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We consider a general class of non-Markovian processes defined by stochastic differential equa-
tions with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times
associated with correlation functions in the steady state. This formalism is a generalization of a pre-
vious approach for Markovian processes. The theoretical results are shown to be in satisfactory
agreement both with experimental data for a cubic bistable system and also with a computer simula-
tion of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in
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different situations.

I. INTRODUCTION

Stochastic differential equations have been a very useful
tool in the study of a wide range of nonequilibrium phe-
nomena. These equations incorporate stochastic linear
terms or noises. The origin of the noise can either be in-
trinsic to the system, or it can be external to it and con-
trolled in the laboratory. It is commonly assumed, at least
in a preliminary approach, that the noise is a Gaussian
white stochastic process described by a unique parameter
D referred to as the noise intensity. This assumption is
plausible when the time scale of the noise is several orders
of magnitude smaller than the time scale of the system.
In this situation the process is Markovian and the steady-
state properties of the systems associated with the station-
ary density P, are well known. '

The real world is, however, rather different from this
idealization. Recent experiments on optical systems? and
electronic circuits® have related to noise that is definitely
nonwhite. The main difficulty in such cases is that, be-
cause the process is non-Markovian, the steady-state prop-
erties are known exactly only in particular -cases.
Nonetheless, it is possible to understand in general their
main features through the use of approximate ap-
proaches.3—¢

The study of the dynamics of non-Markovian processes
is of very recent origin both from the theoretical and the
experimental points of view.2~% Some attention has, how-
ever, already been focussed on relaxation from unstable
initial conditions,”~® on mean passage times between
metastable states,>!° and on relaxation times in the steady
state.*2>11—13 The present paper is devoted to a study of
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this last quantity. The relaxation time, often called the
linear relaxation time, gives dynamical information about
the time scale of the evolution of a spontaneous fluctua-
tion in the steady state. The relaxation time associated
with the correlation function c (s) is defined by!'!"!*

© ¢(s)
T= fo C(O)ds,

where

(1.1)

cls)= lim (gt +5)g(1)) —{(gq)2 (1.2)

and q (¢) represents the stochastic process. It is simple to
extend the definition (1.1) to other quantities such as the
moments of ¢ (z).

If g(1) is a Markovian process the evaluation of T is a
solved question. One can find in the literature several ap-
proximate methods'® and very recently the exact answer. '®
The suitability of these methods in different situations has
also been tested by means of electronic circuits. !’

For non-Markovian processes, however, the present
status of the theory cannot be regarded as at all satisfacto-
ry,'! though a number of recent works demonstrate wide
interest in this problem.!%!3=2* One of the main aims of
this paper is to present an improved theoretical approach,
which is outline in Sec. II. It is based on two principal
steps: a refined calculation to find the specifically non-
Markovian features of the process ¢(1),® and an exact
treatment for a quasi-Markovian process. In this sense
our approach is a natural extension to non-Markovian
processes of the exact method introduced in Refs. 16 and
25 for Markovian ones. Sections III and IV are devoted
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to specific examples. In Sec. III we study a cubic bistable
system and we compare the theoretical results with experi-
mental data. In the second example, Sec. IV, we study the
Stratonovich model and we compare the theoretical pre-
dictions with numerical data. In Sec. V we comment on
the role of the non-Markovianicity in these particular ex-
amples and we summarize the main conclusions of this

paper.

II. THE THEORY

The process g(t) that we are interested in studying
obeys a stochastic differential equation of the general
form

g=v(q)+g(q)&t), (2.1)

where v(q) and g(q) are arbitrary functions of ¢ and £(z)
is the noise or random force, which is an Ornstein-
Uhlenbeck process. It is Gaussian with zero mean and
correlation function

(EDE)) = 'lTlexp

_ J’—:’—L ] . 2.2)

The noise parameters D and 7 measure the noise intensity
and correlation time respectively.

