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Modulation-Induced Negative Differential Resistance in Bistable Systems
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This paper demonstrates that a wide range of driven, overdamped, nonlinear systems can exhibit nega-
tive differential resistance, where the equilibrium amplitude of oscillation decreases as the amplitude of
the driving force increases. As an example, we examine the response of a parametrically driven bistable
electronic circuit to both a dichotomous and a sinusoidal driving force. A general condition is derived for
the onset of negative damping in the presence of a large amplitude modulation.

PACS numbers: 05.40.+j

Recently a great deal of attention has been focused on
bistable systems which exhibit fluctuation-induced transi-
tions.'=> Of particular interest are those systems which
possess a macroscopic property x obeying a first-order
evolution equation, in which the state of the environment
is modeled by a randomly fluctuating parameter A(z),
whose correlation function g (¢) =(IA () =1 (0)
—(W1) decreases with increasing time ¢. Although for
any physical system, the correlation time® T = [ dr
xt1g(t)/ [ dtg(1) is finite, most early studies were con-
cerned with the limiting case of white-noise fluctuations,
where T =0. This limit is convenient because equilibri-
um properties such as the probability density P(x) can
be obtained analytically from the appropriate Fokker-
Planck equation, and for small but finite 7 the results
form a starting point from which series expansions in T
can be developed.’-8

For colored noise with a large 7, few analytic results
are available. With a view to probing the large-T limit,
several workers have examined the response of periodi-
cally driven overdamped systems. Doering and Horst-
hemke®'? presented a detailed comparison of the equilib-
rium densities of a nematic liquid crystal (where x
represents the nematic director) when A(z) is either a
square-wave modulation or a dichotomous Markov pro-
cess. Results for the equilibrium density of a cubic bi-
stable electronic circuit under a variety of modulations
have also been presented.!" An important result of such
studies is the observation of fluctuation-induced transi-
tions which are absent in the white-noise limit. The aim
of this Letter is to report a new fluctuation-induced tran-
sition. We show that there exist regions of negative
differential resistance where the response amplitude of
the system decreases as the amplitude of the external
fluctuations increases. A detailed analysis of negative
differential resistance in a cubic bistable system is pre-
sented and a criterion for the onset of this phenomenon
in other overdamped nonlinear systems is obtained.

In order to illustrate negative differential resistance we
first examine the response of an electronic circuit!?
designed to model the equation dx/dt=—x3+r(t)x?
—Qx+R, with Q=3 and R =0.7. The periodically fluc-
tuating parameter A(z) =A(z + ) is conveniently written

in the form A(z) =xo+ Voh(¢), where h(z) is a normal-
ized modulation with zero mean satisfying

r—lj;) dr|h(@)| =1, j; dth(t) =0.
This system is an example of the more general equation
dx/dt=f(x)+Voh(t)g(x), (D
where, for the bistable circuit,
S)=—=x3+xox?—QOx+R (2)
and
glx)=x2 3)

For fixed values of Ao and V), the response amplitude
A(o,Vo) of a given equilibrium solution x(¢) is defined
to be the difference between the maximum and minimum
values x+,x — of x(z). For a fixed period of 7=1%, the
left-hand curves of Fig. 1 show the variation of 4 with
drive amplitude V¢, obtained by our allowing the system
to relax to equilibrium from a large positive value of
x(0). For Vy=3.6*0.1, the squares show results ob-
tained from the electronic circuit'? in the presence of a
square-wave modulation of the form A(z) =+1 for 0 <
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FIG. 1. (a) Response amplitude 4 =|x4+—x —| vs the drive
amplitude Vo for a variety of modulations; (b) the correspond-
ing values of the limits x +. Note the regions of negative slope
which occur over a finite region of V.
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(modr)< +r, and h(t)=—1 for =<t (mod7) <t
For V(=3.6 and 3.65, respectively, the bold and thin
solid lines show square-wave results obtained analytically
by solution of the pair of simultaneous equations

Y= [ axlf(0+Veg (017, @)
bo= T axlf ) = Vog (o1 (5)

The dashed line shows sine-wave results obtained by di-
gital integration of Eq. (1) with A(t) =% zsin(Q2xt/7)
and Vy=3.6. For comparison the right-hand figure
shows the corresponding values of the limits x +. These
results clearly demonstrate the existence of a neg-
ative-differential-resistance region in which dA4/dV,
<0.

