

with m steps (see Algorithm 3)

UPDATE and NORMALISE the weights

CALCULATE the estimate 5(\,5 of the current state vector X ¢+

3. Resampling
Perform the resampling step if Nesr < Nipr

ture evolution model G; = f(Gt—1, X ;) introduced in
Section III-C, is used. In step 2 of Algorithm 2, the
likelihood is calculated by assuming independence be-
tween clusters of measurements corresponding to each
group. The MH step is described in Algorithm 3 and
is iterated m time steps (m being chosen beforehand).
The MH algorithm is introduced to sample from the
joint PDF p(Xt7 Gt|Z1:t).

In step 2 the likelihood and the weight update is
performed, similarly to Algorithm 1, using the JPDA
algorithm.

Finally, in step 3, for each target we estimate the
corresponding efficient components in the particles
X gL) and resample if the effective number of samples
Neff is less than a threshold Ny, [31].

Algorithm 3. Metropolis-Hastings step with the group structure

FORL=1... N,
FOR all g™ € G'%),
DRAW a new sample X7y gi(prop) using the proposal
PDF éf), ngt( 1) and zg.¢—1(see Algorithm 2):
X9 i(prop) _ éf)(X?L’(L)lX&é?,ZO;tfl)
END
DRAW a new sample GY"°P using a the proposal
PDF Q, Xﬁpmp) and Gi?l(sie Algorithm 2):
G ~ QG X, G
CALCULATE the likelihood for X {P"°P)
CALCULATE the acceptance ratio
| Pzl X0
p(ze| X))
UPDATE (X", G(L>) and its likelihood
END

p=min(l,

Note that, the particle filter presented in subsection
IV-C1 can be implemented with a MH step, and
respectively, the particle filter proposed in subsection
IV-C2 can be implemented without the MH move step.
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Hence, we have four different types of algorithms. For
conciseness, only two filters are presented in this paper.
The next section contains simulation results and a
comparison is made between the two presented particle
filters.

V. SIMULATION RESULTS

A. Scenario and Models

Positions (group 1)
3000

2500 -
2000 -
1500 -

1000~

5 oy gy

500

-500

-1000 L L L I |
-1000 -500 0 500 1000 1500 2000

x coordinate, [m]

Fig. 6. Actual trajectory of group 1

The proposed techniques have been tested over a sce-
nario in urban environment for ground moving object
tracking. The movement of four groups (see Figures
6-9), each of them comprising two ground targets, is
simulated over a period of 280s. All simulations and
calculations have been done using a 4GHz Processor
and Matlab software. The two filters provide outputs
in every time second.

The scenario is the following: at the beginning,
groups 1 and 2 form the same entity and split later
in two groups during their motion. In contrast, groups
3 and 4 are two different entities at the beginning but
merge into one group during the motion. In addition,
group 1, during the time evolution, passes near groups
3 and 4. Figure 10 shows this evolution of the group

Positions (group 2)
3000

2500 -
2000 -
1500 -

1000 -

5 ey gy

500 -

-500

~1000 L L L L I i
-1000 -500 0 500 1000 1500 2000

x coordinate, [m]

Fig. 7. Actual trajectory of group 2

Positions (group 3)
3000

2500 -

2000 -

1500 -

1000 -

[RCUURURURN

500 -

-500

~1000 L L I I

Il
1000 -500 0 500 1000 1500
x coordinate, [m]

Fig. 8. Actual trajectory of group 3

Positions (group 4)
3000 -

2500 -
2000 -
1500 -
1000 -

500 [

y coordinate, [m]

—500

—1000 i i

i
2000

-1000 -500 o} 500 1000 1500
X coordinate, [m]

Fig. 9. Actual trajectory of group 4

Group structure size

39

3.8

3.5

3.4r

number of groups

3.3

3.2

3.1

3 i

2000

0] 50 160 l."‘?O 260 2’:":0
time, [s]
Fig. 10. Evolution of the group structure in time. From Os to
20s, three groups are evolving: (1 4 2),3 and 4. Then from
time instant 20s to 40s, four groups are evolving: 1,2, 3 and
4. Finally, from time instant 40s to the end, three groups are
evolving: 1,2 and (3 + 4).

300
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structure with two changes due to, respectively, split-
ting and merging of groups.

The scenario is challenging since the filter should be
able to deal with splitting and merging of groups and
also should be able to avoid interactions with crossing
groups coming from the opposite direction.

