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A detailed theoretical discussion is presented of the effect of colored noise on nonlinear dynami-
cal systems. The ideas arising from it are applied to a particular example of such a system: a model
of dispersive optical bistability, considered in the contexts of both additive and multiplicative forc-
ing. Analogue experiments and digital simulation techniques are used to explore the applicability
and range of validity of theories proposed to date. The physical phenomenon of bimodality induced
by the finite bandwidth (alone) of additive forcing is demonstrated in detail for the first time. The
three existing theories capable of accounting for this phenomenon can each be categorized in terms
of a single (constant) value of a characteristic parameter P.,,; but it is shown that, in reality, P,y
varies weakly with the correlation time 7 of the noise. The variation of P, with 7 is investigated

in the currently accessible range of 0.1 <7< .

I. INTRODUCTION

Recent years have witnessed an increasing interest in
the effects that arise from colored noise in nonlinear
dynamical systems (see, for example, Refs. 1-11), a topic
to which the present paper is also devoted. For the sake
of definiteness, we will consider a one-dimensional sto-
chastic differential equation of the form

%:y[¢(x)+t[l(x)§(t)] , (1.1)

where x is a dimensionless variable; the rate constant y
sets the scale of the time evolution; ¢(x) and ¥(x) are ar-
bitrary functions of x; and £(¢) is a dimensionless, station-
ary, Gaussian stochastic process with zero average, such
that (£(¢)) =0. If the noise is white, i.e.,

(§(t)§(t'))=2~$—5(t—t') , (1.2)

where the parameter Q specifies the noise level, it is well
known that (1.1) leads to a Fokker-Planck equation (FPE)
for the probability distribution o(x,?) of the stochastic
variable x.!>!® For the Stratonovich stochastic calculus,
the FPE corresponding to (1.1) and (1.2) is

9 —|_3 g9 .9
olx,t)=y 3 (x)+ Y ox zp(x)axdi(x) o(x,t) .

ot
(1.3)
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This type of equation is convenient in the sense that it al-
lows for a straightforward calculation of the stationary
probability distribution. If the noise is colored, however,
the situation becomes very much more complicated.

Let us consider, again for the sake of definiteness, a
stochastic process of the Ornstein-Uhlenbeck type. Thus,
in place of the white-noise equation (1.2) we now suppose
that

%=—%§+%n(t), (1.4)

where 7 is the correlation time of the variable £ and 7 is a
Gaussian, stationary white noise of zero mean such that
(n(t))=0and

(n(t)n(t'))=2%8(t—t'). (1.9)
Hence the variable § has the correlation function

(e =(exp | — 1= |, (1.6)
where the noise strength (&%) is given by

() =Q/yr. (1.7)

It may immediately be verified that, in the limit y7—0,
(1.6) reduces to the white-noise case of (1.2), and hence
that the stochastic equation (1.1) leads to the one-
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dimensional FPE (1.3). On the other hand, for y finite,
the set of stochastic differential equations, (1.1) and (1.4),
leads to a two-dimensional FPE for the joint probability
distribution P (x,£,?) in the variables x and &, 12,13

aP(g; ,t) —LP(x,&,1)

B d
= —Y—ax[¢(X)+'I}(x)§]
119 2y 8
T 8§€+<§>8§2 Pix,5,0) .
(1.8)

Equation (1.8) is far less convenient than (1.3), for a num-
ber of reasons including, in particular, the following.

(i) For many purposes, the quantity of interest in prac-
tice is the probability distribution o(x,t)= fng(x,g,t),
and the additional information contained in P(x,§&,t) is
irrelevant. '

(ii) The stationary solution of (1.8) cannot be calculated
in closed form; only approximate expressions, or numeri-
cal results obtained, for example, by the matrix continued
fraction method,'> or the wideband perturbation
expansion, '>® are available.

These two factors have stimulated numerous efforts to
investigate and approximate the equation which governs
the time evolution of the reduced distribution o(x,t) and
which follows from (1.8). As is also true in general of all
reduction problems, the equation in question is not
differential, but integrodifferential (in time); furthermore,
it includes derivatives of all orders with respect to x.
Consequently, there is no possibility that o(x,?) can obey
exactly an equation of the Fokker-Planck type. This fact
does not, however, exclude the prospect of the time evo-
lution of o(x,t) being describable to a good approxima-
tion by a Fokker-Planck equation, at least in cases where
the noise parameter Q is small. Several proposals of
FPE’s for o(x,t) have been advanced in this vein by a
variety of authors in recent years.

The present paper has two main goals. The first of
these is to discuss some of the more promising proposals,
trying to identify the best candidate for the Fokker-
Planck description of stochastic processes with colored
noise. Our analysis will be based both on general con-
siderations and also on the study of a specific example of
a stochastic differential equation. The latter approach
will allow us to obtain an estimate of the limitations of
the Fokker-Planck approach.

The second purpose of this paper relates to the effect of
noise color on noise-induced transitions.'® Let us consider
(1.1) in the absence of noise,

dx

—dT=‘y¢(x,)») , (1.9

where we have introduced explicitly a control parameter
A. We suppose also that, for all values of A in the case of
the system under consideration, the steady-state equation
¥(x,A)=0 admits only one solution, X(A). In the pres-
ence of noise £(¢), if this is white and additive [i.e., if
¥(x)=1 in Eq. (1.1)], the stationary solution of the FPE

(1.3) is given by

o (x)=N exp , (1.10)

—éf«t(x,k)dx

where N is the normalization constant: (1.10) implies the
existence of a single peak in the density located at exactly
x =X(A). When the noise is white but multiplicative [i.e.,
¥(x) is not a constant], on the other hand, the behavior of
the system is strikingly different. For appropriate choices
of ¢(x,A) and ¥(x), and in a suitable interval of the pa-
rameter A, an increase of Q alters the stationary distribu-
tion in a continuous fashion from one that has a single
peak to one that has two peaks.!>'® It is this
phenomenon that is referred to as a noise-induced transi-
tion.