Due to the non-white character of the noise £(¢), the
process g (t) is non-Markovian, and the equations satisfied
by the probability density P(q,t) and the joint probability
density P(q,t;q’,t') (t>1t') are different.?® In the limit
t— o0, t'—> o0, with t —¢t'=s, and in the weak-noise as-
sumption (small D), it is possible to obtain an equation
for the steady-state joint probability density®?® of the
form

asPst(q’q’;s)z[Lq(T)+Dexp( _S/T)Lq,q'(T)]Pst(qaq';s) s

(2.3)
where the operators L,(7) and L, (7) are given by
L,(1)=0,v(q)+D3,g(q)9,H(q) , (2.4)
L, (7)=0,8(q)0,H (q"), (2.5)
and
Hg)=v(@)[1+70(g)3,]"" —gv((—Zi 2.6

The operator L,(7) has a Fokker-Planck-like form and it
represents the quasi-Markovian approximation for the
process g(tz). It determines the evolution of the single
probability density, thus it satisfies L,(7)Py(q)=0. The
second term of (2.3) carries the pure non-Markovian
dynamics of the process. It vanishes in the white-noise
limit 7—0, whereas L,(7) becomes the well-known
Fokker-Planck operator.

Equation (2.3) is of practical interest in the study of
correlation functions.® By formal integration to first or-
der in D we get
Lq(-r)s ~ , ,

[1+aqH(q,S)aq'H(q )]Pst(q,q ,O) ’

(2.7)

P,(q,q';s)=e

where H(g,s) is a function defined by the operator rela-
tion

8,H(g,5)= f(,SDe —5'/1g Thg T Lqtms

d,8(gle s (2.8)

An explicit evaluation of H(g,s) is possible in terms of
power series of 7 (see Ref. 6). To first order in 7 it reads

H(g,s)=D7(1—e *'")g(q)+0(7) . (2.9)

After some algebra, Eq. (2.7) gives rise to a closed ex-
pression for the steady-state correlation function

(Ag Ag(s))q
—(Ag Ag(s))5
_ 7 H(g,sv(g) >o
(2o a0 @+ 22 | ag 0
2.10
with
0 b L, (1)s
(Fr@falgNe= [ dafo@e fi(gPy(g), (.11

where the interval [a,b] is the domain of definition of
q ().

The usefulness of (2.11) is that it reduces the treatment
of (AqAq(s))y to that of generalized correlation func-
tions (2.11) of Markovian processes, characterized by
Ly(7), for which standard methods are available.!® A
summary of the method followed here for the exact time
integration of (2.11) is outlined in Appendix A. However,
we cannot apply it yet to the right-hand side (rhs) of (2.10)
because of the dependence on s of H(g,s). In order to
avoid this difficulty, we take a small-r approximation, so
that (2.10) reduces to®

(Aq Aq(s))
=(Aq Aq(s))%—7([Dg(q)g'(q)+v(q)]Aq(s))S
+0(72),

where we have used (2.9) and H(q)=g(q)+0O(7). We
have also neglected the term e ~*/" which would give a 7°
contribution after integration.

In principle, only the second term of (2.10) is involved
in the 7 expansion although the first one is also dependent
on 7 via (2.6). This means that it is possible to keep the
effect of 7 in the quasi-Markovian contribution, whereas
the expansion of the second term of (2.10) supplies the
pure non-Markovian corrections.

Our goal in this paper is to separate these two types of
contributions to T, applying the Jung-Risken method for
the exact integration of (2.12). Thus, limiting ourselves to
the first-order correction, and as it is explicitly shown in
Appendix B, the relaxation time of c (s) takes the form

T=Ty7r)+7T,, (2.13)

(2.12)

where the first contribution is the corresponding to the ef-
fective Markovian problem associated with L,(7) and the
second one is the first correction originating from the
operator L., (1) characterizing pure non-Markovian
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dynamic effects, not included in any quasi-Markovian ap-
proximation.

To(7) is given by (B1) and is just the Jung-Risken re-
sult'® for a Markovian process defined by (2.4). In prac-
tice, however, one has to use a first-order approximation,
not only by consistency but in order to avoid unphysical
boundaries problems [see (B16) and (B17)].

