
ABSTRACT
Closed form equations for second order transfer functions of gen-
eral arbitrarily-coupled RC trees with multiple drivers are reported.
The models allow precise delay and noise calculations for systems
of coupled interconnects with guaranteed stability, and represent
the minimum complexity associated with this class of circuits. The
simplicity, accuracy and generality of the models make them suit-
able for use in early delay and noise planning of global signals in
complex systems.

INTRODUCTION
Accurately analyzing the impact of delay and noise on perfor-
mance and functionality has become very important in modern
VLSI circuits. The majority of signal wires are typically very lossy,
with a high degree of capacitive coupling. This, together with
smaller signal rise times, results in heavy cross-talk, which couples
a noise voltage onto the victim net. The ability to put billions of
transistors on a single die has also imposed severe restrictions on
the computational complexity of noise and delay models used in an
iterative design flow. While more accurate modeling is necessary,
the sheer size of the systems prohibits expensive dynamic simula-
tion. Consequently the subject of delay and noise modeling for
VLSI circuits has received a vast amount of attention in the litera-
ture. The three attributes of accuracy, computational simplicity and
generality, are however difficult to encompass in a single inte-
grated model. Most reported models that consider the effect of
cross-talk on either use heuristics that are tailored for specific
topologies, or use multiple moments that make them expensive.

Our contribution in this paper is as follows. We present new closed
form models for generating second order transfer functions from
each driver to the receiver in coupled trees such as shown in Fig. 1,
with guaranteed stability. These equations, which are derived from
a rigorous theoretical treatment, define the poles and zeros explic-
itly in terms of the circuit elements. They are based on the first two
moments of the impulse response, and are linear in complexity,
resulting in a saving over other explicit moment-based 2-pole-1-
zero models. With our closed form models, the intuition and algo-
rithmic simplicity of the Elmore delay are retained as will be
shown. Our work can best be described as an extension of the work
for simple trees (an RC tree where all capacitors are grounded)
reported in [8], to coupled trees (an RC tree consisting of simple
trees connected together via series capacitors - Fig. 1). Just as that
model represents the minimum complexity associated with a sec-
ond order response for simple trees, our model represents the mini-
mum complexity for a second order response for coupled trees,
when no compromise is made on generality.

Related Work
There is a large body of literature that deals with delay and noise
modeling in simple and coupled trees. One of the most important
metrics for simple trees, the first moment of the impulse response,

is known as the Elmore delay [7]. Its attraction is that it has
unmatched algorithmic simplicity and elegance, explicitly matches
the circuit elements to an upper bound on the delay, and yet exhib-
its good fidelity in interconnect optimization algorithms [22].
When used as the dominant time constant however, its error can be
as high as several hundred percent, especially for near-end nodes.
Also noise effects cannot be included, as a minimum of two time
constants are required to model a noise-voltage spike.

To consider the effect of noise, timing analyzers often use the con-
cept of worst-case, average and best-case delay, using a switch fac-
tor that takes the value of 2, 1 or 0 to modify the Elmore delay. The
capacitance for a line is modeled as the sum of two components,
one of which represents the capacitance to ground, and the other
the capacitance to adjacent nets. This second component is multi-
plied by a factor whose value is dependent on whether the coupled
net is expected to be quiet or not, and if not, on the direction of
switching. This method of modeling is not accurate except in cer-
tain very simple situations, such as uniform structures or simulta-
neously switching nets, and indeed was recently shown to not even
represent an upper bound on the delay [13]. A lot of research has
focused on simplified configurations of interest. In [15] the authors
use the first moment of the impulse response to generate single
pole responses for uniformly coupled RC lines, while [14] presents
a two pole response for a single section coupled π circuit with arbi-
trary ramp inputs. They extend it to accommodate multiple seg-
mented aggressors in [12], but the allowed topology is still very
limited.

