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Interstrip resistance measurement 

Technical Note  

by A.Chilingarov (Lancaster University) 

 

In ATLAS SCT community two methods of interstrip resistance measurements are 

used: a) measuring the resistance between two strips and comparing it with a 

separately measured strip-to bias-rail resistance and b) applying DC voltage to one 

strip and measuring the current flowing to another strip. The method a) will further be 

referred to as Resistance Method and method b) as Induced Current Method.  

 

1. Basic relations 

Consider a semi-infinite chain of bias, Rb, and interstrip, Ris, resistors as shown in 

Fig.1. Assuming that all Rb are equal and the same is true for Ris one can find an 

equivalent resistance Req of the chain presented in Fig.1. 

 

 

 

 

Fig.1. Circuit diagram for Req 

As shown in Appendix A Req=bRb where  
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and x=Ris/Rb is the parameter quantifying the interstrip isolation. Obviously b>x. For 

x→0 xb   and isbeq RRR  . For x→∞ b→x and Req→Ris. 

 

In both methods it is necessary to measure R0 - the resistance between an individual 

strip and the bias rail. As demonstrated in Appendix A 
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2. Resistance Method 

Typically the resistance is measured between two adjacent strips. However in some 

situations the access is possible only to every second strip. Therefore this case is also 

considered. 

 

2.1 Neighbour strips 

The resistance R1 between two adjacent strips can be expressed as (see Appendix B) 
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For x→0 (b→0 ) R1→Ris while for x→∞ (b→x) R1→2Ris/x=2Rb. Note an interesting 

relation 
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The experimentally measured parameters R0 and R1 allow finding Rb and Ris. It is 

useful to introduce parameter 1=2R0/R1. Then as shown in Appendix B 
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When x→∞ (b→x) 1→1, Rb→R0 and Ris →∞. In this situation 1=1-1 is close to 1/x. 

It is the experimentally achievable accuracy in 1 that limits the maximum reliably 

measurable Ris. If e.g. the minimum reliably measurable 1 is estimated to be 0.05 

then the maximum measurable x=Ris/Rb is ~20. 

 

2.2 Next neighbour strips 

As in the previous section introduce 2=2R0/R2 where R2 is the resistance between 

two next neighbour strips. As shown in Appendix B 
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When x→∞ (b→x) 2→1, Rb→R0 and Ris →∞. In this situation 2=2-1 is close to 

1/x
2
. Again the accuracy in 2 limits the maximum reliably measurable Ris. For 

minimum reliably measurable 2 = 0.05 the maximum measurable x=Ris/Rb is 2.8 i.e. 

~7 times smaller than for the same accuracy in 1. Thus the Ris reconstruction ability 

for measurements with next neighbours is significantly worse than that for the 

adjacent strips. 

 

Fig.2 shows the 1 and 2 as a function of x. The lines are 1/x and 1/x
2
 dependences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Deviation of 1 and 2 from unity vs. x (see text for further details) 

 

Sometimes a more pragmatic approach is used when only “pad-pad” conductivity is 

measured as a function of bias and the voltage, above which this conductivity exceeds 

its plateau value by less than some fraction (e.g. <10%), is considered to be the “strip 

isolation” voltage. Note that without any additional information this approach doesn’t 

tell quantitatively how good the isolation is. If a usual assumption is made that the 

plateau value is equal to 1/(2R0) then for the adjacent strips  coincides with 1 and 

the plot in Fig.2 (or corresponding formula) allow an estimate of the lower limit for x 

10
-2

10
-1

10
0

10
1

10
2

1E-4

1E-3

0.01

0.1

1

10

 

 

=
(2

R
0
/R

p
a

d
-p

a
d
)-

1

x=R
is
/R

b

 
1

 
2

 1/x

1/x
2



 4 

(e.g. for <0.1 x>9). The pragmatism here is in assuming the pad-pad conductivity 

plateau value to be one half of the conductivity between the pad and the bias rail 

without actually measuring the latter. 