Now, to evaluate T, we take f,(q)=—[Dg(q)g'(q)
+v(g)] and f,(g)=q — (g ) in (A1), and we get straight-
forwardly (see Appendix B) T|=1. Therefore, Eq. (2.13)
is just

T=Ty(r)+1 (2.14)

so that the relaxation time 7 reduces to the value corre-
sponding to an effective Markovian approach plus a con-
tribution 7 which is a pure non-Markovian slowing down
associated with memory effects, and which is independent
of the model and of the intensity of the noise.

A similar result was obtained in Ref. 11, after a decou-
pling ansatz,

T=[v%"]"'+7, (2.15)

where ¥%(7) ™! was the first approximation associated with
L,(7) in a projector-operator technique.!! The main ad-
vantage of the present approach, as compared to that of
Ref. 11, is that in (2.14) the white noise as Markovian case
(r=0) is exactly incorporated. In some sense our ap-
proach is a perturbative method in 7 where the lowest or-
der is the exact result for 7=0. In Ref. 11 both D and 7
are used as perturbative parameters in an uncontrolled
way.

III. WELLAND-MOSS MODEL

In this section we study the relaxation time of a cubic
bistable system both from a theoretical and an experimen-
tal point of view. This model has recently been con-
sidered for the particular case where the external noise is a
Gaussian white process;17 our intention here, however, is
to try to understand how the non-white characteristics of
the actual noise would modify those earlier results. The
model is defined by (2.1) where

v(g)=—¢q*+Aq>—Qq +R , (3.1)
glg)=q*. (3.2)

The external noise has been introduced through the
control parameter A as A(¢)=A+&(2). In our explicit re-
sults we have always chosen Q =3 and R =0.7. This
choice results in a bistable-monostable transition depend-
ing on the values of the initial parameter A as it is ex-
plained in Ref. 27. Our interest in this model is to see
how the non-Markovian character of the process may
modify the slowing-down picture in the bistable region,
that was observed in Ref. 17 for the case of its Markovian
counterpart.

The theoretical results that will be presented were ob-
tained by numerical integration of Ty(7) (B1) following a
procedure similar to that explained in Ref. 17.

The relaxation time was also measured experimentally
for an electronic circuit that accurately models the system

in question (2.1), (3.1), and (3.2). The technique used was
essentially the same as described previously'” except that
the external noise applied to the circuit was colored rather
than white; that is, its correlation time was no longer very
short compared to the characteristic response time of the
circuit. The same commercial Gaussian-noise generator
was used as before (Wandel and Golterman model RG-1),
its output being passed through an active RC filter with
component values chosen such that the resultant noisy
voltage was exponentially correlated with a relaxation
time 7, that lay in the range 10 <7, <1000 us. The in-
tegrator time constant 7; of the circuit was 1000 us. The
noise intensity was measured by means of a true-rms-dc
converter (AD536A), the value of D being determined
from the relation
p=vi .
I

The relaxation time of the circuit was measured for a
range of values of A, D, and 1, by application of the stan-
dard fast-Fourier-transform (FFT) technique already
described,!” and then divided in each case by 7; to find T.

The measurements were naturally subject to experimen-
tal error, arising from several sources. Systematic errors
were introduced by the inherently non-ideal character of
the electronic components from which the circuit was
constructed. These combined to produce a systematic un-
certainty in 7T that we estimate as being no more than
+10%. In addition, there was a random error related to
the statistics of the averaging process and amounting, typ-
ically, to £5%. The effect of drift in component values
during the period of acquisition of a correlation function
(typically 15 minutes) was also important, and particular-
ly so in the bistable region where small shifts in the pre-
set value of A could exert a disproportionate influence on
T. The drift in A during acquisition was usually less than
1%. We conclude, therefore, that the measurements of T
suffer form a systematic uncertainty no greater than
+10%, plus a random uncertainty of about +5%, indicat-
ed by their scatter about a smooth curve and that they are
subject, in addition, to the uncertainty corresponding to
errors of up to +1% in the set value of A. It must be em-
phasized that these estimates refer to the worst conditions
encountered in practice, so that they will substantially
overestimate the actual errors in most of the measure-
ments.