Historically, a landmark paper that established bounds which serve
as indicators for poor prediction by the Elmore model is [22]. Then
a stable approximation to the second order transfer function for
simple trees based on the first and second moment of the impulse
response, and the sum of the open circuit time constants was pro-
posed in [8] and extended to encompass charge sharing networks
in [4]. Later, generic moment-based techniques that allowed the
calculation of an arbitrary number of poles for any kind of linear
circuit were developed in [20]. An implementation that is opti-
mized for the tree like structures of interconnects was proposed in
[21]. These techniques depend on the Pade approximation, which
typically requires 2q moments for a qth order approximation. Hence
obtaining a second order model requires the calculation of four
moments. Reduced-order models based on the Arnoldi algorithm
[23] match q moments to a qth order approximation. An example is
[19], which gives reduced order models for linear systems. How-
ever the nodal matrices of the system need to formed, and at least
one LU decomposition of the admittance matrix (which has a cubic
complexity) is necessary. For initial analysis of complex systems
which involves many iterations, such techniques are best avoided
when possible.

There are several explicit 2-pole-1-zero models that have been
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reported in the literature. For simple trees, the analytic models of
[8] represent the minimum computational complexity for a second-
order model. Stable models based on the first three moments were
proposed in [26] and [1]. Different approaches were suggested in
[16] and [17], where the moments of the circuit are used to match a
probability density function (gamma distribution) to the impulse
response and step response respectively. The underlying circuit
transfer function in these models have coincident poles with a real
number order. In [18], the authors match the first two moments of
the circuit to a Weibull distribution. Alternate second order models
for the transfer function include those reported in [10] and [11],
which involve generating equivalent circuits and are more suited
for highly inductive lines. 

Now a two (or higher) pole model cannot be solved explicitly for
the delay at a given threshold. Hence there are quite a few works
that attempt to garner more information than the first moment
(Elmore delay) from the circuit, and match it explicitly to the delay
via some heuristic, such as in [10], [11], [26] and [1]. The authors
of [2] present two delay metrics, one based on the first two
moments, and another based on an effective capacitance model
which seeks to overcome the effect of resistive shielding that
makes the Elmore delay inaccurate at near-end nodes. Explicit
delay models for inductive lines were proposed in [9].

Now as mentioned, it is often necessary to know the coupled noise
amplitude explicitly, to check for spurious errors caused by switch-
ing nets disturbing the logic state of a quiescent net. A single pole
noise metric for general circuits was proposed in [6]. Although
computationally efficient, some simplifying assumptions in the
formulation of the model may cause the results to be very pessi-
mistic. Some of the works mentioned above which present models
for estimating the effect of noise on delay also report noise metrics
([1], [15] and [12]). In [24] the authors use circuit transformations
to simplify a general tree to a 2-π model when analytic formulae
can be used, but intermediate steps require the calculation of
admittances at each branch point and the estimation of equivalent
capacitances which increase run time and impact on the accuracy.

When dealing with multiple driver systems such as depicted in Fig.
1, the concept of superposition is very useful, as the coupled RC
network is still a linear system. The effect of multiple aggressors
switching at different times can be estimated by considering one
input at a time with all other inputs grounded, and then adding up
the individual waveforms. The authors of [25] and [3] adopt such a
methodology, where an attempt is made to generate transfer func-
tions from each driver to the receiver. However the only conces-
sion to different inputs (and hence different charging/discharging
paths) is calculating a unique zero; the poles of the transfer func-

tion for all switching events are the same, and are the two lowest
frequency poles of the system. They are estimated from the meth-
odology proposed in [5], which gives closed form expressions for
the poles of systems with storage elements, and is a technique that
has long been used in analog design to estimate the bandwidth of
amplifiers. However using the same two lowest frequency poles in
all of the transfer functions to model interconnect systems can give
rise to large errors as the results will be skewed by the highest par-
asitics in the coupled tree, regardless of their influence on the par-
ticular switching event.