Rather similar behavior is found in the steady-state
probability distribution in a nonequilibrium phase transi-
tion of the second order.!” It must be noted, however,
that the noise in the latter case is additive and that the
behavior of the stationary distribution follows strictly

that of the steady-state solutions of (1.9) which exhibit a

pitchfork bifurcation when plotted as a function of A.
This is in contrast to the transitions considered in Refs.
14-16 where the bimodal structure of the stationary dis-
tribution is produced exclusively by the multiplicative
character of the noise, whence the appellation of the
phenomenon.

Kitahara, Horsthemke, and Lefever!® showed that the
phenomenon of noise-induced transitions persists when
the noise is changed from white to colored. This change
may also produce profound qualitative consequences in
the behavior of the stationary probability distribution
leading, for example, from the scenario of a second-order
phase transition to one of the first order. "'

In Refs. 1, 18, and 19, the noise is multiplicative in na-
ture. We will show below that noise-induced transitions
can arise, not only from multiplicative noise, but also
from additive noise; provided, however, that it is colored
rather than white. For the purpose of our demonstration
we will focus our attention on a model that is usually
studied in connection with optical bistability,?®?! but
considered here for values of the control parameter
which do not produce bistability. The model in question
will be used as a basis for the discussion of different
Fokker-Planck descriptions for colored noise. The
theoretical predictions are tested against analogue experi-
ments and digital simulations of the same model; we will
see that it provides a detailed and complete description of
the noise-induced transition.

Because the parameter y gives only the overall time
scale of the dynamics, it is convenient to get rid of it by
normalizing the time by y ~!. Thus, the parameter y
drops from (1.1)-(1.5), (1.7), and (1.8), provided that we
replace t by f=yt and 7 by 7=y 7. In what follows, for
the sake of simplicity, we will always omit the overbar
and write t and 7 instead of 7 and 7, respectively.

In Sec. II, we review briefly some of the main proposals
for the Fokker-Planck approximation of the equation
which governs the time evolution of the reduced distribu-
tion o(x,t) in the case of colored noise. Section III is de-
voted to a short illustration of the projection operator
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method developed to fourth order in the perturbation,
and continues the discussion of the best candidate for the
Fokker-Planck description. In Sec. IV, we introduce the
nonlinear passive optical system that we model extensive-
ly in this paper in its steady-state aspects. Section V de-
scribes the electronic analogue experiment undertaken to
simulate this model; Sec. VI presents the digital simula-
tion results and compares them in detail with the predic-
tions of the various theories. The existence of a noise-
induced transition due to additive colored noise is clearly
evident in both the analogue and digital simulations. Sec-
tion VII deals with the rather different case of multiplica-
tive noise arising from fluctuations in the input intensity.
Finally, Sec. VIII summarizes the main results and con-
cludes the discussion of the Fokker-Planck approxima-
tion.

II. A DISCUSSION OF TWO CURRENT
APPROACHES TO THE PROBLEM
OF COLORED NOISE

Large efforts have been made in the recent past!26~°

to associate Eq. (1.1), supplemented by Eq. (1.4), with the
Fokker-Planck equation

-a—a(x,t)z

] 9 9
Y ax¢(x)+an¢(x)ax<D(x) olx,t),

(2.1)

where the function ®(x) (which is precisely the object of
these investigations) must satisfy the obvious white-
noise-limit condition

lim

white noise D(x)=1(x) . (2.2)

We shall focus on the following two theoretical propo-
sals: (a) the best so-called Fokker-Planck approxima-
tion, ">1% and (b) the Fox theory.’

According to the former theory,l’z’10 ®(x) has to be
derived from the following differential equation:

PY(x)=P(x)+r{d(x)P'(x)—¢'(x)D(x)] .

The technical difficulty associated with this equation is
that, in general, no exact analytical expressions for ®(x)
can be derived from it (some special cases are discussed in
Refs. 10, 22, and 23) and recourse has to be made to the
assumption that 7 is so small as to make it possible to
solve Eq. (2.3) via a perturbation expression around 7=0.
By adopting this technique we obtain

O(x)=19(x),
O(x)=P(x)+7[¢" (x)P(x)—d(x)¢P'(x)] ,
D(x)=Y(x)+71[d"(x)P(x)—d(x)Y'(x)]
+ 7 ¢'(x)e" (x)P(x) — p(x)" (X )¢h(x)
—d(x)P' (X)) (x)+ ()Y (x)] ,

(2.3)

(2.4)

and so on.
The most recent version of the Fox theory,’ on the

other hand, leads to the following compact expression for
D(x):

d(x)= $x) ) 2.5)
1_7 ¢'(x)—3fﬁ,—((:—))¢(x)

It is important to note that at the order 7 the Fox theory
(2.5) leads to the same result as the best Fokker-Planck
approximation [i.e., the second of the set of equations
(2.4)]. Since, as established by Faetti et al.?>*} the
Fokker-Planck equation (2.1) provides steady-state distri-
butions correct up to the order 7 [when the noise £(1) is
assumed to be Gaussian], this means that the Fox theory
leads to equilibrium distributions correct up to the order T
in the short-T region.