The measured values of T~ are plotted in Figs. 1 and
2 for comparison with theoretical predictions (curves)
based on (2.14). They are seen to be in excellent agree-
ment, and well within the range of experimental uncer-
tainties discussed above. It is immediately clear that the
situation has not changed drastically as compared to the
white-noise case in the bistable region (the pronounced
minimum in Fig. 1), where the dominant dynamical
mechanism is the diffusion over the barrier.!” The most
remarkable difference is the shift of the minimum due to
the term Ty(7) which accounts for an important increase
of the relaxation time. In a monostable state, the slowing
down produced by the second term in the rhs of (2.14) is
more apparent. Figure 2 shows that the extrapolation of
the theory to values of 7 clearly beyond the domain of re-
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FIG. 1. T~! for the model (3.1) and (3.2) vs A for 7=0 (solid
line), 7=0.1 (dashed line), and 7=0.3 (dash-dotted line). Circles
(r=0.1) and squares (7=0.3) are the experimental data
(D =0.125).

FIG. 2. T~! for the same model as in Fig. 1 vs 7 (A=4.50
and D =0.125). The circles are the experimental data.

MONOSTABLE
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BISTABLE

30

FIG. 3. Different contributions to T: T,(7) (dashed line),
To(0) (dotted line), and T (solid line), for the model (3.1) and
(3.2) (r=0.3 and D =0.125).

liability of a first-order approximation, seems still to be
good, at least in this case.

The situation is more clearly displayed in Fig. 3 where
the different contributions of (2.14) are compared with the
white-noise case. The quasi-Markovian contribution,
To(7), is much more important at the maximum (bistable
region) than in monostable situations where the pure non-
Markovian term, 7, dominates.

IV. STRATONOVICH MODEL

Now we consider the so-called Stratonovich model
which was introduced so far in the context of electronic
devices?® and has been widely studied in many different
situations.*!9~13 The model is defined by (2.1) with

vig)=q —q°g(q)=q . 4.1)

We have computed Eq. (2.14) for different values of
noise intensity D and correlation time 7. In Fig. 4 one can
see the dependence of T~! versus D for 7=0 and 7=+
comparing previous theoretical results of Ref. 11 and new
numerical data. The monotonic decrease of T ~! with in-
creasing D or 7 is immediately evident. This figure clear-
ly demonstrates how the white-noise case is exactly incor-
porated in (2.14), representing a definite advantage over
the previous approach!! which gives rise to the appear-
ance of an anomalous minimum of 7 ~'(D) and a diver-
gence for D— « when 7=0. The quantitative agreement
between the theory (2.14) and the digital simulation is re-
markably good. These new data do not present the sys-
tematic underestimation of T of Refs. 4a and 11. In Fig.
5 we show the different contributions to T of Eq. (2.14) in
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N
3
1

FIG. 4. T~! for the Stratonovich model (4.1) vs D. Solid
lines correspond to the expression (2.14) and broken lines are
from Ref. 11. Triangles (7=0) and squares (T=%) are numeri-

cal data from a new digital simulation.

order to emphasize the role of the non-Markovianicity in
a monostable situation like the present model. Here we
will see more clearly one of the effects discussed in Sec.
III. In fact, the pure non-Markovian contribution, 7, in
(2.14) is the dominant part as can be seen in Fig. 5, but its
relative importance decreases with increasing D. This
means that there is also a slowing down due to T(7) (an
effective diffusion effect) which is amplified by D, so that
for D—O0 it reduces to the white-noise contribution,
whereas for D large it becomes dominant. The purely
non-Markovian slowing down remains constant, indepen-
dent of D.

T

1.5F

0.5

I 1 1 1

0.2 0.4 06 08 D

FIG. 5. Different contributions to T: T,(7) (dashed line),
To(0) (dotted line), and T (solid line), for the Stratonovich
model (4.1) (r=1).
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V. COMMENTS AND CONCLUSIONS

