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Postponed bifurcations of a ring-laser model with a swept parameter
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We present measurements of the time evolution of the statistical densities of both amplitude and
field intensity obtained from a colored-noise-driven electronic circuit model of a ring laser, as the bi-
furcation parameter is swept through its critical values. The time-dependent second moments (in-
tensities) were obtained from the densities. In addition, the individual stochastic trajectories were
available from which the distribution of bifurcation times was constructed. For short-correlation-
time (quasiwhite) noise our results are in quantitative agreement with the recent calculations of Bog-
gi, Colombo, Lugiato, and Mandel [Phys. Rev. A 33, 3635 (1986)]. New results for long noise corre-

lation times are obtained.

I. INTRODUCTION

Swept and modulated parameter bifurcating systems
have become objects of considerable interest,! > stimulat-
ed chiefly by applications in optical bistability® and the
laser transition.””® The general effects of noise at instabil-
ities have been studied extensively.9 However, more re-
cently, a growing awareness that driven bifurcations do
not occur in real physical systems in the absence of noise
has developed'®—!° and has been stimulated by a number
of experiments. 16— 1°

In this paper we study the influence of additive colored
noise on the postponed bifurcations of a specific laser
model induced by sweeping the bifurcation parameter at a
non-negligible velocity. Swept-parameter-induced post-
ponements should be distinguished from purely noise-
induced postponements predicted?’ and measured in elec-
tronic circuit models?! some time ago and more recently
observed experimentally in transitions to turbulences in
liquid crystals'”!® and in superfluid helium.??

The influence of colored noise on swept-parameter tran-
sitions is extremely difficult to study theoretically, though
a first and very approximate attempt together with mea-
surements on a simulator have been reported.!® Neither is
it easy to digitally integrate the appropriate higher-
dimensional Fokker-Planck equation for swept-parameter
systems subject to time-correlated noise, and no such stud-
ies have, to our knowledge, been reported. In such situa-
tions, simulations by means of analog electronic cir-
cuits?>?* offer a powerful and convenient tool for testing
existing theory?> and guiding new theoretical studies.?%?’

We report here measurements made on an analog simu-
lator of the system

dx /dt =x[—1+A)/(1+x2)]+V,(2), (1a)
av,(t)/dt =(1/7)[—=V,+T()], (1b)
A(t)=Ay+vt , (1c)

where A(t) is the bifurcation parameter, swept from an
initial value A4, at velocity v; and where ¥V, (¢) is a colored
noise with correlation time 7. Equation (1b) implies that
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the noise is exponentially correlated
(V’l(t)Vn(s)>=(D/7')e"lf-SI/'r 2

and derives from a white noise

(C()T(s))=(2D)8(t —s) of intensity D.

source

II. SUMMARY OF THE PREDICTED BEHAVIOR

The model Eq. (1a) has been used by Broggi, Colombo,
Lugiato, and Mandel (BCLM) to represent the stochastic
dynamics of a tuned, single-mode, homogeneously
broadened ring laser in the good cavity limit, and they
studied its bifurcation behavior in the white-noise limit of
V,(t) in a recent publication.?® BCLM made a deter-
ministic ( ¥, =0) study of Eq. (1) by linearizing it around
x=0. The system bifurcates at 4(¢z)=1 in the static
(v=0) limit. They found, however, that when A is swept
with v>0 from an initial value 4, < 1, the bifurcation is
postponed to a new value A* which is obtained at a new
time t*, where 4*=A4(t*). Remarkably, neither A* nor
t* depend on v, but instead are given by

t*=27, (3a)
A*—A=4—4,, (3b)

where the bars indicate the static values. The magnitude
of the postponement (beyond the static value) does howev-
er depend on A4j.

The nondeterministic problem V,(¢)>0 was modeled
by a one-dimensional white-noise Fokker-Planck equation

ArP(x,8)=0,{x[1—A(t)/(1+x2)]+ D3, }P(x,t),
4)

which was numerically integrated for several values of
Ay, D, and v using P(x,0)=6(x) as an initial density.
From these densities BCLM obtain the time evolution of
the second moment {x?2), the laser field intensity, and the
distribution of bifurcation times W (z), or the equivalent
W(A). Since the individual stochastic trajectories x (t)
were not available, BCLM obtained W (t) from an ansatz:
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P(=2 [ P(x,ndx , (52)
Xth
W (t)=dP(t)/dt , (5b)

which represents the rate of growth of probability accu-
mulated above an arbitrarily defined threshold x.j,.

