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Skewed probability densities in the ring-laser gyroscope: A colored noise effect
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The influence of noise color on the phase diffusion in a ring-laser gyroscope is studied by use of
an (formally) exact solution of the time-independent Fokker-Planck equation. Novel asymmetries
in the distribution which develop with increasing noise correlation time are predicted and verified
with an electronic model of the corresponding Langevin equation.

Conventional, active ring-laser gyroscopes (RLG’s)! are
limited by the well-known lock-in effect.? At low rotation
rates the backscattering phase locks the counterpropagat-
ing waves, and the beat note between the waves disap-
pears. Information about the rotation rate can be obtained
in this dead band from the phase difference between the
two waves,> but since a beat note is easier to detect, many
methods to avoid locking have been studied.> One ap-
proach consists of deliberately introducing additional
noise, which can reduce the size of the dead band.*~7 All
previous studies have been restricted to the case of Gauss-
ian white noise as, for example, due to spontaneous emis-
sion of the laser atoms.® In contrast, external noise neces-
sarily has a correlation time 7,>0, and the resulting
Fokker-Planck (FP) equation is two dimensional.® Apart
from numerical solutions, only two methods for studying
this problem have been demonstrated:'® One consists of
solving the FP equation in terms of infinite matrix contin-
ued fractions, and the other is a modeling of the Langevin
equation by an electronic circuit.!! At present, the
continued-fraction method represents the only exact solu-
tion of a higher-dimensional FP equation.

Here we present solutions of an FP equation for the
RLG in the presence of colored noise and compare them to
measured results obtained from an electronic circuit
model. We focus on the steady-state statistical density P,
though a discussion of other quantities of interest together
with the detailed calculations!? will be presented else-
where.!> We emphasize that the Langevin equation
describing the evolution of the phase difference between
two counterpropagating waves also arises in a number of
other physical situations; for example, radio physics,!*
Josephson junctions,! self-locking of a laser,!® and
charge-density waves.!” Thus there is a great interest in
this particular equation and its solutions in the presence of

3

fluctuations.
The equation of motion for the phase difference ¢ is
given by!

d=a+bsing+e(t) , ¢))

where a is the Sagnac frequency.’»? The coupling between
the two waves, due to the mirror imperfections, is account-
ed for by b sing, where b is the backscattering coefficient.?
We consider Gaussian noise £(¢) of strength D defined by

(6()els )y =(D/r,)e 11751 )

Introducing &= —(1/7.)e+F(¢t), where (F()F(s))
=(2D/12)5(t —s), a two-dimensional FP equation can
readily be obtained:®
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We impose periodic boundary conditions for ¢ and natural
boundary conditions for &.
It has been shown!?!? that

Pu(0,e) =(1/N2m)Ho(e) T Y SmaHm(e)e™ ,
m™=0n — oo
where 7#,, is given by

F 1 (€) =N expl—2/(4D [t )1H,, (e/~/2D/7.) .

The normalization factors W, are chosen to be
Nm=m12"\/2zD/7.) "2, and the H,, are the familiar
Hermite polynomials. Since Pg is real and thus
&m,—n =S m.n, only the coefficients &, , for n =0 must be
determined. They can be obtained by iteration from

Smn=Cm)n=RmuSm—-1)n form=1, 4)
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where R, is the infinite matrix continued fraction
Em=_[dm+£m£m+1]_lgm ’ (5)

and where the matrices 4,,, B, and C,, are defined by

b
5n,n‘ + %‘ (5n+1,n' - 5n— l,n') s

(4

@mdap:=— [ina +—;i

(6a)

Bm)nn:= —in/D/tcNm+ 16, , (6b)

(Cmdnp:=—in[D/tNmM 8y p . (6¢)
The start vector Sy is determined by

(4o+BoR1)So=0 with $o9=1/\27 . @)

"We now briefly outline the procedure for calculating the
coefficients &p, ,. Substituting the matrices 4,,, Bm, and
Cm into Eq. (5) and using downward iteration® yields the
matrices R,, and, in particular, R;. The start vector Sy is
then determined from Eq. (7) by combining the results for
R, and Egs. (6a) and (6b). Substituting the thus-
calculated Sy together with R, into Eq. (4) we arrive at
S,. Continuing this iteration yields S,,.