B. Results

1) Deterministic Group Structure Update: The par-
ticle filter (PF) with sequential importance re-sampling
(SIR) steps, described as Algorithm 1 in section IV-C1,
has been applied to the previous scenario. Figures 11-
13 show the performance of the filter for all the 8
targets, 3000 particles and N, = 300. The coefficient
« for the Gaussian sum in the constant velocity model
has been chosen to be equal to 0.7 and the sampling
interval is 7" = 1s. The Mahalanobis distance threshold
for determining whether two targets are in the same
group or not, has been chosen equal to respectively
55m for the position and 15m/s for the velocity. These
threshold values are very sensitive to the elements
of the estimated covariance matrix for each target. A
suitable choice of these parameters is necessary to
avoid gatherings of two targets, with big difference
in their speed or position, in the same group. The
Mahalanobis distance threshold for the group centre
has been chosen 4 times bigger than the previous
thresholds.

Estimated trajectories
3000 .

2500
2000
1500

1000

y coordinate, [m]

500 -

ok

=500 of:

~1000 i i i i i j
—-1000 -500 0 500 1000 1500 2000

x coordinate, [m]

Fig. 11. Estimated trajectories for the 8 targets from a single
run. The circles represent the sensor places.

H groups structures ‘

1 g1 =1{1,2,7,8}; 9, = {3,4}; g3 = {5,6}

2 g, ={1,2}; g5 = {3,4,5,6}:93 = {7, 8}

31 g.=1{1,2});9,=1{3,4}1:93={5,6}; 9, = {7, 8}
TABLE I

LISTING OF THREE GROUP STRUCTURES CORRESPONDING
TO THE ACTUAL SIMULATED GROUP STRUCTURE
EVOLUTION.

Figures 12 and 13 show the position mean errors
from 50 Monte Carlo runs. The developed approach

error X

error , [m]

0 50 100 150 200 250 300
time, [s]

error , [m]

0 50 100 150 200 250 300
time, [s]

Fig. 12. Position estimation error for eight targets.

error vx
20

N
o

o

error , [m/s]

-10

0 50 100 150 200 250 300
time, [s]
error vy

10

o

error , [m/s]

-10

50 100 150 200 250 300
time, [s]

Fig. 13.  Velocity estimation error for eight targets.

provides accurate estimates of the positions of the
separate vehicles nevertheless a very simple first degree
evolution model (constant velocity model) is used.
Consequently, abrupt changes of velocity during the
time evolution correspond to the spikes appearing on
the Figures 16 and 17.

Figure 14 shows a comparison between the group
structure evolution estimated using the PF and the
group structure evolution estimated using the simulated
trajectory. One can conclude that the group structure is
well captured by the introduced graph evolution model.
In addition, it is evident that the changes of the group
structure are not detected at the same time instant due
to the errors. The group structure estimated using the
PF is also changing and incorporates five supplemen-
tary groups structures (4 to 8) different to the three
ones presented in Table I. These supplementary group
structures occur essentially when, due to estimation
errors and during a short time, one group is abnormally
split. Furthermore, the group crossing simulated in this
scenario did not change the estimated group structure.

2) Augmented State with Group Structure: The SIR
PF with the MH step has been applied to this scenario.
Figures 15-17 show the performance of the filter for
all the 8 targets. In this experiment 1000 particles have
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Group structure evolution in time
T T

200 250

L
50 100 150 200 250

Fig. 14. Comparison between the group structure evolution
estimated using the simulated trajectory (at the top) and using
the PF (at the bottom)

been used with m = 10 iteration of the MH algorithm.
The coefficient « for the Gaussian sum in the constant
velocity model has been chosen to be equal to 0.7.

Estimated trajectories

3000

2500 -

2000 -

1500 -

1000 -

500

-500

-1000

-1000 500 1000 1500 2000
x coordinate, [m]

-500 0

Fig. 15. Estimated trajectories for the 8 targets. the circles
represent the sensor places.

Figures 16 and 17 show the position and velocity
mean errors for 50 Monte Carlo runs. The developed
approach provides accurate estimates of the positions of
the separate vehicles. Additionally, Figure 18 presents
the group structures estimated by the PF and the actual
group structures of the simulated trajectories. The nine
more relevant groups are labeled from 1 to 9 and a
probability is calculated for each group at each time.

The group structures estimated by the PF give
weights to five supplementary group structures (4 to 9).
These supplementary group structures occur essentially
when, due to estimation errors and during a short time,
one group is abnormally split (especially when one
edge is removed). Groups 4 to 6 differ from group 3,
slightly, with one less edge and groups 7 to 9 differ

error X

error , [m]

i
150
time, [s]
errory

error , [m]

i
300

i
150
time, [s]

Fig. 16. Position estimation error for eight targets.
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error vy
20
— 10
2
E
- o]
S
¢ -10
20 i i i i i ‘
0 50 100 150 200 250
time, [s]
Fig. 17.  Velocity estimation error for eight targets.

from group 2, slightly, with one less edge. One can
conclude that the group structure is well captured by
the introduced graph evolution model.