To analyze this interesting behavior, we focus atten-
tion initially on the response of the system to a square-
wave modulation. The analysis is simplified in the limit
Vo— oo, t— 0, u =¥ Vor=finite. In this limit the sum
and difference of Egs. (4) and (5) reduce to the form

S ax peong o1z =o, ©)
S ax g1 = @

For the electronic circuit, with f(x) and g(x) given by
Egs. (2) and (3), these yield

—In(x4/x-)+rexZ"—xih)

— oI —xFD+ IR =xF)=0 ()

and

xI'—xit=pu. 9)
Equations (8) and (9) demonstrate that for large Vg the
bounds x +, and hence the amplitude 4= x4+ —x—1,
approach universal functions of the parameter u in-
dependent of t and Vg separately. In this limit, 7 is sim-
ply a scaling factor for the drive amplitude Vo For
Ao =23.6, the solid lines of Fig. 2 show plots of x + versus
u obtained from Egs. (8) and (9). For comparison the
dashed lines show plots obtained from solutions of the
exact formulas (4) and (5) for a variety of V. These il-
lustrate how the universal curves are approached with in-
creasing Vo and emphasize that negative resistance is a
large-Vo phenomenon. For clarity in Fig. 2 we have
chosen to show values of x4+ only, for both positive and
negative u. Values of x— for positive u are obtained
from the relation x —(u) =x4+(—pu); ie., by reflection
about the vertical axis at g =0.

The curves of Fig. 2 cross the 4 =0 vertical axis at the
three points x;, i =1, 2, and 3. These are the three real
roots of f(x) which occur for this value of A¢g. x; and x3
are stable roots of f(x), and x, is unstable. Starting
from any of the equilibrium values, x;, of the unper-
turbed system, the effect of a nonzero u is to produce an
equilibrium solution x(z) with bounds x + lying on ei-
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FIG. 2. Broken lines show x+— u for Ao =3.6 obtained by
solution of the pair of equations (4) and (5) for the following
values of Vo: Vo =0.2 (dotted lines); ¥o=2 (dot-dashed lines);
Vo=>5 (dashed lines). The solid curve is the solution of Egs.
(8) and (9), valid in the limit Vo— oo, 1— 0, u =V,1/2 finite.

ther side of x;. The periodic solution centered on x; is
unstable and in practice will decay onto one of the other
two periodic solutions. The unstable solution always
forms part of a closed curve in the (u,x+) plane. This
means that only one of the equilibrium solutions is stable
for all u, because with increasing u the universal func-
tion will reach a point beyond which x 4+ (1) becomes sin-
gle valued. For the parameters of Fig. 2 this is the solu-
tion which evolves from the upper stable root of f(x).
The response amplitude |x+ —x_| for this solution is
shown in Fig. 1(a).

The extrema of the solid lines of Fig. 2 can be located
by differentiation of Egs. (6) and (7) with respect to u
and by combination of the results to yield

dx+ glxy) 10)

du 1= flx)gx )/ f(x)glxy)”
Hence an extremum occurs when the right-hand side of
this equation vanishes. To simplify this result we note
that, provided that the amplitude | x4+ —x _| is nonzero
and that f(x) and g(x) are analytic in the region
[x —,x+], g(x) cannot vanish in this interval. To prove
this one notes that if a point x9 € [x —,x+] exists for
which g(xo) vanishes, then the velocity at xq is finite.
Consequently, if g(x) is analytic, the distance moved
from xo in any time interval of order t vanishes as
t— 0, which contradicts the assertion that | x4+ —x |
is nonzero. The combination of this result with Eq. (10)
shows that the universal curves of x4 versus u possess
extrema when the following condition is satisfied:

S(x2)/f(x4)=0. an

Similarly curves of x — versus u possess extrema when
f(x4+)/f(x-)=0. Equation (11) is a general condition
for the existence of extrema in the universal curve of Fig.
2 and locates the regions of negative slope. For a non-
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FIG. 3. Universal curves of (a) 4— y and (b) x4+— u for
a variety of Xo.