For the sake of clarity, the phase variable ¢ is displayed
over two periods from —2x to 2z. For simplicity, we set
D =a=b=1. In the absence of noise, the rotation rate

) ) 2n
¢ (v
FIG. 1. The theoretical statistical density Ps(¢,&) for D =1,
7. =0.10 (nearly white noise), and @ =b =1. (a) The three-
dimensional plot, and (b) contours of constant probability for
equally spaced probabilities 0.005, 0.01... (solid lines) and

0.001, 0.002... (dashed lines). The separatrix (dotted line) is
at 0.007 847. .
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a =b marks the boundary between running and locked
solutions and is thus well suited for studies of the influence
of ..

An example solution is shown in Fig. 1 for small 7, (ap-
proximately white noise), where we have plotted Py (¢,¢)
in (a) and the corresponding contours of constant proba-
bility in (b). The effect of 7, is illustrated by the contour
plot shown in Fig. 2 for 7, =1, but with all other parame-
ters unchanged. A noticable effect of increasing 7. is to
markedly increase the ratio of peak height to saddle-point
probability densities, as was observed!!"!®!? previously in
the case of bistable systems. In addition, noise color has a
profound influence on the shape of the contours. Whereas
for small 7., Ps(¢,e) is more nearly symmetric about the
e£=0 axis, as shown in Fig. 1(b), increasing 7, destroys
this symmetry as is evident in Fig. 2. Moreover, the con-
tours are skewed toward an axis running from lower left
toward upper right for @ > 0. (The reverse is true for
a <0.) Note that in Fig. 1(b), the scale of £ is % 10, so
that there is small skewing, whereas in Fig. 2 the scale of ¢
is £ 3.3, showing considerable skewing. These properties
have a strong influence on the locking characteristic of the
RLG, since the mean beat frequency {{(¢).), is obtained by
averaging over the noise using Pg(¢,e). Therefore the
noise color induced skewing and asymmetry are of techno-
logical importance as well as of academic interest.

In order to test these predictions we have constructed
the electronic circuit model shown in Fig. 3, which mimics
Eq. (1) to a steady-state accuracy of a few percent.” Apart
from the hybrid analog-digital system providing the sing
forcing (shown within the broken line box in Fig. 3) the
basic principle of operation is identical to that of a bi-
stable system discussed previously.!! We measure and
display ¢ over two periods from —2x to 2z Periodic
boundary conditions (PBC) are achieved by a special cir-
cuit (see Fig. 3) which resets the integrator so- that
o5 — — ¢p (with ¢ held constant) each time the trajectory
¢(t) crosses ¢p =1 2m. The noise generator and filter
provide a time correlated noise voltage € defined by Eq.
(2), with dimensionless correlation time 7. =17,/7;, where
T, is the actual correlation time and 7; is the integrator
time constant. In operation, ¢(z) and ¢ are digitized in a

FIG. 2. Contour plot of Ps(¢,e) for D =1, 7. =1.0 (colored
noise), and a =b =1. The contours are drawn for equally spaced
probabilities at 0.025, 0.05,. .. (solid lines) and 0.005, 0.010,. ..
(dashed lines) with the separatrix at 0.01576.
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FIG. 3. The electronic model. The circuit is a closed-loop sys-
tem which dynamically approximates Eq. (1). For this experi-
ment the integrator time constant 7; =100 us, and the noise
correlation time 7, =100 us (resulting in 7.=1). The circuits
which provide sin¢ forcing and periodic boundary conditions are
discussed in the text.

time series of typically 5 million points, each from which
the computer obtains Pg(¢,£).

In Fig. 4 we show a contour plot comparison of our mea-
sured results (solid lines) with the theoretical predictions
(broken and dotted lines) for 7.=1.0. In this example
both the normalization and noise intensity D of the experi-
mental results were adjusted (D only slightly) to achieve
the fit to the theoretical separatrix as shown (dotted line).
The open and closed contours then provide quantitative
comparisons between theory and simulation. Though
there are some discrepancies located where the density is
most rapidly changing, we regard the overall agreement
between theory and simulation as satisfactory, the errors
being attributable to inaccuracies in the circuit.

We conclude that the matrix continued-fraction theory
offers an accurate method for evaluating the effects of
colored noise on systems with periodic potentials. In addi-
tion to providing an independent method for obtaining

FIG. 4. A contour plot of Py(¢,e) for 7.=1.0 and
a=b=1.0V/S. Theoretical results (dashed lines) are replotted
from Fig. 2 for D =1 at P,=0.01576 (dotted line separatrix),
0.05 (closed contour), and 0.005 (open contour). The measured
results (solid lines) for the same densities were obtained for
D =0.92%0.06V2

Py (¢,¢) rapidly and simply, the electronic circuit offers a
straightforward model for similar measurements which ,
could be made on'a RLG.
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