A further remarkable feature of the Fox theory is that
it leads to exact expressions for the steady-state equilibri-
um distribution in the limit 7— . This particular point,
recently recognized also by Jung and Hinggi,?* has al-
ready been pointed out, for the case of additive noise, by
Faetti et al.?*> For the reader’s convenience, we shall
provide here a simple demonstration valid also in the
more general multiplicative case (see Ref. 1 and refer-
ences quoted therein).

When 7— oo the system has enough time to reach the
equilibrium position determined by

d(x)+P(x)E=0,

which is obtained from Eq. (1.1) by assuming x =0, be-
fore £ is given a new value. On the other hand, the vari-
able & is characterized by the equilibrium distribution

(2.6)

2
Pl EME=27(E)) Pexp | ——5— |dg . @.7)
2( &%)
From Eq. (2.6) we get
de— |~ L g 2.8)
§ o g

By substitution of Egs. (2.6) and (2.8) into the right-hand
side (rhs) of Eq. (2.7) we derive

Peq(X)dx = (2m(£*)) ™ 2exp

_
29 1

1 dx .

— (2.9)
d}Z

X |5 (¢ —¢"Y)

It is straightforward to show that in the limiting case
7— o, Eq. (2.9) coincides with the equilibrium distribu-
tion corresponding to Eq. (2.1) with ®(x) given by (2.5).
This implies that the equilibrium distribution provided by
the Fox theory coincides with the exact result of Eq.
(2.9). Note that in this paper we shall not deal with the
intriguing case where (¢’ —¢'¢) /¢ might also turn out
to be negative in suitable intervals of the x variable (this
is so because we shall not deal here with the fully bistable
situation; rather, we shall limit ourselves to studying the
bistability induced by the noise color).

We can thus remark that because the Fox theory leads
to exact equilibrium distributions both in the short- and
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large-7 limits, it also has a good chance of providing
satisfactory predictions even in the intermediate region.
In other words, the equilibrium distribution provided by
the Fox theory provides a natural interpolation formula
between two exact limits. Similar conclusions have also
been reached by Jung and Hinggi?* and by Faetti and
Grigolini.?

In anticipation of the developments in Sec. III, it is
convenient to write the function ®(x) to second order in
7, both for the best Fokker-Planck approximation and
also for the Fox theory. Using Egs. (2.4) and (2.5), one
can obtain the compact expression

O(x)=(x)[ 1+ 71V + 211V 4 2P, T V(X))

(2.10)

where
'Y =[¢'(x)1(x)— $(x W' (x)] /9(x) @11
and one must select P, =—1, in the case of the best

Fokker-Planck approximation, and P, =0, in the case
of Fox’s theory, respectively. Hence the former theory
contains the additional term

— IV ¢(x)(x) , 2.12)

which would appear at first sight to imply that Fox’s
theory is the less accurate, at least when 7 is small
enough. The situation is, however, more subtle, as will be
shown in Sec. III where, using the projection-operator
method, we discuss the relationship of Fox’s theory to the
best Fokker-Planck approximation.

III. THE INFLUENCE OF HIGHER
PERTURBATION ORDERS IN THE NOISE INTENSITY

The projection-operator approach'® consists of divid-
ing the operator L of Eq. (1.8) into a perturbation part,
L,, and an unperturbed one, L,, and defining a corre-
sponding projection operator. In the present case we
adopt the following division of L:

L=L0+L|, (3.1)
118 3? 3
Ly=— |— 2y = |2
0= a§§+<§>a§2 3 o) (3.1a)
__ 9
Ly=—7-9x¢. (3.1b)

The projection operator method ' is basically a perturba-
tion approach in the perturbation term L,. At the order
L} this method leads to a Fokker-Planck expression
J

ot ax (1—7I'D)

where the factor (1—7I1'")~! introduces a “regulariza-
tion” of the problem of negative diffusion coefficients,
different from—but not necessarily worse than—the ex-
ponential form of Ref. 1. It should be noted that in the
case of P, =0, (3.3) coincides exactly with the Fox

9 oix, = l_%¢(x)+Q—%¢(x)—a-—‘/’("—’[1+72Pexp,n“”¢(x)] olx,1)

1969

which coincides with the best Fokker-Planck approxima-
tion (see Sec. II).

At order L‘;’, one obtains nonstandard terms, with
derivatives of order higher than second. These contribu-
tions can be replaced by terms of the standard type, i.e.,
with second-order derivatives, by adopting the renormal-
ization of Ref. 22 extended to the multiplicative case. If,
after the renormalization, one neglects the terms of order
Q? or higher, together with those of order higher than
second in 7, then following lengthy calculations*>*® one
arrives again at the expression (2.10) for the function @
which appears in the Fokker-Planck equation (2.1). The
value of the constant P, is now different, however, and
is given by

p (3.2)