linear system such as Egs. (2) and (3), f(x-) and
f(x+) cannot simultaneously vanish except perhaps at a
small number of values of Ag. Excluding this set of mea-
sure zero, Eq. (11) reduces to the condition

fx =) =0. (12)

It is interesting to note that the potential of the
fluctuation-free system is U(x)=— [dx f(x) and,
despite the fact that the modulated system is never sub-
ject to this potential, Eq. (12) reveals that U(x) deter-
mines the locations of the extrema. The right-hand
column of Fig. 3 shows universal curves for a variety of
different Ao and the left-hand column shows the corre-
sponding response amplitudes. In each case the solid line
represents the globally stable solution, and the dashed
line shows the solution which is stable over only a finite
range of u.

The response of the system to a sine-wave modulation,
as exemplified by the dashed line of Fig. I, shows that
the features we have been discussing are not simply an
artifact of a square-wave modulation. To obtain an ex-
tension of the above analysis which encompasses a more
general form of modulation, we consider a periodic fluc-
tuation h(z) =h(t+nt) which vanishes only at times
t=ntand t =nt+1t 4+, where n is an integer. In the limit
Vo— o, 1— 0, u finite, Eq. (1) shows that tdx/dt also
changes sign at nt and nt+174 only. To obtain expres-
sions for x + consider an equilibrium solution x(z) whose
velocity dx/dr is positive over the half-cycle
nt =<1t <nt+t4+ and negative in the interval nt+r4+ <t
= (n+1)z. Over the positive (negative) half-cycle we
denote the equilibrium solution by x () [x ()] and
its inverse by £ *(x) [t “(x)]. The multiplication of Eq.
(1) by an arbitrary function F(x) then yields, in the lim-

8

it Vo— oo, 7— 0, u finite,
S axFo =2ue T anhOF G 0)g 6 (0),
S axro=2ue [ drhOF G ()~ (),

The subtraction of these equations yields the important
result

S ax PG =ptFe), (13)

where we have defined

<Fg>=r—'fo’d,|h<z>|F(x(z))g(x<z)).

The choice of F(x)=g ~'(x) shows that the square-
wave equation (7) is valid whatever the shape of the
parametric wave form #h(:). The choice of Fi(x)
= f(x)/g*(x) shows that the general form of Eq. (6) is

S axro/g2 0 = e, (14)
where
e=(/1g). (15)

The *“coefficient of castellation™ ¢ is identically zero for a
square-wave modulation; it provides a measure of the de-
viation of 4 (z) from such a wave form. The significance
of a nonzero ¢ is mostly easily seen by writing f(x)
=fo(x) +xog(x) [cf. Egs. (2) and (3)], which yields for
Eq. (14)

S ax fo0) /g2 = = ¥, (16)

where A* =1 —e.

Equations (7) and (16) form rather a general pair of
simultaneous equations for x +. Differentiating these
with respect to u shows that the corresponding generali-
zation of condition (12) for an extremum in x 4 is

Sx ) =gx ) e+ude/du). (17)

For a square wave where e =0 and A* =), the values of
x + for a given Ag,u can be read directly from the univer-
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sal curves of Fig. 3. Remarkably Eq. (16) shows that
whatever the form of h(¢), x + can be obtained from the
same family of curves, provided Aq is replaced by A*.
Thus the presence of a nonzero coefficient of castellation
shifts the mean of A(z). For Ag=3.6 Fig. 4 shows the
variation of ¢ with u for the bistable system (2) and (3)
in the presence of sinusoidal and triangular wave forms.
These results were obtained by numerical integration of
Eq. (1). For each value of u, f the system was allowed
to relax to equilibrium from a large initial value of x and
the solution x(z) used to evaluate the integral on the
right-hand side of Eq. (15). In the vicinity of the extre-
ma of the x4+ (u) curves of Fig. 3, Fig. 4 shows that both
€ and de/du are small. Hence, for this example of a
nonlinear system, the right-hand side of Eq. (17)
remains close to zero and the positions of the extrema
are given approximately by the simpler condition (12).
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