DERIVATION OF PROPOSED MODEL
In this paper we are only concerned with the generation of the
transfer function, which is the most important aspect of the model-
ing. Processing of the composite waveform and linearization of
non-linear elements can be accomplished in a variety of ways that
are suitable for the specific application. Linearization can be
accomplished either through substitution of equivalent linear ele-
ments or by using some form of convolution in the time domain;
non-ideal input waveforms can be similarly modelled. The task
which dominates run time for any circuit with more than a few
hundred nodes is computation of the moments. There is a clear
delineation between linearization of the actual circuit, and solving
of the linearized circuit. We concentrate on the latter part here.

Consider Fig. 1 which shows an example network comprising a
victim net and several aggressors coupled to the victim net through
banks of series capacitances. Such a network can be represented by
an m input single output system as shown. In our methodology we
use linear superposition where the response for each input is con-
sidered with all other inputs grounded, and all those responses are
summed up to generate the complete solution (as in all moment-
based approaches). Now in general, all the natural poles of the sys-
tem contribute to the step response for any switching event where
the other inputs are grounded, but their relative contribution varies
greatly according to the zeros for a particular switching event.
Since the transfer function is limited to two poles, it is important
that for each path the two-pole-single-zero model that best fits that
particular charging or discharging path is calculated.

A coupled RC tree is characterized by a resistive path from the out-
put node e to the forcing (victim) driver, and series capacitive ele-
ments to other (aggressor) drivers. Hence the output for the victim
driver switching will always change rails, while it will start and
end at the same rail for an aggressor switching. Therefore the
transfer function characterizing the response to the victim switch-
ing has a zero on the negative part of the real axis:

while that for an aggressor switching has a zero at the origin. 

Computation of Moments
In the following sections, expressions are presented for the first
and second moment of the impulse response for general coupled
trees, which form the core of our models. The derivation is based
on Kirchoff’s laws and integration by parts, and omitted due to
lack of space. Fig. 1 can be referred to in the following descrip-
tions. First our notation is described below.      
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Figure 1. Example of coupled RC tree
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Superscripts always refer to simple trees while subscripts always
refer to nodes, except in the definition for moments, where the
superscript refers to the order of the moment. Rail voltages are nor-
malized to 0 and 1 and the expressions derived for a positive step,
without loss of generality. The quantity (3) is the summation over
the reference tree tr, of resistance capacitance products at each
node k, where Rke is the shared resistance between node k and sink

e, on the path from source to sink. The capacitance term  is the
capacitance between trees tr and ti at node k on tr. For example with

reference to Fig. 1,  is CC1. If the second tree ti is omitted, the
capacitance refers to the total capacitance at node k; for example,

 is (CS1+CC1+CC2). In that case, the second tree would also be

omitted in the name, i.e.  would be with respect to . This

notation is used because it makes for a compact description, and
also to make it consistent with that adopted in [8]. The lower case
subscript in  (e in this case), always refers to the output. If the
output node is omitted, the only quantity which is with respect to
the output, Rke, becomes Rkk.

The first moment of the impulse response at the receiver node e for
the victim driver switching is defined as:

Now the impulse response is the first time derivative of the step
response, for which an expression can be formulated by summing
up the capacitor currents, or in other words by applying Kirchoff’s
current and voltage laws. This can then be integrated by parts to
yield (5), where a1, a2.. are the aggressors.

The second moment of the impulse response at the receiver node e
is given by:

Following the procedure described above in two stages, this can be
shown to be equivalent to (7).

From an approach identical to that in the former case, the first
moment of the impulse response at node e on the victim tree for
aggressor ai switching can be shown to be:

The second moment can also be calculated from an approach simi-
lar to the former case, resulting in:

The expressions in (5), (7), (8), (9) and (19) described later, form
the basis of our proposed models.

