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Swept-parameter-induced postponements and noise on the Hopf bifurcation
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The postponement of Hopf bifurcations driven by a swept bifurcation parameter is demonstrated
with an electronic Brusselator. Noise on the swept parameter destroys the postponement and the bi-

furcation as it is usually defined.

We have recently studied two examples of dynamical
systems with swept bifurcation parameters in the presence
of noise.? In both of these systems, the bifurcation was
of the simplest “pitchfork” type, i.e., it represented the
transition from a monostable to a bistable state. In the
first! work the statistics of branch selection were studied
as the bifurcation parameter was swept into the region of
bistability. In the second? the magnitude of the postpone-
ment of the bifurcation was studied as a function of sweep
velocity, noise intensity, and noise correlation times. In
both cases the noise was additive. Our essentially experi-
mental studies were made on analog simulators of the ap-
propriate Langevin equation, and were motivated by prior
theoretical works: in the first instance, a proposed mecha-
nism for the selection of molecular chirality,3 and in the
second, a dynamical switching process in a ring-laser
model.*

In this Brief Report we consider the simplest Hopf bi-
furcation: the transition from a fixed point to a limit cy-
cle, driven by a swept and noisy bifurcation parameter.
We observe that the bifurcation is postponed, and that
both the postponement and the Hopf bifurcation itself are
destroyed by the noise. A deterministic theory of the
swept-parameter-induced postponement of the Hopf bifur-
cation in the Brusselator has been reported, but only in
abstract form.> The origin of the postponements is un-
doubtedly a critical slowing down at the bifurcation, but,
to our knowledge, no theory has yet been published in
complete form. There also exists a recent theory of the
purely noise-induced postponements for this bifurcation.®

Our measurements were made on an electronic model
of the Brusselator:

X=A—-[14+B®)]x +x% , (1)

y=B(t)x —x% , (2)
with a time-dependent bifurcation parameter

B(t)=vt +V,(t,7) . (3)

In practice, B (¢) was driven by a triangular wave of slope
v (V/s), to which was added a colored noise voltage ¥, of
intensity D, and correlation time 7, defined by

(V,)=0, (4a)

36

(ug ()W, (s))=(D /T)e ~ 11 —51/7 (4b)

The electronic model and its operation have been de-
scribed previously’ and will not be further detailed here.
We need only recall that the Brusselator limit cycle fre-
quency for B >B,=1+ A? is wg, and that its inverse
scales time in our circuit. The dimensionless correlation
time and sweep velocity,

T=T,0p , (5a)
V=vowg', (5b)

where 7, and v are the corresponding unscaled quantities,
can be conveniently defined. In the course of a sweep, V
measures the change in (B(t)) during one period of the
limit cycle. During this experiment we set wp =10* s~ 1.
The actual noise correlation time 7, varied from 107° s
(r=0.1, or quasiwhite noise) to 1073 s (r=10, or very
colored noise).

The deterministic (¥, =0) and static (v=0) steady
states of Eq. (1) (with A=1) are, for B <B,, given by
x;=1 and y;=B. The deterministic and static bifurcation
point is at B.=2. For B > B, (but not too close to B,)
the limit cycle grows in amplitude as (B —B.)!”2. When
B (t) is swept in time (v > 0) the bifurcation point is post-
poned to a new value B* > B,.

Example measured trajectories of x(¢) and y(z) for
V,=0 are shown in Fig. 1 for ¥=13.3 mV (v=0.133
V/ms). It is evident that the onset of at least the large
amplitude oscillations is delayed, but it is not immediately
obvious how the postponed bifurcation point can be
defined.

In Fig. 2 we have shown two measured trajectories of
the function [x(z)—1]*> which is approximately zero for
B <B.. The measurement of this function rather than
x(t) or y(t) alone has two advantages: first, since
x; =const for B < B,, there is no time delay inherent in
the system’s approach to B. so that the observed post-
ponements are associated only with the bifurcation pro-
cess; and second, since [x(¢)—1]=0 for B <B,., we are
able to substantially increase the sensitivity of the measur-
ing apparatus in order to look more closely at the bifurca-
tion point. The upper trace (sensitivity X 1) shows that
the quadratic behavior of the limit cycle amplitude with B
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FIG. 1. Example trajectories of x (¢) and y(¢) plotted on an
arbitrary vertical scale in volts for ¥, =0 and for ¥=13.3 mV
(v=0.133 V/ms).

for B > B,, true for the static bifurcation, is also preserved
in the dynamic case. The postponed bifurcation parame-
ter B*, may then be defined as the point at which the am-
plitude of [x (1)— 1]? extrapolates to zero as shown by the
dashed line.