— 1
expt — 7 *

This result implies that the projection-operator method
provides, at order L* a correction to the best Fokker-
Planck approximation. This correction has exactly the
same form as the difference (to order 7%) between the best
Fokker-Planck approximation and Fox’s theory. Unfor-
tunately, a direct comparison at order 7% between the
various theories is not appropriate, owing to the almost
unavoidable appearance of unphysical boundaries related
to intervals of x within which the diffusion coefficient be-
comes negative. This artefact does not appear in theories
which include contributions of all orders in 7: for exam-
ple, in a large class of problems, the Fox theory’ produces
positive diffusion coefficients everywhere, provided that 7
is kept below a certain critical value. On the other hand,
a comparison to all orders in 7 between the theories is
also far from straightforward. This is because an expres-
sion for the diffusion coefficient in closed form is available
only for the Fox theory, Even in the case of the best
Fokker-Planck approximation, which is equivalent to the
projection-operator approach to order L2, the analytical
expression for ®(x) is, in general, an unsettled problem.
In other words, the power expansion in 7 (2.4) is general-
ly not summable in closed form. Because, as already
mentioned, a truncation of this expansion leads almost in-
variably to unphysical boundaries, the authors of Ref. 1
devised an appropriate exponential form to avoid this
problem. Unfortunately, in the present case, there were
computational difficulties which prevented us from
adopting this technique.

In light of the above considerations, we decided to re-
place (2.1) and (2.10) by the following Fokker-Planck
equation:

(3.3)

theory. For the cases P, = —1 and P, =0.5, howev-
er, (3.3) differs, respectively, from the best Fokker-Planck
equation and from the projection-operator approach to
order L% because they correspond only to a partial
resummation in 7. Nonetheless, if we expand (3.3) to
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second order in 7, we recover Egs. (2.1) and (2.10).
Therefore, to order 7%, (3.3) with Poypr=—1 (Pey, =0.5)
does indeed coincide with the best Fokker-Planck ap-
proximation (projection-operator approach to order L?).
Strictly speaking, we should refer to (3.3) with P, = —1
as the “‘modified best Fokker-Planck approximation,” but
for the sake of simplicity we shall omit the word
“modified” in what follows; the distinction should, how-
ever, be borne in mind. We regard (3.3) as an equation
which incorporates to order 7 the bulk of the best
Fokker-Planck equation (P, =—1) and of the
projection-operator approach (P, =0.5) and thus offers
an opportunity to perform an otherwise impossible com-
parison between these two theories and the Fox theory.

In the bistable case ¢(x)=ax —Bx> [P(x)=1] it is
straightforward to derive from a Fokker-Planck equation
of the same type as Eq. (2.1) an analytical expression for
the shift of the maximum of the probability distribution
as a function of 7. It is easily shown that at the order 72
this shift does not depend on the fourth-order correction
introduced by the projection-operator technique at order
L?. The resulting expression for this shift, on the other
hand, is proven to coincide up to the order 7> with the
theoretical prediction of Altares and Nicolis [Eq. (3.8) of
Ref. 26]. This is quite encouraging as the analytical re-
sult of Altares and Nicolis is based only on the assump-
tion that the noise intensity is weak, while setting no re-
strictions upon the noise color. However, this does not
help us in supporting our prediction P, =0.5 since (as
already remarked) the term Pexp,l'[(”'w does not provide
any contribution to the shift of the maximum of the prob-
ability distribution as a function of 7.

To monitor the correction to the Fox theory stemming
from the term P, I1'""¢ is quite a difficult matter. This
is so because, when 7 is very small, the order 7 provides
the predominant contributions to the effects of noise
color. When the term in 7° begins to produce significant
effects, so also do the terms of higher order in 7. This is
the intermediate region where all theories are inaccurate.
When the large-7 region is reached, the Fox theory leads
to exact predictions for the steady-state distribution. It is
therefore plausible that, in the intermediate region, the
predictions of the Fox theory are at least fairly accurate.

IV. MODEL OF A NONLINEAR,
PASSIVE, DRIVEN OPTICAL SYSTEM

In this section we consider a particular example of a
stochastic nonlinear system, in the context of which some
of the above ideas can be applied and tested. The exam-
ple chosen is taken from optics. It is a bistable system
which, in the last decade, has been the object of extensive
investigations motivated both by its intrinsic theoretical
interest and by practical considerations.  The
phenomenon of interest, called optical bistability,20
occurs in an optical cavity filled with a material which
has an intensity-dependent refractive index. The experi-
mental arrangement is as shown in Fig. 1. A stationary,
coherent beam, near to resonance both with the cavity
and with the material, is injected into the cavity. The
steady-state intensity of the beam transmitted by this sys-
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FIG. 1. Fabry-Pérot cavity. M, and M, are partially
transmitting mirrors; I, I, and Iy are the incident, transmitted,
and reflected intensities, respectively.

tem is a nonlinear function of the input intensity. By
suitably adjusting the frequency of the incident field, the
stationary curve of transmitted versus incident intensity
becomes S shaped as shown in Fig. 2. The part with neg-
ative slope (dashed) is unstable, so that there is an inter-
val of the input intensity within which the system is bi-
stable. If the incident power is slowly increased from
zero to beyond the bistable region, and then decreased
back to zero, one obtains a hysteresis cycle. By varying
continuously the input frequency, the size of the hys-
teresis cycle can be reduced to zero and the bistability
disappears. Just at the boundary between bistability and
monostability there is a ‘“‘critical” situation (Fig. 3) on
which we will focus in this paper.

We will describe this phenomenon by means of a very
simple model, the derivation of which is discussed in Ref.
5. We indicate by x the normalized, intensity-dependent
part of the refractive index; it obeys the dynamical equa-
tion

dx =—x+ S S— , 4.1)
dt 1+4(x —6)?
where the time ¢ is normalized to the response rate y of
the material, I is the normalized input intensity, and 6 is
the detuning parameter, which arises both from the
mismatch between the incident field frequency and the
nearest cavity frequency, and from the constant
(intensity-independent) part of the refractive index. The
control parameters in this model are I and 6; in particu-
lar, I plays the role of the parameter A mentioned above
in the Introduction.