 

3. Induced Current Method 

When potential V0 is applied between a strip and the bias rail it induces a current 

flowing via Ris to the neighbouring strips. This current can be measured either directly 

or indirectly by connecting an ammeter or voltmeter parallel to the bias resistor, Rb, of 

the investigated strip. To work well the first approach requires the ammeter internal 

resistance to be much smaller than Rb while the second one requires the voltmeter 

internal resistance to be much larger than Rb. The latter condition can be easily 

satisfied because for modern voltmeters Rint~10GFor the ammeters however an 

ability to measure the currents below nA level is usually accompanied by an internal 

resistance being of an order of M. Thus the applicability range of the current 

measurement approach is narrower than that of the voltage one and because of this the 

former will not be considered further in this Note. 

 

3.1 Neighbour strips 

Typical approach is to connect between a strip and the bias rail a source-meter unit 

(SMU) providing potential V0 varying by a few volts around zero and to measure the 

current flowing out of the SMU, which allows R0 measurement. Simultaneously a 

voltmeter connected between a neighbour strip and the bias rail measures the potential 

V1 as a function of V0. Ideally the induced potential V1 should be simply proportional 

to V0 and their ratio would characterise the inter-strip isolation. In practice however 

the slope S1=dV1/dV0 is used instead of V1/V0. 

 

As shown in Appendix C the slope dependence on x is very simply expressed via b: 

b
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For x→0 (b→0 ) S1→1 while for x→∞ (b→x) S1→1/x →0. Experimentally measured 

parameters R0 and S1 allow reconstruction of the parameters in question: Rb and Ris. 

As demonstrated in Appendix C 
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In a typical situation when x→∞, S1 →0 one gets Rb→R0 and Ris→R0/S1=R0(dV0/dV1). 

A minimum detectable slope S1 defines the maximum measurable Ris. For a proven to 

be detectable S1 of ~10
-6

 the limit for Ris is ~10
6
R0, which for a typical R0~1M 

corresponds to Ris ~1000G. 

 

3.2 Next neighbour strips 

As shown in Appendix C the slope of the voltage induced on the next neighbour strip 

S2=dV2/dV0 is related to S1 in a very simple way: S2=S1
2
. Therefore the reconstruction 

formulae become 
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For x→∞ S2→ 0 as 1/x
2
. Therefore for the same limit of measurable S2 ~10

-6
 the limit 

for the Ris is ~10
3
R0, which for a typical R0~1M corresponds to Ris ~1G.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. S1 and S2 vs.x. 
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Fig.3 shows S1 and S2 as a function of x together with 1/x and 1/x
2
 lines. Similarly to 

the Resistance Method the measurements with neighbour strip have higher sensitivity 

compared to that for the next neighbour strip. But even for the latter the sensitivity is 

much higher than what can be achieved by the Resistance Method. 

 

3.3 The effects of non-zero resistance to the ground 

Another limit for the maximum measurable Ris appears from a non-zero resistance to 

the ground Rg. As demonstrated in Appendix C in a typical situation Rg<<Rb<<Ris the 

Ris calculated from the measured S1 represents the actual Ris in parallel with the 

effective parasitic resistance Rp=Rb
2
/Rg. For a typical R0~1Meven Rg~1 results in 

Rp~1000G, which sets a practical limit for the sensitivity of the induced voltage 

method. 

 

As explained in Appendix C a non-zero Rg results in an offset to the slope, which is 

the same for the neighbour and the next neighbour strips. Comparison of S1 and S2 

measured under the same conditions allows decoupling of the effects related to Ris and 

Rg. An example of such analysis is presented in Fig.4.  

 

The measurements were performed at room temperature and ~40% relative humidity 

with non-irradiated n-in-p microstrip sensor w27-bz1-p7 produced by Hamamatsu 

within the ATLAS Tracker Upgrade R&D Program. The sensor has 104 strips with a 

pitch of 74.5 m and a length of 8 mm. There is no p-spray or p-stop interstrip 

isolation in this sensor, which results in a relatively low Ris values even at quite high 

bias values. The sensor depletion voltage is 153V. The bias voltage was changing 

downwards from 300V after the sensor was kept at this bias for ~3 hours. Three 

consecutive strips 59, 60 and 61 were used. At each bias value two separate V0 scans 

were performed with the SMU connected either to strip 60 or 59 (with the connection 

to the other of these two strips floating) and the potential induced at the strip 61 was 

measured. In this way both slopes S1 and S2 were measured for each bias point. 

