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The first measurements are presented of the phase diagram of a noise-induced phase
transition for a model, nonlinear system with multiplicative noise proposed by Hors-
themke and Lefever. Measurements of two of the critical exponents are also presented.
The present results are in good agreement with theoretical predictions based on the
Stratonovic treatment of the stochastic evolution equation.
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It has been observed that in certain first-order,
nonlinear, differential equations a fluctuating
parameter can cause the appearance of new,
statistically favored states, which were unknown
to the system in the absence of fluctuations. The
new states appear when the fluctuation intensity
exceeds some critical value, and hence have
been called noise-induced phase transitions
(NIPT’s) by Horsthemke and Lefever, who first
studied their properties.! The differential equa-
tions are phenomenological representations of
some nonlinear processes subject to external,
multiplicative noise with applications in physics,
chemistry, and biology.? Currently, there is
intense interest in a very similar problem in non
linear stochastic dynamics with application to
dye-laser statistics.** Previous attempts to ob-
serve NIPT’s in natural systems®® have not been
completely satisfactory. While switching phe-
nomena have been observed, no quantitative re-
sults which could be compared to the theory were
possible.

In this Lettér, we report the first measure-
ments of the stationary statistical density made
using an analog simulator. This technique has
made it possible to (1) observe the NIPT directly
as the appearance of double maxima in the den-
sity, (2) measure the critical noise intensity and
hence obtain the phase diagram, and (3) measure
the critical exponents. Our results are in quite
good agreement with the theory obtained with use
of the Stratonovic, rather than the Ito, stochastic
calculus, and are, to our knowledge, the first
quantitative results able to distinguish between
these two theoretical approaches. An important

motive for this work is to demonstrate the ease

with which the detailed statistical properties of

nonlinear, stochastic systems can be observed.
We have chosen to simulate the genetic model®

dx/dt=3~-X +1,X(1-X), (1)

where the noisy parameter is A, ~ X +0§,. Here
¢, is the derivative, in the sense of generalized
functions, of the Wiener process W,, and hence
o, is a Gaussian, white noise of variance o2 and
zero mean, so that (x,)=A. Equation (1) thus
becomes

X =f(X, A)dt + ogX)dW, (2)

where g(X, t)=X(1-X), and f(X,2) =3 -X +2X(1
-X). Equations (1) and (2) are, in fact, not de-
fined for white noise. (van Kampen has called
them “pre-equations.”)” Depending upon how one
chooses to approximate the right-hand side of
Eq. (2), one obtains the Fokker-Planck equation
for the probability density function p(X, ¢) in eith-
er the Ito version,

8,p ==0xf(X,NpX, t) +3020,2g2%X)p(X, t),

(3a)
or the Stratonovic version,

8,0 ==0x(f+30%g"@p+30%0,%¢%, (3b)

where g’'=0,g. Equations (3) have the well
known, stationary (9, p=0) solutions

b, =Ng™" exp{(2/07) [*[f(2)/g%2)de},  (4)

where v =1 or 2 in the Stratonovic or Ito versions,
respectively, and N is some normalizing con-
stant. In the case of our model, Eq. (4) results
in

ps =N[X(1-X)]"" exp{ -[X(1 =X)0?]"* =(2)x/0?) In| (1 -X)/X |}. (5)
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This function has a single maximum for o<o,,
and double maxima for ¢ >0,. For the case x=0,
when v =1 (Stratonovic), 0, =2; and when v=2
(Ito), 0, =v2, For |x|>0, 0,>0,®, and the
curve 0,(\) constitutes the phase diagram.

Fokker-Planck systems with external noise
have been discussed at length in the literature,®
as have the Ito and Stratonovic formulations.”®
While the Ito approach is a mathematically cor-
rect treatment of the white-noise problem, it is
not general. van Kampen’ and West ¢t al.® have
pointed out that the Stratonovic version should
be used to describe dynamical systems, since a
theorem due to Wong and Zakai'® obtains that re-
sult as the white-noise limit of a “real” (i.e.,
band-limited) noise problem. In the case of the
model Eq. (1), the two approaches result in
values for the critical noise variance, 0,%, which
differ by a factor of 2 when A =0, so that the
question can be easily resolved.

The simulator of Eq. (1) is shown in Fig. 1.
All sum and difference operations and the two
integrations are accomplished with standard op-
erational -amplifier circuits. Multiplications are
performed by commercially available analog
multipliers.'' The simulator was designed with
a scale factor of unity, so that its output, X(¢),
in volts is numerically comparable to the re-
sponse of Eq. (1). In the steady state (dX/dt=0)
and for 0=0, Eq. (1) has the (stable) solution

X, =(1/20)[x = 1+(1 +23)V2], (6)

and we were able to adjust the simulator to
agree with this to within +4% over the range -7
< A s+7. The slow integrator, with a time con-
stant of 3 sec, functions primarily to stabilize
the mean response so that (X (¢))=X at its out-
put. The bandwidth of the slow integrator is so
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FIG. 1. The analog simulator.