The normalized transmitted intensity I is given by

FIG. 2. Steady-state curve representing (4.3) with 0=2V3;
the part with a negative slope is unstable.
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FIG. 3. Critical steady-state curve representing (4.3) with
6=V73.

I
1+(x —0)?

The model (4.1),(4.2) holds in the limit of dispersion dom-
inant over absorption, and requires that the cavity relaxa-
tion time is much smaller than the atomic time y ~'; if
-any noise is present, the cavity relaxation time must be
much smaller also than the correlation time of the noise.
At steady state, Eq. (4.1) gives the cubic stationary equa-
tion

I=x[14+(x —6)*],

Ir 4.2)

(4.3)

and I coincides with x. The plot of x as obtained from
Eq. (4.3) exhibits bistability?! for 8> V'3 (Fig. 2). The
critical situation (Fig. 3) for which the curve displays a
point of inflection with a vertical tangent corresponds to
6=V'3; the coordinates of the critical point are
x,=2V'3/3 and I, =8V'3/9. Following Ref. 5, we will
consider two kinds of noise: thermal noise in the materi-
al and fluctuations in the input intensity I. In the first
case, Eq. (4.1) is replaced by a stochastic equation with
additive noise

dx 1

i = P e T
where we assume that the noise is Gaussian and that the
variable £ obeys Eq. (1.4).

For 7 << 1, the noise is felt as white with

(E(E(L'))=208(t —1t"), Q=y(&?) .

In the case of intensity noise, we make the substitution
I—1I +&(t), in (4.4) thereby obtaining the corresponding
stochastic equation with multiplicative noise
dx _ I &)
1+(x —6)*  14+(x—0)?

(4.4)

4.5)

dar (4.6)

We will assume that the stochastic variable £(¢) is again
Gaussian and characterized by Eq. (1.4). We now ad-
dress ourselves to the solution of (4.4) and (4.6), corre-
sponding to the cases of additive and multiplicative noise,
respectively.

V. ANALOGUE SIMULATION

This section describes an experimental investigation of
the system (4.4), introduced above, based on electronic
analogue simulation. The analogue technique itself has
already been described in connection with studies of oth-
er stochastic systems (see, for example, Refs. 8, 11, 15(b),
and (16); more detailed discussions of the application of
the technique and of its underlying philosophy will be
found in Refs. 27 and 28. The essence of the method is
that an electronic circuit is built to model as accurately
as possible the system under investigation [in this case,
Eq. (4.4)], and its statistical response to external forcing
by the appropriate type of noise (in this case, colored
Gaussian) is then analyzed in detail by means of a com-
puter and/or data processor.

In the event, we found that it was extremely difficult to
perform a satisfactory analogue simulation of (4.4) for the
required critical values of 6=V'3, I =£V'3. The reason
for this becomes clear immediately on inspection of Fig.
3, and is associated with the extreme sensitivity of x to
small changes in I when x is close to x.. In electronic cir-
cuits of the kind under discussion, parameters can be set
typically to an accuracy of +2 mV, but they are liable to
drift by up to about 10 mV during the several minutes
usually needed to complete the measurement of a statisti-
cal density. This implied in practice that the determinis-
tic (Q =0) value of x could not be relied upon to be
closer than 5% to x,., on average, during a measure-
ment. Consequently, although the results of the direct
simulation of (4.4) were in good qualitative agreement
with the theoretical predictions, they tended to be rather
irreproducible because of parameter drift, and the quality
of the quantitative agreement with theory was only fair.
In part, the stability problem arose from the existence of
the quotient in (4.4) which exacerbated the tendency of
the parameter [ to drift.

In an attempt to improve the quality of the simulation,
a second electronic circuit was built which contrived to
model the system under investigation without any need
explicitly to calculate a quotient.?’ The possibility of be-
ing able to do so depended on the realization that the
equation under discussion (4.4) was originally obtained,
by use of the technique of adiabatic elimination, '’ from
the more complicated set of coupled differential equations
normally used to model optical bistability, >° namely,

%z_[([z_\/f +iz(6—x)],

‘ (5.1
ax _ _ 2

= yix—|z|9)+vé),

where z is the transmitted field of intensity |z |2=Ir,
K ~!is the cavity relaxation time, and the variable &£(¢)
obeys (1.4). In the limit K >>v, which usually obtains in
practice, it can be shown that (5.1) yields (4.4). Although
equations (5.1) are, of course, very much more difficult to
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solve theoretically than (4.4), the corresponding analogue
circuit is only slightly more complicated to connect up;
and, as already mentioned, it has the considerable advan-
tage in terms of stability that it does not include a quo-
tient term.

A diagram of the second circuit, that is, of the circuit
modeling (5.1), is shown in Fig. 4. The design is of the
minimum component type?’ in order to reduce to the
lowest possible levels nonidealities such as drift and inter-
nal noise; the necessary trimmers and offset adjustments
are not shown. As usual, with this particular kind of cir-
cuit, the system actually simulated differed from (5.1) to
the extent that some of the quantities appearing there
had to be scaled by suitable factors: for the final results
given below, however, the appropriate normalization fac-
tors have been taken into account.