3) Comparison Between the Two Approaches: As
expected, the PF with a state augmented by the group
structure and incorporating an MH move step has
shown slightly better accuracy that the PF with de-
terministic graph update. However, the computational
complexity is increased substantially (approximately 3
times more) compared with the PF without the MH step
and with deterministic update of the graph structure.
The computational time for on time step (1s) are in av-
erage, respectively, 220ms for the deterministic update
and 500ms for the second approach. Both approaches
satisfy the real time constraint for these simulations
with Matlab.

The approach with the augmented state can model
well the group structure uncertainty and hence, gives
more robust performance.
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Fig. 18. Group structure evolution in the simulated trajectory
(bottom) and estimated by the PF (top). The nine more
relevant groups are labeled from 1 to 9 and a probability is
calculated, for each group and at each time step, for the PF.

Nevertheless, that the application we consider is for
groups of ground targets, the proposed techniques are
quite general and can be applied to other systems, such
as aircrafts or robots. In the next section, due to its ro-
bust performances and the possibility to provide group
structure uncertainty, only the approach described on
this section is applied to a real GMTI data set.

VI. RESULTS ON REAL DATA

20 60 80

0 20 30

40 50 60 70 80
Time, [s]

Fig. 19. Measured bearing and measured range, resp. for two groups.

This section presents results for the approach pro-
posed in section V-B2. The validation is performed over
real GMTI radar data shown in Figure VI provided to
us by QinetiQ, UK. Two groups of targets are moving
on the ground by crossing their paths which constitutes
an additional ambiguity for the group tracking algo-
rithm. The GMTI measurements are obtained by an
embedded radar on a moving airborn platform. There
is a measurement origin uncertainty which requires the
solution of the data association problem.

As seen from Figure VI, there is clutter noise in the
measured bearing angles and measured distances to the
targets.

The developed approach provides good estimation
accuracy of each vehicle trajectory positions (see Fig-
ure 20). Figure 21 shows additionally that the estimated
x coordinates of the groups are close to x coordinates
calculated from the measurements. The proposed algo-
rithm is able to cope with the crossed trajectories of
the groups.

Trajectories

1600 1800 2000 2200 2400 2600
X coordinate, [m]

Fig. 20. Estimated trajectories for the 2 groups. The arrows show
the directions of the movement

* measurements
target 1
target 2
farget 3
target 4
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Fig. 21.  This Figure shows the estimated = coordinates for the
2 groups jointly with the x coordinates are calculated from the
measurements (converted from range and bearing).
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Figure 22 presents the group structures estimated
by the particle filter. In the real scenario vehicles 1
and 2 are forming group 1 and vehicles 3 and 4 are
forming the second group. To plot the Figure 22, only
four relevant group structures appearing during the
estimation process are labeled from 1 to 4 (respectively

G1:{g,=(1,2),9, = (3,4)}, (11)
G2 :{g9,=(1),9.=(2),95 = (3,4}, (12)
Gs:{g, = (1, 3),93 =4} (13)
Gi:{g1=(1),9,=1(2),95=3),9.=(4)} (14

and a probability is calculated for each group at each
time. From Figure 22 one can conclude that the group
structure is well estimated by the introduced graph
evolution model. In addition, we can deduce precious
information about the group structures uncertainty dur-
ing the time evolution.

90%
75%
60%
45%
30%

15%

10 20

30. 40 50 60
Time (s)

Fig. 22.  Group structure evolution estimated by the PF. The 4 more
relevant group structures are labeled from 1 to 4 (see (11)-(14)) and
a probability is calculated, for each group and at each time step.

VII. CONCLUSIONS

This paper presents Monte Carlo techniques
for group object structure and state estimation.
Evolutionary graph network-type models for the group
structure are proposed. The graph structure can be
deterministically estimated or in a probabilistic way
with a graph jointly updated with the samples of the
particle filter. The core idea is to maintain the structure
of a graph in which connected components correspond
to groups of targets. The effectiveness of the proposed
techniques is investigated and validated over a
challenging urban environment scenario with splitting,
merging and crossing of groups. The performance of
the approach is also validated over real ground moving
target indicator data sets. The proposed approaches
successfully estimate the targets states and the group
structure graph with reliable performance and accurate
tracking.
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