Matching Moments to Time Constants
Now the interest is in generating the best two pole single zero
transfer function for the response at the output node for any given
switching event. The moments can be matched to the characteristic
time constants in the circuit by considering the power series expan-
sion of ex in the definition of the Laplace transform. From the
expansion, the following identity can be observed:

Using (1), (10), (5) and (7), it can be seen that: 

Now additional information is necessary to solve for the three
unknowns in (11) and (12). If the reciprocal pole sum is designated
as τsum, these two equations can be combined to form the following
quadratic, which yields two time constants.

Other than τsum, the other metrics in the equation, the first and sec-
ond moment, are with reference to the victim. At this point, it is
helpful to look at the physical interpretation of the first and second
moments of the impulse response. The first moment always con-
siders resistances of the switching line, and either all capacitances
connected to the switching line (in the case of the victim driver
switching) or capacitances connecting it to a particular line (for the
switching of an aggressor driver). The second moment propagates
outwards another level, and considers the resistances and capaci-
tances of immediately adjacent lines as well. This intuition is valu-
able in generating a solution with minimum computational
complexity; namely, equation (13) can be used to generate the pole
time constants for all switching events, by using the appropriate

reciprocal pole sum.
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Figure 2.  Variation of stability function with τsum
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Now first, since (13) can in general yield complex poles or a posi-
tive pole, some care is necessary to ensure stability. Potential insta-
bility can take one of two forms: if the sign under the radical in the
solution for the roots of (13) is negative, complex poles can result;
if the magnitude of the square root is greater than the reciprocal
pole sum, a negative time constant results. Using these as limiting
conditions, a methodology that always yields stable and accurate
results can be formulated.

The first limiting condition is that the magnitude of the square root
should be greater than the reciprocal pole sum:

This is true if the following holds: 

That is to say, the reciprocal pole sum must be large enough.

The second limiting condition is that the sign under the radical
should be positive.

When (A) is fulfilled the second term in (15) is negative, and hence
the inequality is not guaranteed. The left hand side (LHS) is a qua-
dratic in τsum. By considering the first and second derivatives, this

parabola can be shown to have a minimum at . The zero cross-

ing points are given by:

Obviously, both of these points are on the right hand side of the
vertical axis. Now first, if the sign under the radical is negative, its
roots are complex, or in other words LHS will never become nega-
tive and (15) is always true. Hence for potential instability to
occur, the following must always be true:

Using this property and the fact that both of these quantities are
positive, it can easily be proved that: 

Hence the equality of (A) is always to the left of the first zero
crossing point of LHS, and we have the shape of the parabola (Fig.
2). Then for stability, τsum has to appear in the lightly hatched area,
or to the right of the second zero-crossing point. If τsum is too small,
the sign under the radical is positive, but we end up with one nega-
tive time constant. If τsum is situated between the zero crossing
points, we get complex poles. Finally if τsum is to the right of the
second zero crossing point, represented by the darkly hatched area,
again a stable solution results. Hence from the zero crossing points,
we get the next condition:

Now the stability conditions have been identified, the values for
τsum that give the best response for the different switching events
can be derived. Firstly, for the case of the victim driver switching,
since all aggressors are grounded, the metric that gives the best

solution is the sum of the open circuit time constants with refer-

ence to the victim driver, which we shall call . This is simply the

summation of the products of all capacitances connected to the vic-
tim line with the driving point resistance to each of those capaci-
tors:

which can be simplified to the following using (3):

This is a good approximation for the sum of the pole time con-
stants [5], giving:

Substituting (20) for τsum in (11) and (13) result in the zero time
constant, and pole time constants respectively, for the victim

switching. Since >  and (17) always has to be true for insta-

bility to occur, the following has to hold:

Therefore (A) is always true and the only possible stability viola-

tion in this case is (B); i.e. very occasionally, using  can result in

complex poles. The physical interpretation of such an occurrence
is that the sum of the open circuit time constants underestimates
the reciprocal pole sum, which has been unusually escalated by an
aggressor or aggressors with exceptionally high parasitics.
Because both exponential waveforms are either additive or sub-
tractive unlike when an aggressor switches (where one is additive
and the other is subtractive), the higher frequency pole does not
have a significant impact. In fact, this form of instability is usually
an indication of a very low frequency pole which makes the predic-
tion of the waveform straightforward. The simplest remedy there-
fore is to consider a single pole response, with the pole time

constant being given by . This results in good accuracy as we

shall show in the results section.