An interesting feature of the use of this circuit (in
effect) to model (4.4) is that the adiabatic elimination is
being made to occur in practice in the circuit itself by set-
ting K >>vy. Thus, it is possible to check that this pro-
cedure works in reality. The ratio K /y for the circuit
was actually equal to 2000 (with K =2 10° Hz, y = 10?
Hz); it was found that, for the noise of correlation time of
order ¥ ~!, the distributions obtained were almost indis-
tinguishable from those for K /¥y =500. This result can
be construed as a rather direct and convincing demon-
stration that adiabatic elimination does work.

The circuit parameters were set as to operate the sys-
tem at its critical point (6, =V'3, I.=%V'3: see Fig. 3)
and the noise intensity was kept fixed at Q =0.1. Several
equilibrium distributions of x were then acquired for
different values of 7. These are shown by the jagged lines
in Fig. 5, where 7 is stated in each case in units of ¥ ~'. It
is immediately evident that, when the noise is effectively
white (small 7), the distribution is monomodal; but, as 7
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is increased, the distribution broadens and becomes bimo-
dal; and the cleavage between the corresponding twin
maxima steadily deepens with increasing 7. The change
from a monomodal to a bimodal distribution represents a
noise-induced transition, and it is important to note that,
unlike the noise-induced transitions'>'® previously re-
ported, this transition is one that can be affected with ad-
ditive noise as a result of changing only the noise color,
with all other parameters held constant.

The behavior to be expected of (4.4) theoretically is
readily calculated on the basis of the methods discussed
in the preceding sections. Taking (3.3) with ¢(x)=1 and
[from Eq. (4.4)] setting

1
x)=—x+—T"""T,
1+(x —6)
+ix=0) (5.2
n(l)=¢r(x) ,
the equilibrium solution of x in (3.3) can be shown to be
1—1¢’
O theor(X)= N _ -7
theor 1+72Pexpt¢¢“
x d . ’
Xexpf 1_d—1¢) dy , (5.3)

Q 1+7°P, 48"

where N is the normalization constant, and the distribu-
tion o ,...(Xx) is set equal to zero in the interval where
(147°P,, 64" is negative. To make a direct quantita-
tive comparison of (5.3) with the measured distributions
of Fig. 5 is less than straightforward, however. This is
because of the extreme sensitivity of the circuit, when
working at its critical point, to any small errors in the
operating parameters, already alluded to above. For this
reason, the comparison was carried out indirectly. That
is, rather than simply assuming that all the parameters

r | J L >
I ble-x) 'y
b, a
) S w_’ﬂ
> x H ] L]
-]
B —>— a R
) | h

-X -
X
> /  >x
= to data-
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() —>—<

FIG. 4. Block diagram of the analogue electronic circuit used to model Egs. (5.1), with z =a +ib. The multipliers form the prod-
uct of the inputs shown at the top and at the left-hand side of the square in all cases, each input being differential.
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1.0; (g) 2.0. The jagged curves are the experimental results from the electronic circuit of Fig. 4. The smooth curves represent theory
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possessed precisely their intended values, computing dis-
tributions from (5.3) and comparing the results directly
with the experimental data, we attempted to answer a
rather different question: Does there exist a set of param-
eters, equal within experimental error to those set in the
circuit, for which good agreement can be demonstrated
between (5.3) and the experimental data of Fig. 5?

In order to answer this question it was necessary not
only to consider experimental errors in 6, I, Q, 7, and
P> but also to allow for the existence of a small con-
stant ¢ on the right-hand side of (4.4) and to allow for
small errors in gain and offset in the input stage of the
Nicolet 1080 data processor used to analyze the fluctuat-
ing voltage representing x (¢) for the determination of the
experimental distribution, o, (x). In practice, the func-
tion

f | O theor(X) — T expe( X) | Zdx (5.4)
was minimized by use of the routine MINUIT.*® Of
course, not all of the eight parameters mentioned above
are independent; and so the number of parameters used
for the fit was reduced until the global correlation
coefficients, measuring the internal correlation between a
free parameter and a suitable linear combination of the
other free parameters, were judged to be acceptable. It
was found that three parameters were needed, chosen to
be 6, I, and P,,;,,. The numerical results of an application
of this procedure to the data of Fig. 5, for 7=0.1 are
summarized in Table I: for this small value of 7, the fit
was found to be extremely insensitive to P, (see below)
and, although the uncertainty limits are hard to estimate
reliably, we would attach no significance beyond its order
of magnitude to the fitted value of 2.883. The calculated
distribution corresponding to these parameters is shown
by the solid curve in Fig. 5(b). The distributions obtained
for larger 7 were fitted with @ and I fixed at the values
shown in Table I, with P, as the only adjustable param-
eter, with the results shown by the smooth curves in Figs.
5(c)-5(g). The smooth curve of Fig. 5(a) for 7=0 (white
noise) was calculated for the same values of I and 6; there
is no corresponding experimental curve because it is, of
course, impossible to have 7=0 in any real physical sys-
tem.

It is evident that the agreement between the experi-

TABLE 1. The parameter values used in the electronic cir-
cuit and in generating the theoretical curve of Fig. 5(b). The
same values of 0, I, and Q were also used for generating the
theoretical curves of Figs. 5(a) and 5(c)-5(g), changing 7 to the
experimental value and with P, as the only adjustable param-
eter.