The BCLM results, which are valid only for white
noise, can be summarized as follows.

(1) Nonzero noise destroys the singular deterministic
behavior predicted by Egs. (3) by reducing the magnitude
of the postponement which can then be restored with a
larger sweep velocity.

(2) Increasing noise intensity broadens the distributions
W (A), which can then be sharpened by reducing the
sweep velocity.

Below we describe measurements of x(¢) and P(x,t)
made on an electronic circuit model of Egs. (1). A pre-
liminary account of our results for quasiwhite noise,
which are in quantitative agreement with the BCLM pre-
dictions, has been submitted.?® Here we describe the mea-
surements more completely, and include results for
colored noise. As we show below, noise color, even for
very large 7, has little effect.

III. THE SIMULATOR

A schematic diagram of the electronic circuit model of
Egs. (1) is shown in Fig. 1. The principle of operation of
this simulator is identical with those used in previous
works.?>26  Analog multipliers and dividers are used to
generate voltages proportional to each term in Egs. (1)
which are then summed and finally integrated as shown
by the appropriate operational symbol on Fig. 1. The
noise voltage V,(t) was supplied by a generator*® followed
by a linear filter used to set the correlation time.

At the output of the integrator, the voltage is propor-
tional to

xO=7" [ {x[—1+A@)/A+xD]+V,(t))dt’,  (6)

where 7; is the integrator time constant. All time-
dependent quantities are scaled by 7;, so that the actual
time ¢’ in Eq. (6) is scaled to the dimensionless time
t =t'/7; which appears in Egs. (1)—(5). Moreover, the ac-
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FIG. 1. Schematic diagram of the analog electronic circuit
model of Egs. (1). The multipliers and the divider are Analog
Devices Inc. type AD534. The summing and integrating cir-
cuits are straightforward operational amplifier designs.

FIG. 2. Example measured trajectories x(¢) (arbitrary units).
Each trajectory is 4000 digitized points. The noisier trajectory
is for 7=0.1 and the smoother for 7=10. The threshold x3 is
shown. A is in volts.

tual noise correlation time 7, becomes the dimensionless
quantity 7=, /7; which appears in Egs. (1) and (2). For
7~0.1 the noise can be described as “quasiwhite,” and we
have previously shown that the response of our simulators
to such noise is well described by white-noise solutions of
one-dimensional Fokker-Planck equations. Throughout
the work 7; =100 us and D =103 V2. The ranges of the
other quantities were 10 us<7,<1000 us, and
1073 <v <1071 V, where v is a “dimensionless” velocity,
defined by Eq. (Ic) and ¢ =t¢’/7;, but actually measured in
volts.

IV. CIRCUIT OPERATION AND MEASUREMENTS

As shown on Fig. 1, a triangular wave A4 (z) was applied
to the circuit. The peak-to-peak amplitude was always 2
V, and the starting value A4, was normally 0.5 V, but
could be adjusted. The period of the triangular waves was
adjusted, in accord with the time scaling discussed above,
to give the desired value of sweep velocity v defined in Eq.

[

i
Z

FIG. 3. The time evolving density P(x,t). The time axis has
been converted to A in volts with Eq. (1c). A (¢) is swept in the
direction of the arrow from 0.5 to + 2.5 volts and back to 0.5.
For this example, D =103 V2 vy =10~! V, and 7=0.1.
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tnP(x2t) T

FIG. 4. The time evolving density P(x? A4) for v =10"! V (high sweep speed) and 7=0.1 (quasiwhite noise). (a) A three-
dimensional plot, and (b) a contour plot, where four contours of constant probability [cuts through P(x? A4) by planes parallel to the
x2, A plane] are shown at relative probability altitudes 3, 20, 148, and 1096. x?isin V?>and A4 isin V.