 

Fig.4a shows S1 and S2 as a function of bias voltage. As expected S2 is usually lower 

than S1 but at Ubias≥200V both slopes are very close and do not change with bias. This 

indicates that in this bias range both slopes are dominated by the Rg contribution. For 
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comparison S1
2
 is also shown outside the high bias range. This curve is in a reasonable 

agreement with S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4a. Bias dependence of S1 and S2 

 

The constant slope level observed at high bias was subtracted from S1, S2 and the Ris 

and Rb were calculated using these corrected slopes. The results are presented in 

Figs.4b and 4c respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4b. The interstrip resistance calculated from the corrected S1 and S2 
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The Ris reconstructed from S1 and S2 agree quite well. Better sensitivity of the 

measurement with the neighbour strip allows a wider bias range of measurable Ris. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4c. Measured, R0, and reconstructed, Rb, resistances 

 

At low bias the measured resistance R0 is significantly lower than its plateau level 

corresponding to the bias resistor value. However the reconstructed Rb remains 

approximately constant down to the lowest bias point. It is interesting that the bias 

resistance reconstruction works better for the next neighbour strip data. 

 

Consistency between the results obtained from the measurements with neighbour and 

next neighbour strips validates the model used in the calculations. 
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Appendix A. Basic relations details 

 

Looking at the circuit presented in Fig.1 one may notice that Req can be presented as 

Ris plus Rb parallel to Req that results in the following equation
*
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Using parameters x=Ris/Rb and b=Req/Rb the eq. (A.1) can be re-written as 
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or     02  xxbb    (A.3) 

from which it follows:   
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and      
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
 .   (A.5) 

The last is the result of solving eq. (A.3) vs. b and keeping only the positive solution. 

 

The resistance R0 between a strip and the bias rail consists of three resistors in 

parallel: bias resistor Rb and two Req i.e. 

eqb RRR

211

0

    (A.6) 

Using Req=bRb one gets from eq. (A.6) 
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Appendix B. Resistance method calculations 

a) Adjacent strips 

An equivalent circuit diagram for measuring resistance R1 between two adjacent strips 

is shown in Fig.B1. R1 is the resistance between the points A and B and can be 

expressed as follows 
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*
 I am indebted to Nobu Unno for the idea of this calculation. – A.C. 
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Fig.B1. Equivalent circuit diagram for measuring R1 

 

Using parameters x=Ris/Rb and b=Req/Rb the eq. (B.1) can be re-written as 

b

bx

R

Ris

2

)1(
1

1


     (B.2) 

Expressing x via b using eq.(A.4) one gets from (B.2) 
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Introduce parameter 1=2R0/R1. Using eqs. (A.7) and (B.3) one obtains 

x
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Expressing b via x from eq.(A.5) and finding x from the resulting equation one gets  
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Combining eqs. (B.4) and (B.5) one can express b vs. 1: 
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Using eq. (B.6) one obtains from (A.7) 
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b) Next-neighbour strips 

An equivalent circuit diagram for measuring resistance R2 between two next-

neighbour strips is shown in Fig.B2. Due to the symmetry there is no potential 

difference between the ends of the central bias resistor. Therefore it can be either 

removed or replaced by a short.  
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Fig.B2. Equivalent circuit diagram for measuring R2 

 

In both cases the resistance R2 between the points A and B can be expressed as: 
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From (B.9) the parameter 2=2R0/R2 can be expressed as (using also eq. (A.7)): 
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Using for x its form of eq. (A.4) one finally obtains: 
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As follows from (B.11) 

 
1

1;1
1

;
)2(

1
1

2

22

2

2
2














 bb

bb
  (B.12) 

The last part can be transformed into 
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Substituting in eq. (A.4) (b+1) from (B.12) and b
2
 from (B.13) one obtains 
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To express Rb via R0 and 2 one can re-write eq. (A.7) 
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Substituting b(b+2) by 1/(2-1) from eq. (B.12) and using b
2
 from (B.13) one gets 
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To find Ris one can transform (B.16) as follows 
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Using the relation R0=(2R2)/2 following from the 2 definition and x from (B.14) one 

obtains from (B.17)  
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Appendix C. Induced voltage calculations 

 

An equivalent circuit diagram for the Ris measurement using the voltage induced at 

the neighbour strip is presented in Fig.C1. The SMU is connected between the point 

marked V0 and the ground while the induced voltage is measured between the point 

marked V1 and the ground. 