Value set Value used
Parameter in circuit for fit
0 1.733 1.734
I 1.541 1.543
Q 0.1 0.1
T 0.1 0.1
Peynt 2.883
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mental and theoretical curves in Fig. 5 is good, even for
the larger values of 7. Furthermore, the discrepancies be-
tween the fitted parameter values of Table I and the
values that had been set experimentally are all in the
range of a few percent; that is, they lie within the range
of experimental uncertainty expected for the technique in
question. It is safe to conclude, therefore, that the
theoretical predictions are in satisfactory agreement with
the results of the analogue experiment.

VI. COMPARISON OF THEORIES

In Sec. V we showed that the system described by (4.4)
exhibits bimodality induced by the finite bandwidth of
the additive stochastic forcing and, furthermore, that the
theory developed in Secs. II and III is able to account for
the main features observed experimentally, provided that
appropriate choices are made for the quantity P,,,. The
present section is devoted to a detailed comparison of the
relevant colored-noise theories that have been proposed,
with each other, and with a digital simulation of the same
system. We do not consider here the so-called mean-field
theory,®~® which does not reproduce the particular bista-
bility phenomenon under discussion.

As discussed in Sec. III, insertion of appropriately
chosen values of P, into Egs. (3.3) will yield the three
(and, at the moment, only) theories able to describe bista-
bility induced by noise color. It was evident from the
analogue experimental results that P, defined as the
parameter optimizing agreement between theory and ex-
periment in the sense of (5.4), changes with 7. A more
detailed investigation of the variation of P, with 7
therefore seemed desirable and to avoid possible prob-
lems with the inevitable nonidealities present in the elec-
tronic circuit, a digital simulation of (4.4) was undertak-
en. It was carried out on the basis of standard Monte
Carlo techniques. !

The results of the digital simulation are shown for
three values of 7 by the slightly noisy curves (marked D)
in Figs. 6(a)-6(c). The solid curves represent the theory
(3.3) for different values of P, as indicated in the cap-
tion. It is immediately evident that, for small 7 [Fig. 6(a)
for r=0.2], the theoretical curves are very insensitive to
Py, falling almost on top of each other, in excellent
agreement with the digital simulation.? As 7 increases,
however, the choice of P, clearly becomes more impor-
tant: values of zero (Fox theory) or 0.5 (projection-
operator method to order L) yield better agreement
with the digital simulation than a value of —1 (best
Fokker-Planck approximation).

Two comments should be made in relation to the com-
parisons of Fig. 6. First, we were unable to use the ex-
ponential forms of Refs. 1 and 2 for the equilbrium distri-
bution function for the case of P, =—1. This was be-
cause no analytic expression was available for the equilib-
rium distribution itself, and no simple form for such ex-
ponentiation could be recognized. We would point out,
however, that the renormalization incorporated in (3.3)
already solves the problem of unphysical boundaries over
a wide range of 7. Second, the distributions ought to be
identically zero outside the boundaries, because no
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(a)

(b)

FIG. 6. Comparisons between a digital simulation (labeled D) of (4.4) and theories for which P, =0 (Fox theory, curve labeled
with a 1), P, =0.5 (projection-operator method to order L1 labeled 2), and P, = —1 (best Fokker-Planck approximation, labeled
3), for different values of the noise correlation time 7: (a) 7=0.2; (b) 7=0.7; (c) 7=1.0.

diffusion should occur beyond the points where the
diffusion coefficient of the theoretical Fokker-Planck
operator becomes negative. Third, we would like to point
out that P, =0 should be valid in both the limit 7—0
and also 7—.?*? For 7—0, however, P, =—1
should provide better results than P, =0, since it seem-
ingly includes terms of order 7* which are disregarded by
the Fox approximation. As pointed out in Refs. 22 and
23, however, the terms of order L] with n >2 can pro-
duce contributions of the same order of magnitude, and
this is the reason why the Fox approximation can yield
better agreement with experimental results than the
seemingly more accurate theory of the best Fokker-
Planck approximation. The exact evaluation of the
effects of the terms of order L} with n >2 to order 7

lends to P, =0.5, which gives predictions lying much
closer both to those of the Fox theory and to the experi-
mental results than in the case of P, = —1.

As in the case of the analogue experimental results of
Sec. V, we have attempted to investigate the variation of
P, With 7 by fitting the theory to the digital simulation
distributions. For small values of 7 <0.2, the results are
unreliable because, as already mentioned, the theoretical
distributions are insensitive to P,,,,. The results obtained
for 7>0.1 are shown by the circled points of Fig. 7. The
crosses are taken from fitting the analogue data of Sec. V;
they do not extend below 7=1 because the data are rela-
tively noisy and the values of P, obtained for smaller 7
will be correspondingly unreliable. It is clear that the
analogue and digital data are in reasonable agreement:
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FIG. 7. Variation of P,,, with the noise correlation time 7 as
determined from the analogue experiment and by digital simula-
tion. The dashed lines indicate the values of P, correspond-
ing to the different theories: line 1, Fox theory; line 2,
projection-operator method to order L{; line 3, best Fokker-
Planck approximation.