We have presented a theory to evaluate relaxation times
for non-Markovian processes defined by stochastic dif-
ferential equations with non-white noise. It compares
favorably with a previous theory!! and is a natural exten-
sion of the Jung-Risken method'® deduced for the particu-
lar case of Gaussian white noise. Jung and Risken'® have
also presented a theory for non-Markovian processes g(?)
but considering the two-variable problem (g,&) which is
now a Markovian situation. By means of continued ma-
trix fraction expansions they can also get non-Markovian
information. This approach has not been applied to the
models of Sec. IIT and IV. The advantage of our treat-
ment is clear for the study of T because our main result
(2.14) allows physical interpretation of the changing role
of the non-Markovianicity in different situations. In this
context Figs. 3 and 5 clarify the differing role of the non-
Markovianicity in bistable and in monostable situations.
We can conclude that in a bistable situation (Fig. 3) the
role of 7 is through an effective diffusion (2.4) in the
Fokker-Planck equation,'® which can be interpreted as a
quasi-Markovian approximation for a non-Markovian
process. This remarkable fact has also appeared in the
study of mean-first-passage times for non-Markovian pro-
cesses.?>2%3% In monostable situations the role of non-
Markovianicity is quite different; the pure non-Markovian
effect arising from the memory of the system is relatively
much more important when the intensity of the noise D is
not too large. The above results are useful in considering
the most suitable approximation to use for a description
of any given physical situation.

The physical mechanisms that lead to these different
behaviors are the following. In a bistable situation the
passage time between the two stable states is the dominant
time scale. Its magnitude should be related to the Ar-
rhenius Law

Ad

D (5.1)

T ~exp

From this approximate expression one can clearly see
that small changes in the diffusion are magnified by the
exponential. As the colored noise reduces the diffusion in
the stable states, then T increases exponentially with
7.10,23,29-31

In a monostable situation, when D << 1, the linear or
Gaussian approximation is dominant, and the relaxation
time is given by!!

T =const+7+0(D) . (5.2)
Hence small changes in the diffusion coefficient are not
specially relevant whereas the pure non-Markovian effects
remain in the term 7.

In conclusion we should like to emphasize that the
theory proposed here, although approximate, does
nonetheless give reliable results, as has been demonstrated
through comparison with experimental and computer-
simulation data, over a very wide range of parameter
values and in distinctly different physical situations.
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APPENDIX A: GENERALIZED JUNG-RISKEN
METHOD

Here we present a generalization of the scheme intro-
duced in Ref. 16 for the calculation of relaxation times as-
sociated with Markovian-like stationary correlation func-
tions defined by the general form

tlim (filg(D))f,(q(t +5)))

f dq f2(q@)e™'%f(g)Py(q
a Fokker-Planck-like operator with

=Cyls ), (A1)

where L(q) is
L (g)Py(q)=0.

This method is useful for the calculation of the quanti-
ty

f ds Cyp(s) (A2)

T
2= CIZ
which is given exactly up to a quadrature by solving an
ordinary differential equation.

The conditions which are implicit in this procedure for
all quantities to be well defined are (f,(g))
=(f,(q))4=0. However, these are not real restrictions
given that at least one of them is necessary for the ex-
istence of T',; for example, (f,(q))=0 so that

)= f1(g) st {f2(q))e=0

llm CIZ

and now it is possible to redefine the function f,(q) as
f2(@)—<f2(q) ) with no change in the resulting correla-
tion function by means of the identity

b
T da(fa— () ae™(f1 = f1) 0Py
= [ Fae i Pydg = F )l f

In these conditions the method follows straightforward-
ly. Assuming

(f1(@))=(Sf2(g))4=0
in (A1) we define the quantities
W(g,s)=eL'9f (q)Py(q) ,
= [Taswigs),

and note that Wi(q,s) satisfies, from its definition, the
Fokker-Planck equation defined by the operator L (q).
After a formal time integration of this Fokker-Planck
equation and taking into account that W (g, « ) must van-
ish, we find

—f1(@Py(g)=L

(A3)

(A4)
(AS)

(@)plg) , (A6)
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where we have used the definitions (A4) and (A5).
Otherwise, inserting (A1) into (A2) and changing the
order of integration, the relaxation time T, is given by