(1c). In operation a large number (usually 5000) of sto-
chastic trajectories x (z) and x%(¢) were digitized and pro-
cessed by the signal analysis system (a Nicolet LAB80).
Two such example trajectories are shown in Fig. 2 for two
correlation times 7=0.1 and 10, along with the arbitrarily
defined threshold xtzh, to be discussed later. For all the re-
sults reported here, the noise intensity was held constant
at D=10"° V=%

The trajectories x () (not shown) were also measured.
It should be noted that at bifurcation the trajectory x(z)
will select and approach the vicinity of either the positive
or the negative branch of stable deterministic steady states
of Eq. (1a); that is, x (¢) undergoes a pitchfork bifurcation

xi=+VA—1, A>1. @)

This selection process, which for ¥, >0 is statistical, has
been previously discussed for a different system. !°

It is worth noting that in contrast to the numerical
solutions of the Fokker-Planck equation, our system
yields the trajectories x(¢) and x?*(¢) immediately as the

tn P(x2t) T

measured physical quantities. As discussed below, this al-
lows us to obtain the distribution of bifurcation times
W (t), in a direct way thereby providing a test of the
BCLM result.

From many samples of the measured x(z), the time-
evolving density P(x,t) was constructed. An example is
shown in Fig. 3 for quasiwhite noise 7=0.1. The time
axis has been converted to 4 (¢) using Eq. (1c). The sweep
commences on the left at 4,=0.5 V, proceeds in the
direction of the arrow to A,,,=2.5 V, then returns to
A=0.5 V on the right. Thus the forward sweep bifurca-
tion is visible on the left and the reverse sweep collapse to
the x ~O0 state on the right. Considerable hysteresis, also
noted by BCLM, is evident with the forward sweep transi-
tion to bimodality (bifurcation) considerably delayed, and
the reverse sweep collapse somewhat prolonged.

Of greater interest here are P(x2,t), which in our sys-
tem were obtained by analysis of the trajectories x2().
Two examples, both for high sweep velocity v =10"! V,
are shown in Figs. 4 and 5 for 7=0.1 and 10, respectively.
Examples for low sweep velocity v =10"3 V are shown

FIG. 5. The time evolving density P(x2 A) for v =10"" V (high sweep speed) and 7=10 (very colored noise); (a) a three-
dimensional plot, and (b) a contour plot, with contour cuts at the same altitudes as in Fig. 4(b). x2isin V?and 4 inin V.
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FIG. 6. P(x? A) for v =103 V (low sweep speed) and 7=0.1 (quasiwhite noise); (a) a three-dimensional plot, and (b) a contour
plot with contours cut at the same altitudes as Figs. 4(b) and 5(b). x2isin V?and A isin V.

also for quasiwhite and very colored noise in Figs. 6 and
7.

It is very obvious from these results that noise color has
no appreciable effect on the statistical properties of the bi-
furcation process at high velocity. A careful comparison
of Figs. 4(b) and 5(b) (high velocity) indicates that the
leading edges of the contours (left-hand edges) are slightly
postponed for large 7, while the trailing edges are virtually
identical. Figure 6(b) and 7(b) (low velocity) show the
postponement plus a discernible sharpening of the densi-
ties. In order to form a quantitative comparison, howev-
er, it is necessary to obtain the second moments (x?) as
shown below. The sweep velocity, as noted already,29 has
a large effect by inducing postponements of the bifurca-
tions and by broadening (at large velocity) the densities.

The time evolution of the second moments obtained
from densities similar to those discussed above are shown
in Figs. 8 and 9, where the results for quasiwhite noise are

lnP(xz.t)T

shown by the squares and for very colored noise by the di-
amonds. Figure 8(a) shows a bifurcation at low sweep
velocity and Fig. 8(b) at high velocity. The BCLM results
are shown by the solid lines, which agree quite well with
our measurements for quasiwhite noise. The slight post-
ponement evident at high velocity for colored noise can be
observed by comparing squares and diamonds in Fig. 8(b).

In Fig. 9, we show the results of a search for any possi-
ble dependence of the bifurcation on A, the initial value
of the sweep. BCLM point out that while the determinis-
tic theory predicts such a dependence, as shown by Eq.
(3b), white noise should destroy the dependence. They,
however, speculate that for colored noise of long correla-
tion times, the 4, dependence might be restored. We do
not observe this, even for 7=10 as Fig. 9 shows. In fact,
we observe only a weak A4, dependence with zero external
noise. Evidently even the very small (~0.1 mV) internal
noise destroys the singular deterministic state.