P, is bounded between O and 0.5 for 7>0.2 and, for
T— o, P, appears to be tending towards zero. It
would be interesting to study P, in the range of 7<0.1,
but difficult in view of the relative insensitivity of the dis-
tributions to the value of P, under these conditions
[Fig. 6(a)]: a digital simulation with greatly improved
statistics would be needed, or, alternatively, recourse
might be made to the method of matrix continued frac-
tion expansion. !*

VII. A CASE OF MULTIPLICATIVE NOISE

In the preceding sections, we showed an example of a
noise-induced transition originating from additive
colored noise. If we start from the white-noise case
(7=0) and increase 7, the steady-state distribution im-
mediately splits into two peaks, and this bimodal struc-
ture becomes more and more pronounced as 7 is in-
creased (Fig. 5). From a straightforward analysis of Eq.
(2.9) we realize that this kind of noise-induced transition
caused by colored noise is not specific to the stochastic
equation considered here, but has a general nature. In
fact, it arises whenever the parameters are selected in
such a way that there is a critical point such that
#(x.)=¢'(x,)=¢"(x,)=0. This follows from the fact
that the distribution (2.9) then includes an exponential
factor with a very flat maximum for x =x_, and a prefac-
tor that has a minimum and vanishes for x =x,. Hence,
if we increase 7 enough while keeping { £%) fixed, the sta-
tionary distribution must certainly become bimodal, be-

15 T T T T

FIG. 8. Stationary probability distributions of x for (4.7),
with noise on the input intensity. The other parameter values
were 6=V3, I =1.=8V'3/9, (£)=0.06. Curve a is a digital
simulation of (4.7) with 7= 10; curve b is from (2.9) with 7— 0.

cause it has this property in the limit 7— .

Intuitively, it seems obvious that rather similar con-
siderations will apply to any monotonically increasing S-
shaped curve, with a point of inflexion and not just to the
ones with a critical point as in Fig. 3. For a sufficient
noise intensity of sufficiently colored noise, the distribu-
tion is bound to become bimodal; where, in addition, the
deterministic system is at a critical point, any finite value
of 27- will induce bimodality even for arbitrarily small
(&%).

It is clear that this result holds not only for additive
but also for multiplicative noise, because Eq. (2.9) also
covers the case ¥(x)=1. An example of this type of sys-
tem is provided by the case of input intensity noise,
governed by Eq. (4.6). The stationary distribution for the
variable x can be calculated analytically in the white-
noise limit,> and numerically in the case of colored noise
by solving the set of stochastic equations (4.6) and (1.4).
In Fig. 8 we see the comparison between the steady-state
distribution of the variable obtained for 0=V'3, I =I,
(£2)=0.06, and 7=10 obtained by digital simulation,
and the curve calculated from Eq. (2.9) (7— ) for the

T T T
P

15}

0.5

FIG. 9. Stationary probability distributions of x with noise
on the input intensity; all parameters are as in Fig. 8, except
that 7=1. The distribution for the transmitted intensity (solid
line) is compared with that for the material variable x (dashed
line).
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same values of 6, I, and (£?). The two curves exhibit a
qualitative similarity, but the case 7=10 still seems re-
moved from the asymptotic situation 7— c. Finally,
Fig. 9 shows the stationary probability distribution for
the transmitted intensity, I, obtained numerically using
Eq. (4.2) and replacing I by I+ &(1).

VIII. CONCLUSION

In this paper we have discussed and compared the
available theories of colored noise in relation to nonlinear
dynamical systems in general, and to the phenomenon of
noise-induced optical bimodality in particular.*® Optical
bimodality can be induced by either additive or multipli-
cative noise, but we have focused our attention principal-
ly on the former case because of the interesting effect of
bimodality induced by noise color alone, but in Sec. VII
we showed that what we had found for additive noise is
also true in the multiplicative case.

The most important conclusion to emerge from the
work is that, of the applicable available theories, 2% 10
that due to Fox’ is the most successful for the case of the
model that we have analyzed.** For the limits 7—0 and
T— oo, there is a characteristic quantity P, which be-
comes zero, and which is zero for all 7 in the Fox theory.
The behavior of Pexpl between these limits, for finite 7,
has been explored through the analogue and digital ex-
periments; it has been found that P.,, apparently tends
to zero as T—>o and remains bounded within
0< P, <0.5 for 7>0.2. The range of 7 <0.1 cannot be
investigated at the moment because of problems of pre-
cision and statistics in the digital simulation, but remains
as an interesting problem to be tackled in the future.

The seemingly disconcerting result, that the Fox
theory, which can be thought of as an approximation to
the best Fokker-Planck approximation, turns out to be
better than the best Fokker-Planck approximation itself,

1977

can be accounted for as follows. The best Fokker-Planck
approximation consists of neglecting all the terms of or-
der higher than L2. The projection operator ap-
proach, 1222525 o the other hand, shows that we can
get rid of these higher-order contributions if the physical
conditions are right (i.e., very small diffusion
coefficients®®) for the “local linearization” IT'"'(x)=0 to
take place; the corrections of order L? are, in fact, pro-
portional25 to I'"'(x). Furthermore, it is the case that, if
the local linearization I1'(x)=0 holds, then the
diffusion term proposed by the authors of the best
Fokker-Planck approximation!? can readily be resum-
mated up to infinity (over all powers of 7); the resultant
expression coincides with the diffusion term proposed by
Fox. This point has been discussed in detail by Faetti
and Grigolini.?*

The regime of validity of the resultant Fokker-Planck
equation extends far beyond that anticipated by Fox,® ac-
cording to whom it should be confined to the short-r re-
gion. In fact, the validity of the equation extends all the
way from small 7 to establish a natural contact with the
sound physically motivated arguments that hold in the
limit 7— o [see Eq. (29)]. The unexpectedly extended
range of validity is attributable in large measure to the
role played by local linearization.?® These conclusions
are corroborated by the experimental results reported in
this paper and, especially, by those of Fig. 7.
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