The lower trace shows the same trajectory with ampli-
tude multiplied by a factor of 64, where the small precur-
sor oscillations in the range B. <B <B* anticipate the
onset of the quadratic amplitude dependence for B well
above B*. Both traces in Fig. 2 are the result of signal
averaging 200 individual sweeps of B (¢). It is remarkable
that the limit-cycle oscillations are phase coherent with
the B (¢) sweep and that the coherence is robust enough to
survive the 200-sample signal average. As we show below
even very small external noise deliberately added to B (¢)
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FIG. 2. The function (x —1)?, plotted on an arbitrary vertical
scale in V2, as measured with 200 samples of signal averaging for
V=133 mV and for V,=0. The linear relation between
squared limit-cycle amplitude and B, shown by the dashed line,
defines the postponed bifurcation point B*. The lower trace is
the same trajectory but plotted on a vertical scale 64 times more
sensitive than the top trace.
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FIG. 3. The postponements vs sweep velocity for ¥, =0.
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FIG. 4. The function (x —1)? measured with a 200-sample
signal average, for (a) 7=1 and (¥7?)=0.01, upper traces;
(V2)=0.04, lower traces; (b) 7=0.1, top trace; 7= 10, bottom
two traces; with D held constant, middle trace; with {( ¥?) held
constant, lower trace. See text for values.
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destroys this coherence, and the signal-averaged trajec-
tories become stochastic. Figure 2, for which the external
noise is zero, therefore also indicates that the internal
noise of the circuit has a negligible effect on the results.
The postponed bifurcation is, no doubt, finally triggered
by the internal noise, so that B* is actually a statistical
quantity. The persistent coherence, however, indicates
that it must have a distribution much narrower than the
width of a single limit cycle, and hence results in no
measurable effect in this experiment. The postponed bi-
furcation can therefore be considered essentially as the re-
sult of a deterministic mechanism.

We have measured the magnitude of the postponement
AB =B* —B,, as defined in Fig. 2, for zero external noise
as a function of V. The results are shown in Fig. 3. Not-
ably large postponements (order 1 V) are induced by
small (order 100 mV) sweep velocities.

It is not possible to make similar measurements when
V.0, because significant limit-cycle amplitude is evident
even for B < B.. This is shown in Fig. 4(a) where a small
amount of colored noise (7=1) has been added to the
sweep. The upper pair of traces are for ( V?)=0.01 V>
(with D =7(¥V2)=0.01 V2). The lower pair show the
effect of increasing the noise intensity to (¥ ?)=0.04 V2
In both cases considerable offsets from zero, marked by
the left and right tick marks indicated by arrows, are evi-
dent, so that it is not possible to identify any single bifur-
cation point. This difficulty has been discussed previously

in terms of the power spectra,®® and the two-dimensional
statistical density of the limit cycle.’

Figure 4(b) shows the result of changing . The upper
trace is for 7=0.1 and (¥}?)=0.025 V? (with D=0.0025
V2). The middle trace shows the effect of increasing 7 to
7=10 while keeping D=0.0025 V? constant
({¥7)=2.5x10"* V?). The bottom trace is for =10
but for constant { ¥,7) =0.025 V? (D=0.25 V?). It is evi-
dent that increasing 7 to large values while keeping D
constant moves the system toward the deterministic
response, while if (¥2) is held constant instead, increas-
ing 7 has little effect. We conclude that deterministic
Hopf bifurcations can be sustantially postponed by sweep-
ing the bifurcation parameter in time, and that noise on
this parameter destroys the bifurcation when its definition
is based on the mean limit-cycle amplitude.

Note added in proof. We have recently been informed
of theoretical work on related problems by Wallet (Ref.
10).
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