2.5
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FIG. 7. P(x% A) for v =1073 V (low sweep speed) and 7= 10 (very colored noise); (a) a three-dimensional plot, and (b) a contour
plot with contours cut at the same altitudes as all previous cuts. x?isin V2and 4 isin V.
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FIG. 8. The time evolution of the second moment for 7=0.1 (squares) and 10 (diamonds); (a) with v =10"3 V, and (b) with
v=10""V. (x2)isin VZand 4 is in V. The smooth curves are the results of numerical solutions of Eq. (4) from Ref. 28 BCLM.

V. THE DISTRIBUTION OF BIFURCATION TIMES

As Fig. 2 shows, the individual trajectories of the laser
intensity are noisy. The precise time at which a bifurca-
tion occurs however one chooses to define it, is necessarily
a statistical quantity, and it is of interest to obtain its dis-
tribution W (t), or the equivalent W (A).

In fact, bifurcations of the type described here,
represent quite general switching events. Since every real
switch necessarily operates in the presence of some noise,
no matter how small, it is of great practical interest to
characterize noisy switching events in a proper statistical
sense.?® The quantity W (z) is one such characterization.

We define the bifurcation as having occurred at the pre-
cise time (or A4 value) at which the trajectory x2(z) first
crosses a threshold x 3 (¢); or, in the language of stochastic
theory, the first passage time from x2=0 to x2=x}.
This definition is to be contrasted with that of BCLM
who, not having the trajectories x2(¢) available, used the
definition of Egs. (5). We have measured W (4) for
x%=0.1. The results are shown in Fig. 10(a) quasiwhite
noise and for three sweep velocities. Since these data are
quite scattered, we have made spline fits as shown in Fig.

0.8+ -

(X2
by

Alt)

FIG. 9. (x?2) versus 4 for 7=10 and v =10"" with initial
sweep parameter values, 4o=0 (diamonds); 0.25 V (circles), and
0.5 V (triangles). {(x?) isin V2 and 4 isin V.

10(b) for both quasiwhite noise, and for colored noise as
indicated. [The raw data for the colored noise are not
shown in Fig. 10(a).] It is evident that noise color has
very little effect on W (A) apart from a slight sharpening
of the distributions and the very small added postpone-
ment at the smallest sweep velocity.

We can quantitatively compare our measurements of
W (A) with BCLM (for the quasiwhite noise cases only)
by locating the maxima A.,, and evaluating the full
widths at half maximum A of the W (A4). These are
shown in Table I.

It is interesting to note that in spite of the different def-
initions of W (A), the two sets of results are in quite good
agreement.

VI. SUMMARY AND CONCLUSIONS

The influence of noise on bifurcations driven by a swept
parameter is a problem of general interest for which no
satisfactory analytic theory exists. The Fokker-Planck
equation of one such system has, however, been numeri-
cally integrated for the case of additive white noise. We
have compared measurements made on an analog elec-
tronic model of that system to the white-noise numerical
results. In addition, we have presented the first data on
the same system for extremely colored noise. In the latter
instance, numerical integration of an appropriate higher-
dimensional Fokker-Planck equation would constitute a
formidable problem and has not yet been reported.
Indeed, it may not now be of any great interest to do this,
in view of our conclusion that the color of additive noise
has little effect on the bifurcation.

Further, it has been reasoned that the additive noise in

TABLE I. Comparison of the present results for W(A4) with
those of BCLM.

Amax A
v Present BCLM Present BCLM
103 1.1£0.1 1.12 0.1+0.05 0.10
102 1.2 1.20 0.3 0.14
10! 1.6 1.55 0.4 0.40
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FIG. 10. Distributions of the bifurcation times for v =10~ V (narrow, large amplitudes), 1072V, and 10~ V (broad, small ampli-
tude), respectively. (a) The raw data for 7=0.1, and (b) spline fits to the raw data for 7=0.1 and 10. The horizontal axes are in V.

laser models derives from photon emission statistics and is
consequently expected to be white. It has very recently
been shown in an elegant series of experiments (see the
latter entries in Ref. 19) that the pump fluctuations in a
dye laser are well represented by colored noise. In laser
models, this would appear as multiplicative noise on the
pump parameter A (t), which it may be of interest to
simulate.

Finally, we would emphasize that the measurements
presented here have been made on a real physical system,
and as such, could with advantage be repated on an actual
laser.
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