Secondly, to solve for the poles and zeros associated with an
aggressor switching, (2), (10), (8) and (9), are combined to give: 

Now the zero time constant is available immediately in (22), and
dividing (23) by (22) results in the reciprocal pole sum:

The pole time constants can be obtained by substituting (24) as τsum

in (13). Now it can be seen from an inspection of the relevant
expressions that either of (A) or (B) can be violated. The solution
without generating extra information about the circuit, is to accept
the next best approximation. That is to say if τsum is so small that it
violates (A), the simplest and most logical remedy is to increase it
so that is in the lightly hatched area. When (B) is violated, if τsum is
less than the minima, it should be decreased so that it falls into the
lightly hatched region; if it is greater than the minima, it should be
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increased so that it falls into the darkly hatched region. Since the
inequality will generate coincident poles which is not acceptable,
the exact value should be chosen so that it is slightly greater than
or less than the equality, which can be achieved with a percentage
factor, such as 1%. Using this approach, the values that τsum should
take in the different cases are summarized in Table 1.

Of the two, (A) being violated is by far the most common form of
instability. This occurs when the dominant poles for the victim and
the particular aggressor are very far apart on the frequency axis.
Physically, this translates to a situation where the receiver node is
charged extremely rapidly by a very strong aggressor (i.e. through
a relatively very small time constant), and decays with a very long
tail, dictated by the much larger time constant of the victim. Such
behavior is common for far end coupling, as shown in Fig. 5. The
instability in the solution predicted by (13) occurs because the
reciprocal pole sum given by (24) accurately reflects the high fre-

quency nature of the poles in the aggressor’s charging path, but 

and  reflect the much lower frequency content of the vic-

tim’s dominant poles, and the gap is too much to bridge. The solu-
tion without generating extra information about the circuit, is to
accept the next best approximation. That is to say, if τsum is so small
that it violates inequality (A), the simplest and most logical remedy
is to increase τsum so that it is in the lightly hatched area of Fig. 2.
Since the equality will generate coincident poles which is not
acceptable, the exact value should be chosen so that it is slightly
greater than the equality, which can be achieved with a percentage
factor, such as 1%. This yields accurate results, because the inten-
tion is to generate the best two pole single zero model; in other
words the poles and zero need not equate to actual poles and zeros
of the system, and indeed should differ for a second order approxi-
mation. Using the factor of 1% beyond the threshold which yields
coincident poles ensures that both the high and low frequency
behavior is matched. Following this approach, the values that τsum

should take in the different cases are summarized in Table 1. It
must be emphasized that conditions (A) and (B) are violated infre-
quently, and when they do, the solutions proposed above result in a
simple yet accurate solution, which requires no extra information.

COMPUTATIONAL COMPLEXITY
An inspection of the first order metrics (5) and (8) clearly shows
their similarity to the Elmore delay. These can be rearranged so
that the expressions are formulated as the sum of the products of
resistance and downstream capacitance at each node on the path
from source to sink. Because of the extra complexity introduced by
the coupling capacitances, it is necessary to keep track of individ-
ual coupling capacitances at each node. This can be achieved by
caching the sum of the downstream self (or total) capacitances, and
the sum of the individual downstream coupling capacitances with
associated root information at each node. Hence similar to the
Elmore delay, all downstream capacitances are cached from a full
tree traversal, and then the output with respect to a particular node
e only requires a traversal from the source to e. Also similar to the
Elmore delay, any changes to the tree require only that the capaci-
tance changes be propagated to the upstream nodes, resulting in
incremental computation being possible.