narrow that the noise response at its output is
reduced by a factor of ~2x 10™%, The fast inte-
grator takes advantage of the fact that (f(X, ¢))
=0, so that the noise on X(¢#) can be integrated
separately and subsequently added to (X(¢)).
Most of the data were obtained with the band-
width of the noise generator limited to an upper
cutoff frequency of 300 Hz, though we have also
made measurements for a number of cutoff fre-
quencies between 60 and 1500 Hz, with no signifi-
cant effect on the results. Since even at 60 Hz
the noise correlation time is much shorter than
the dynamical response time of Eq. (1), X(dx/
dt)~!, for |x| <7, the simulator should approxi-
mate the predictions of the white-noise theories.
Our results do not depend significantly on the
time constant of the fast integrator. Increasing
this time constant beyond the noise correlation
time simply has the effect of reducing the noise
amplitude at the integrator output, but measure-
ments, for example, of o, are not affected.
Stationary density functions p,(X) are meas-
ured with the computer shown in Fig, 1, accord-
ing to the following algorithm: (1) a time series
of typically 4096 digitized points of X(¢) is ob-
tained from the simulator; (2) the occurrence
frequency of X between X and X + AX is computed
for 0 <X <1 (volt) typically with a resolution of 1
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FIG. 2. (a) A measured density function for o= 2.0
(continuous curve) compared to Eq. (5) for o= 2 (solid
circles); Ito, v=2 (double maxima), and Stratonovic,
v =1 (= zero slope). (b) Measured density functions
(continuous curves) for o= 1.5 (single maximum) and
o= 2.5 (double maximum) compared to the Stratonovic
version of Eq. (5) for the same values of ¢ (solid cir-
cles).
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part in 256 and stored as p,(X); (3) the first time
series is erased and a second obtained with the
new frequency added to p, to form p,; (4) the
steps (1)=(3) are repeated x times (typically =z
=2048) until the resulting p, ~p, is suitably av-
eraged. Some examples of p, for A =0 are shown
in Fig. 2 (continuous curves) compared to the
calculated results from Eq. (5) (solid circles).
Figure 2(a) shows a measured result for 0=2
along with the two (v =1, 2) calculated densities
also for 0=2, The curve with the double maxima
(Ito) clearly does not describe the measured den-
sity well. Figure 2(b) shows results for 0 =1.5
(single maximum) and 0=2.5 (double maximum)
compared to the Stratonovic densities.

The phase diagram is obtained by finding o,
for |x[=0. We have obtained these data by first
choosing a value for A, then measuring p for
several values of 0 near o,. A density with a
region of nearly zero slope identified o0 ~o,.

The results are shown in Fig. 3, where the meas-
ured data are represented by the open circles,
while the predictions of the theory are shown by
the solid curves, The random errors in these
measurements are approximately equivalent to

| maximum

FIG. 3. The phase diagram. The measured data (open
circles) are compared to the two theories (solid curves).
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the size of the symbols. The single error bar
shown represents a systematic error related to
the accuracy of the steady-state response of the
simulator compared to Eq. (6). Specifically, we
have found that measured values for o, are quite
sengsitive to the slope of the steady-state response
(@X  /d)\) \~,. From Eq. (6), lim-y(dX,/d))=14.
The data shown in Fig. 3 were obtained for ad-
justments of the simulator such that (dX,/d)) -,
was always within about 2% of i. However, if
this slope was decreased (increased) by about 69,
the entire data set was shifted upward (downward)
to near the top (bottom) of the systematic error
bar. The Stratonovic prediction is therefore nice-
ly bracketed by these data.'?

We have also made preliminary measurements
of two of the critical exponents for this transi-
tion, Following Lefever and Horsthemke,'® we
identify the peak separation m for o>0, as an
order parameter. Then we would expect that, in
the neighborhood of the transition,

m=%[(02—002)/002] ? (7)
for A=0, and
m= ()Y (8)

for 0 =0,, Measurements of m vs ¢ and \ were
carried out in a straightforward way, and the re-
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FIG. 4. (a) The peak separations vs A for 0=0,. The
open (solid) circles represent A >0 (A<0). The straight
line has slope 3 (~¢). (b) The peak separation vs the
reduced variance for A= 0 and ¢ > g,. The solid (open)
circles assume o, =2 (0, =1.9) in computing the ordi-
nate. The curve is proportional to Eq. (7) with g8 = 3.
The straight line has slope 2 (=~1/p).
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sults are shown in Fig. 4 compared to the solid
lines which represent the classical values =3
and 6=3. The susceptibility x=1lim )_(3m/))

as a function of o? is more difficult to measure
with accuracy, so that we cannot provide an esti-
mate for y at present.

To summarize, we have provided the first
measurements of the phase diagram and two of
the critical exponents for a model noise-induced
phase transition, and our results are in substan-
tial agreement with theory based on the Straton-
ovic stochastic calculus.
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