Stabilizing global mean surface temperature: a feedback control perspective

Jarvis, Andrew and Leedal, David and Taylor, James and Young, Peter (2009) Stabilizing global mean surface temperature: a feedback control perspective. Environmental Modelling and Software, 24 (5). pp. 665-674. ISSN 1364-8152

Full text not available from this repository.


In this paper, we develop a discrete time, state variable feedback control regime to analyze the closed-loop properties associated with stabilizing the global mean surface temperature anomaly at 2C within a sequential decision making framework made up of 20 year review periods beginning in 2020. The design of the feedback control uses an optimal control approach that minimizes the peak deceleration of anthropogenic CO2 emissions whilst avoiding overshooting the 2C target. The peak value for emissions deceleration that satisfies the closed-loop optimization was found to be linearly related to climate sensitivity and a climate sensitivity of 3.5C gave a deceleration of -1.9 GtC/a/20 years2. In addition to accounting for the predicted climate dynamics, the control system design includes a facility to emulate a robust corrective action in the face of uncertainty. The behavior of the overall control action is evaluated using an uncertainty scenario for climate model equilibrium sensitivity.

Item Type:
Journal Article
Journal or Publication Title:
Environmental Modelling and Software
Uncontrolled Keywords:
ID Code:
Deposited On:
18 May 2010 10:51
Last Modified:
21 Nov 2022 20:01