The final first order metric (19), the sum of the open circuit time
constants, requires that at each node in the summation, that node

should be treated as the output. Since the output node is therefore
always defined for a given victim net (unlike in the previous met-
rics where the output can be any node in the tree), the incremental

components of the summation in  can be cached along with the

downstream capacitance. For example, in Fig. 1, node 4 should
have CS5 as downstream self capacitance, and R5•CS5 as down-

stream  information. Therefore this metric requires no extra tra-

versals at all, but instead can be computed along with the
downstream capacitances. Again, changes to the tree require only
that the changes be propagated to upstream nodes.

The second order metrics require the capacitances at each node be
weighted individually by a first order time constant, which is basi-
cally expression (3) (in one of the three forms used) for the path
defined from the root of the relevant simple tree to the current
node, or its coupled counterpart. There are now three issues related
to the complexity; 

1. How much work is needed to calculate the weights for the orig-
inal tree?

2. When the weights are known, how much work needs to be done 
to calculate the second order metrics with respect to any node?

3. How much work needs to be done to recalculate all the weights 
once a change or changes have been made to the tree?

Calculation of the weights are demonstrated on the victim net of
Fig. 1. The weights required are different for the two expressions,
and also different for types of capacitances (i.e coupling capaci-
tance between two trees, or the total capacitance, at a particular
node), but always characterized in a generic sense by the expres-
sion (3). Hence any technique that works for one will always work
for all the weights. For the sake of explanation, let us assume that

the weight consists of  where only self capacitances are con-

sidered, and that the weights at nodes 1, 2 are τ1, τ2 etc. Then:
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The rest of the metrics are calculated similarly. Since the weight is
always with respect to the root, it is necessary to visit all the nodes
once after the downstream capacitance information has been stored
on the initial pass. (It is useful also, to store the upstream resistance
at each node on this pass, so that in future visits to the node, the τ
information can be updated instantly as will be shown later.) All
weights can be calculated in one pass by using the property that: 

where node m is situated on the path between the root and node n.
At branch points a depth first traversal of all child branches pre-
serves the linearity of the traversal. Hence the weights for all nodes
can be calculated by one full tree traversal once the downstream
capacitance information has been stored.

The answer to the second question is straightforward; an inspection
of (7) and (9) shows that the form the outer (second order) summa-
tion takes is exactly similar to the inner (first order) summation,
which is characterized in a generic way by the expression (3).
Therefore it is possible to cache the downstream τ•C information
(just as the downstream C information was cached for the first
order metrics) and obtain the metrics from the root to a particular
node by visiting only the nodes along the path from the root to that
node.

So far two complete traversals have been necessary, one bottom-up
pass to store the downstream capacitance information, and one top-
down pass, beginning at the root to store the τ information (and the
upstream resistance information, which is necessary later, to mini-
mize computation when changes are made). Now to calculate the
second order metric to any node, rearranging the terms in the sum-
mation exactly as in the first order calculation allows the down-
stream τ•C to be cached in one full traversal. Subsequently, the
second order metric to any node can be calculated simply by visit-
ing all the nodes on the path from the root to that node. Again, if an
imaginary second order metric is defined to consist only of the self
capacitances for simplicity of explanation, the value that would be
cached at node 5 on the third (bottom-up) traversal would be
Τ5=τ5•CS5, that at node 4 would be Τ4=Τ5+τ4•CS4, and so on.
Hence three full traversals are necessary, one bottom-up pass to
store the downstream capacitance information, one top-down pass
to store the weights, and a final bottom-up pass to store the down-
stream τ•C information. None of these passes can be combined as
the necessary order is bottom-up, top-down and bottom-up.

The only remaining question is also the most important; if it is nec-
essary to traverse the entire tree three times each time a change is
made, the incremental computation property is lost. However, after
a modification to a component, since only the resulting changes in
the stored values need to be accounted for, the calculations that
required three traversals for the original tree can be accomplished
in one traversal. Consider for example that the component value
CS2 is changed to CS2

'. This immediately causes:
1. the downstream capacitance values cached at node 2 and all 

nodes upstream of node 2 to be stale;

2. the cached weight (τ) information at all nodes to be stale;

3. the cached downstream τ•C information at all nodes to be stale.

