Price, Laura and Young, Peter C. and Berckmans, Daniel and Janssens, Karl and Taylor, C. James (1999) Data-Based Mechanistic Modelling (DBM) and control of mass and energy transfer in agricultural buildings. Annual Reviews in Control, 23 (1). pp. 71-82. ISSN 1367-5788
Full text not available from this repository.Abstract
This paper discusses the Data-Based Mechanistic (DBM) approach to modelling the micro-climate in agricultural buildings. Here, the imperfect mixing processes that dominate the system behaviour during forced ventilation are first modelled objectively, in purely data-based terms, by continuous-time transfer function relationships. In their equivalent differential equation form, however, these models can be interpreted in terms of the Active Mixing Volume (AMV) concept, developed previously at Lancaster in connection with pollution transport in rivers and soils and, latterly, in modelling the micro-climate of horticultural glasshouses. The data used in the initial stages of the research project, as described in the paper, have been obtained from a series of planned ventilation experiments carried out in a large instrumented chamber at Leuven. The overall objectives of this collaborative study are two-fold: first, to gain a better understanding of the mass and heat transfer dynamics in the chamber; and second, to develop models that can form the basis for the design of optimal Proportional-Integral-Plus, Linear Quadratic (PIP-LQ) climate control systems for livestock buildings of a kind used previously for controlling the micro-climate in horticultural glasshouses.