T=—— ["dq f,(g)p(0)
12—C12(0) . 8472'9)p'q

Hence, if it is possible to solve (A6), we can substitute
p(g) into (A7) obtaining an exact expression for T, in
terms of a quadrature. When L (q) is a Fokker-Planck-
like operator, Eq. (A6) can be solved easily because it
reduces to a first-order linear nonhomogeneous differen-
tial equation. If the Fokker-Planck operator is modifed
with an arbitrary function ¢(q) such as

(A7)

L(g)=—0d,v(q)+D0,g(q)0,4(q) (A8)
the method gives rise to
1 b F](‘])Fz(q)
T,,= d (A9
2=7CL0 I, Dg(9)d(@)Py () ! )
with
— [ fitgHPutandg’ (A10)

which reduces to the Jung-Risken result for the particular
case fi(g)=qg —{q)y and where the usual diffusion
Dg?*(q) has been substituted by an effective one given by

(g)p(g). The details of the deduction of (A9) and
(A10) are the same as explained in Appendix B for the
derivation of (B9) and (B10).

APPENDIX B: CALCULATION OF T,(7) AND T,

In this appendix we give the explicit form of the rhs of
Eq. (2.13). The first term Ty(7) is easily obtained after
the discussion in Appendix A. It reads explicitly

1 b F*(q)
To(7)= d Bl
o) ((Ag)*)g f" Dg(q)H (q)P(q) i ®D
with
q
Flg)=— [ (q'—(q)u)Pu(q')dq’ . (B2)

Here we treat in more detail the calculation of the second
term which accounts for the pure non-Markovian effects.
According to (2.9) and (2.10), we must take in (A1)

f1(g)=—[Dg(q)g'(g)+v(q)], (B3)
f2@)=q9—(q)y=Aq, (B4)

which leads, after a formal integration in both members
of (A6) with L (q)=L ¢(7) of (2.4), to

)=— [ f1q"1Pu(q")dg’
—[—v q)+Dg q)9,H (q)]p(q) (B5)

given that the associated probability density current must
vanish at the boundary a,

[v(g)—Dg(q)3,H (g)]p(q)
The general solution of (B5) can be written as

P@O=CPu(@)+Pu(q) [ G(qg"P; (g)dg',  (BY)

lg=a=0". (B6)
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where
F‘(q)
Glg)=— B8
D= e @HQ (B8)

because the solution of the homogeneous part is just
P, (gq). However, the first term in the rhs of (B7) does not
contribute to the integral (A7) so that, after an integration
by parts, we have

T,C(0)= fabqu(q)dq = fabFz(q)G(q)PSTl(q)dq ,
(B9)
where
Fyg)=— [(q'—(q))Py(g)dg’ .
Otherwise, the relation L,(7)Py(q)=0 can be written as
[—aq[v(q)+Dg(q)g’(q)]—|—D33g2(q)}Pst(q)=O('r)
(B11)

(B10)

and, with vanishing probability density current, (B11)
reduces to

{—[v(q)+Dg(q)g'(9)]+D3,g%q)}Py(@)=0(7) .
(B12)

From (B12) it is possible to write f;(q)P(q) as a total
derivative so that G (q) in (B8) reduces to

G(q)=Pyu(q)+0O(7) (B13)

[(B12) also shows that (Dg(q)g'(g)+v(g)) =0 (1) which
enables us to omit it in the definition (B3) because it will

not contribute to T;]. Thus, by inserting (B13) into (B9)
we have

b
T,C(0)= [ F(g)dg +0(r)

= — fab {faq(ql—(Q)st)Pst(q’)dq’ dg +0(7)

(B14)

and performing an integration by parts, (B14) is nothing
but ((Ag)?)s=C(0) which implies

T,=1, (B15)

T being independent of D and of the model.

The effective diffusion we have used in our numerical
calculation corresponds to the first-order approximation
in 7 of Eq. (2.6)

D.(q)=Dg(q)H (q)

v(q)

zDgZ(Q) g(q)

1+7g(q) (B16)

As this approximation implies either anomalous boun-
daries or nonpositive definite diffusion, we have taken in
(B1)

Dl (q)= +0(#), (BI7

Dg?(q)

which avoids these problems in the models studied here.
As the same problems appear in the formal expression for
P (q) we have employed the exponentiated form of Ref.
4(a).
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