 

 

 

 

 

Fig.C1. Equivalent circuit diagram for measurement with the neighbour strip 

First let us consider a situation when the resistance to the ground, Rg, is zero. 

 

a) Zero Rg. 

As follows from the diagram in Fig.C1 the induced voltage V1 can be expressed via 

applied voltage V0 as 
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Using the relations Ris=xRb, Req=bRb and the eq. (A.4) one finds from (C.1) 
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Expressing from (C.2) b via S1 one gets 
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Substituting b in eq. (A.7) by its expression from (C.3) one obtains 
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Substituting b in eq. (A.4) by its expression from (C.3) one obtains 
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Using the relation Ris=xRb and eqs. (C.4), (C.5) one gets 
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Typically the parameter R0 is measured with a good accuracy while S1 (especially 

when it is very small) has a significant relative error S1)/S1. Using (C.6) one can 

calculate the uncertainty in Ris due to the error in S1 
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For measurement with the next neighbour strip the diagram shown in Fig.C1 can also 

be used but using potential V1 instead of V0 and V2 instead of V1. Obviously one gets 

in this case 
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Therefore for the measurements with next neighbour strips the eqs. (C.4) and (C.6) 

can be written as  
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b) Effects of non-zero Rg. 

As can be seen from the circuit diagram presented in Fig.C1 a non-zero resistor Rg 

results in a voltage drop on it 

g

g

g
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R
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which adds up to V1 or V2 that would be measured with Rg=0. In other words the 

measured slopes S1, S2 will include an additional component 
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which is the same for neighbour and the next neighbour strips. The Sg may be 

measured e.g. as the slope in the situation S1=S2. It then can be subtracted from the 

slopes measured under other conditions thus suppressing the effects from non-zero Rg. 

 

To verify this model a special measurement was made with 1 k resistor inserted 

between the bias rail and the ground. The measurements were performed with an SCT 

End-Cap sensor w31-225 at Ubias=50 V. Fig.C2 summarises the results. 

 

With grounded bias rail the slope dV1/dV0 of the voltage induced at the neighbour 

strip was found to be 4.7±0.2 V/V, as can be seen from the experimental data in 

Fig.C2a.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.C2a. V1 vs. V0 for grounded bias rail 
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When 1.0 k resistor was inserted between the bias rail and the ground, the slope 

increased to 869±5 V/V as shown in Fig.C2b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.C2b. V1 vs. V0 for 1 k resistor between the bias rail and the ground 

 

In the first case R0 was measured to be 1156 k while in the second it increased to 

1157 k due to the additional 1 k resistor. The slope S1 due to 1 k resistor 

calculated from the eq. (C.13) is Sg=1k/1157k=864.3 10
-6

=864.3 V/V. Adding it 

to the initial slope S1=4.7 V/V one obtains for the second measurement 869 V/V in 

a perfect agreement with the results presented in Fig.C2b that validates the model. 

 

For further discussion let’s restrict ourselves to a typical in practice situation Rg<<R0. 

Then the usual gradient dV0/dI0 still correctly measures R0 and the additional slope 

Sg=Rg/R0<<1. Let us now consider only the situation when the real slopes S1, S2 are 

comparable with Sg and therefore the effects of Rg are essential. The measured slopes 

S1
meas

, S2
meas

 are then also << 1. For the measurements with the neighbour strip we 

then obtain from eq. (C.6) for the measured interstrip resistance 
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As follows from (C.14) the measured Ris is equal to the actual Ris with an effective 

parasitic resistance Rp=R0
2
/Rg connected in parallel and restricting the measurable Ris. 

For typical values of R0=1M and Rg=1 Rp=1000G. 

 

For the measurements with next neighbour strip one can obtain from eq. (C.10) 
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Thus for the next neighbour the measured Ris is limited by an effective parasitic 

resistance
g

p
R

R
RR 0

0 . For typical values of R0=1M and Rg=1 Rp=1G. 

 