In node 5 for example, the stored downstream capacitance is cur-

rent (since the changed capacitor is upstream of it), but the weight
and downstream τ•C information is stale. The old weight is:

The new weight is:

The change is:

Therefore:

This is simply the change in the capacitance multiplied by the
resistance that is upstream of the changed capacitance. This is true
of all nodes downstream of node 2. At the nodes upstream of node
2, the capacitance change is multiplied by the upstream resistance
from that node. Similarly, the downstream τ•C information can
also be calculated and stored. Hence all stale information can be
updated by doing a single bottom-up traversal by considering the
difference introduced by the change to the component. First the
changed component is located, and its upstream resistance which
has been stored earlier, (R1+R2) is noted. Now starting from a leaf
node, say node 5 for example, a bottom up traversal is initiated,
where both the weight information, and the downstream τ•C infor-
mation is updated at once. From node 2 upwards, the downstream
capacitance also needs to be updated. Hence the original require-
ment of three passes for the virgin tree has been reduced to a single
pass. This principal also applies for resistor changes, and also mul-
tiple component changes. That is, the effect of multiple changes
can be considered in one pass.

RESULTS
The proposed metrics were tested on several different test beds
which cover a wide range of topologies, by comparing the step
response against a circuit simulator, Spectre. Due to space restric-
tions, only the results pertaining to three which illustrate all the
corner cases are shown; the tree of Fig. 3 consisting of the victim,
three primary aggressors, and three secondary aggressors (repre-
senting an arbitrarily-coupled circuit, where inequality (B) is vio-
lated when solving for the poles of the victim switching), the
circuit of Fig. 5 (with far end coupling where inequality (A) is vio-
lated when solving for the poles of the aggressor switching), and
the tree of Fig. 6, with four primary and four secondary aggressors
(representing global distributed interconnects). Shown in Fig. 4 are
the waveforms at node e of the circuit in Fig. 3, for each driver
switching. It can be seen that the model prediction is very close to
the Spectre simulation. Since the actual and predicted delay at a
single threshold can agree very well, and still result in significant
deviations along the full waveform, we tested the accuracy at three
points along the waveform. For the victim switching, the thresh-
olds are 10%, 50% and 90%, while for the aggressors they are
25%, 100% and 25% of the peak amplitude. This is to ensure that
three points, with two being on either side of the peak, are tested.
For the aggressors, the error at different thresholds is given as a
fraction of the pulse width between the first and last threshold. The
waveforms for the circuit of Fig. 5 are shown alongside, and those
of Fig. 6 in Fig. 7.

τ2 R1 CS1 CS2 CS3 CS4 CS5+ + + +( ) R2 CS2 CS3 CS4 CS5+ + +( )+=

τDn

v τDm

v τDm n→

v
+=

τ5 R1 CS1 CS2 CS3 CS4 CS5+ + + +( ) R2 CS2 CS3 CS4 CS5+ + +( )
R4 CS4 CS5+( ) R5 CS5( )

+
+ +

=

τ5
′

R1 CS1 CS2
′

CS3 CS4 CS5+ + + +( ) R2 CS2
′

CS3 CS4 CS5+ + +( )

R4 CS4 CS5+( ) R5 CS5( )

+

+ +

=

τ5
′ τ5– R1 R2+( ) CS2

′ CS2–( )=

τ5
′ τ5 R1 R2+( )+ CS2

′
CS2–( )=

840

Proceedings of the International Conference on Computer Aided Design (ICCAD’03) 
1092-3152/03 $ 17.00 © 2003 ACM 



SUMMARY AND CONCLUSIONS
Closed form expressions for the first two moments of the impulse
response for general arbitrarily-coupled RC trees with multiple
drivers were presented, and used to generate stable and accurate
second order approximations to the transfer function for any
switching event. The summation of all waveforms results in the
complete response at the node of interest. These represent new
models for estimating delay and noise in complex systems, with no
compromise on generality, and in fact subsume a lot of models that
address simplified structures.

Computing the first two moments of the impulse response of the
circuit, and using them to generate a transfer function with two
poles and one zero results in the matching of boundary conditions
at time zero and infinity, and geometric properties -namely the area
and first moment- of the actual waveform (step response) with the
estimated waveform. The boundary conditions are already consid-
ered in the particular formulation of the transfer function (i.e. that
the waveform starts and ends on a specific rail). Hence matching
the first and second moment of the impulse response does not
define a unique solution, as a two-pole-one-zero transfer function
has three unknowns. The necessary third equation is obtained by
matching circuit components to the reciprocal pole sum.

For the switching of the victim driver with the other inputs
grounded, the sum of the open circuit time constants provides a
good approximation to the reciprocal pole sum, and combining it
with the moments of the circuit for the victim driver switching has
a straightforward intuitive motivation. For the switching of an
aggressor driver, the geometric properties of the actual waveform
(via the first and second moments of the impulse response for an
aggressor driver switching) are used to obtain the precise recipro-

cal pole sum. Since the quadratic (13) obtained from the moments
of the impulse response for the victim driver switching contain rel-
evant information about the victim net, combining it with the
reciprocal pole sum for an aggressor switching gives a good
approximation to the best two-pole-single-zero model. This is a
procedure that works for the vast majority of circuits; however
some adjustments are necessary to the reciprocal pole sum for cer-
tain pathological cases, which was analyzed in a systematic man-
ner, resulting in Table 1.

The proposed models have an Elmore-like flavour, and the algo-
rithm outlined here allows the moments to be calculated with the
absolute minimum computational effort. However when the
moments are computed in a hierarchical manner, starting from the
solution to the DC circuit (a procedure known as path tracing) the
same refinements are possible. Our claim that these models repre-
sent the minimum complexity associated with a two-pole-one-zero
model for this class of circuits is based instead on the fact that the
sum of the open circuit time constants is used instead of the third
moment, which results in a saving of at least one complete tree tra-
versal (or equivalent arithmetic operations). Two moments can be
used to map the response to a probability function, but then the
model reverts to a coincident pole transfer function, which reduces
the degree of freedom, or the generality of the model.

For testing purposes, the models we proposed were used to derive
the time domain waveform for the step response. For the delay at a
given threshold, the accuracy was found to be more than 90% on
average, even for complex circuits such as shown in Fig. 3 and Fig.
6. The time at which the peak noise occurs was predicted with even
better accuracy. The peak noise itself was predicted with an accu-
racy of about 85% or higher in general. These figures cannot be
claimed as being hard bounds for all possible circuit topologies as
it is always possible to create a circuit which is poorly represented
by a two pole response. However the models did perform very well
when tested over a wide range of circuits that are representative of
coupled interconnect structures in nano-meter technologies.

Figure 3. Testbed 1: arbitrarily-coupled tree
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Figure 4. Waveforms for testbed 1 of Figure 3.
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Explicit second-order noise models can be derived easily by equat-
ing the first derivative of the waveforms to zero. These can be used
with the single-pole bounds reported in [6] to gain an idea of the
uncertainty of the estimate. Calculating the delay requires a few
iterations for a multiple-pole waveform, which presents a negligi-
ble overhead in comparison with the moment computation for any
reasonably sized circuit. The simplicity and accuracy of these
models combined with their generality, in comparison with other
reported work, should make them useful in delay and noise estima-
tions in complex systems, early in the design flow.
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Figure 6. Testbed 2 (values repeated within simple trees)
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Figure 7. Waveforms for Testbed 2

n sec

842

Proceedings of the International Conference on Computer Aided Design (ICCAD’03) 
1092-3152/03 $ 17.00 © 2003 ACM 


