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The influence of additive white noise on the delay of a bifurcation point in the presence of a swept
control parameter has been studied by analog experiment and digital simulation. Measurements of
the time taken for the second moment {x2(¢)) to reach a given threshold are in excellent agreement
with the calculations of Zeghlache, Mandel, and Van den Broeck [Phys. Rev. A 40, 286 (1989)]. It
is demonstrated, however, that the mean first-passage time (MFPT) for x%(#) to attain the same
threshold, corresponding to the quantity that is usually determined in laser experiments, can be
markedly different. It may be either larger or smaller, depending on the conditions under which the
measurements are made. A calculation of the MFPT is presented and shown to be in excellent
agreement with the experimental measurements and to reduce, in the relevant limit, to the theoreti-
cal results previously published by Torrent and San Miguel [Phys. Rev. A 38, 245 (1988)].

I. INTRODUCTION

Nonlinear dynamical systems respond to random fluc-
tuations (noise) in diverse and often unexpected ways.! ™3
Of particular interest and importance are the noise-
driven phenomena that occur near instability points of
the deterministic (noise-free) system, which have been the
subject of numerous investigations, both experimental
and theoretical. One way of studying such effects is by
changing a control parameter through the critical value
at which an initially stationary state suddenly becomes
unstable and the system bifurcates, an obvious physical
example being the single-mode laser in the good cavity
limit as the optical-pump parameter is increased past the
first lasing threshold. In situations of this kind, the
relevant control parameter can either be switched discon-
tinuously* ° or it can be swept,'° 20 usually at a constant
rate, through the transition.

In cases where the control parameter is swept, it is typ-
ically found that the bifurcation point is postponed as
compared to that corresponding to quasistatic changes.
In a recent paper Zeghlache, Mandel, and Van den
Broeck!® (ZMVB) have calculated the magnitude of this
postponement for a variety of initial conditions under the
influence of a wide range of intensities and types of noise.
The main purposes of the present paper are, first, to re-
port the results of analog experiments and digital simula-
tions undertaken to test the validity and applicability of
the ZMVB approach for the particular case of additive,
white, Gaussian noise. Second, based on the ideas of
Torrent and San Miguel?®® (TSM) we extend the analysis
to encompass a different definition of the postponement,
in terms of the mean first-passage time (rather than the
time evolution of a moment) which, arguably, provides a
more natural comparison with the quantities usually mea-
sured in experiments. The theoretical results obtained in
this way are also tested by analog experiment and digital
simulation.
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In Sec. II we set out in more detail the problem that is
being addressed, we summarize the salient features of the
ZMVB theory, and we show how their calculations may
be extended to give a measure of the postponement based
on the mean first-passage time (MFPT) recovering, in a
limiting case, the theoretical results of TSM. In Sec. III
we describe and discuss tests of the theory, in which we
compare the results of analog experiments and digital
simulations with theoretical predictions calculated by the
methods discussed in Sec. II. Finally, in Sec. IV we sum-
marize the most important results of the investigations
and draw conclusions.

II. THEORY

A. Statement of the problem

Following ZMVB, we consider the evolution of the sys-
tem

(2.1)
(2.2)

x=u(t)x +n(t),
p(t)=p(0)+ot ,

where p(0) <0 and v >0, and the additive noise term 7(t)
satisfies

™m=—n+E&t) (2.3)

in which 7 is the correlation time of the noise and £(z) is a
Gaussian white-noise source defined by

(E(0))=0, (&)&(t'))=2D&(t—1t").

In the present paper, we restrict ourselves to the particu-
lar case of white noise, so that the correlation time 7 is
zero; the more general case of colored (7> 0) noise will
be considered separately in a future paper. A very large
class of nonlinear systems can, of course, be represented
by the simple form (2.1) close to their bifurcation points,
by linearizing around the trivial (zero-amplitude) solu-

(2.4)
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tion. In the particular case of the laser, x is related to the
electric field amplitude and u(?) to the optical pump pa-
rameter, as discussed by ZMVB.

The physical consequences for the system (2.1) of
sweeping the parameter u(t) according to (2.2) are most
easily appreciated by consideration of the equivalent
(time-dependent) potential, sketched in Fig. 1. The im-
portant features are that to start with, for u(¢) <O, the
potential possesses a minimum at x =0 which, however,
grows ever shallower with the passage of time until, when
u(t) passes zero at t =7 and becomes positive, the poten-
tial exhibits a maximum at x =0 instead of a minimum;
correspondingly, of course, the x =0 solution becomes
unstable at ¢t =f and any perturbation, however small,
will then be sufficient to push the system away towards
rapidly growing positive or negative x.

For quasistatic changes, the bifurcation point of the
system occurs when £ =0. When the system is swept ac-
cording to (2.2), on the other hand, it is clear that the
value of u at which a given |x| is reached will depend on
the starting conditions and, in general, upon the speed v
with which u is increased. Of course, if the initial value
of x is zero then, in the absence of noise (D =0), the sys-
tem will never leave the x =0 solution, even in the unsta-
ble region when p >0 at ¢ > 7, as indicated by trajectory a
in Fig. 1. In physically interesting situations, however,
the initial value of x will be nonzero and there will also be
some noise. If the initial value of x =x(0) then, still
keeping D =0, it can be shown'? that the time ¢* for the

FIG. 1. Sketch of the time-dependent potential ¥ (x,t) corre-
sponding to Egs. (2.1) and (2.2) in the absence of fluctuations,
i.e., with D =0 in (2.4). If the system could be started exactly at
x =0 at t =0, then its x (¢) trajectory would in principle remain
at x =0 even in the unstable region for ¢ > (curve a). If, in-
stead, the system is started at x =x (0) at ¢+ =0, it will approach
x =0 until £ =7 and then diverge away again for t > 7, passing to
x =x(0) when ¢t =1* =27 (see Ref. 13).
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swept system to bifurcate, as defined by x %(¢) attaining an
arbitrary threshold x23 for u>0, is given exactly by
t*=2F for the particular case where x2 =x2(0): the cor-
responding trajectory of x (t) is indicated by the curve b
in Fig. 1. [The independence of ¢* =27 on the sweep ve-
locity v seems at first sight astonishing. It is, however, in-
tuitively quite plausible in the following sense. The
smaller v becomes, the closer the system will have ap-
proached to x =0 when the static bifurcation point is
reached at u=0; and the longer, therefore, it will take a
leave the vicinity of x =0 and attain x (0) again after the
potential has inverted for u>0. Thus it is perfectly
reasonable that ¢* should increase in just the same way as
T as the result of a decrease in v, such that their ratio
remains constant.]

The problem considered by ZMVB, to which we now
address ourselves in detail, is the question of what hap-
pens to t* in the presence of noise, i.e., when D0 in
(2.4). First, we note that the definition of ¢* used for the
deterministic case is no longer adequate, because each re-
petition of the experiment will yield a different x (¢) tra-
jectory: a new definition of ¢ * based on averaged quanti-
ties is clearly required. The definition adopted by ZMVB
is that ¢* in the noisy system should be the time taken for
the second moment {x2(¢)) to reach the threshold value
x %, which is now not necessarily equal to x (0) but dis-
cussed in terms of the dimensionless number
a=x}% /x*0) where @ >1 (see below). Here, x (0) is the
fixed initial condition at ¢t =0 for the ‘“‘external noise”
case, where the noise is applied at the start of the sweep.
For the “internal noise” case, where the noise is applied
continuously and the system is allowed to reach a station-
ary state for u=u(0) prior to commencement of the
sweep, x%(0) is replaced by its average value {(x%0)).
The values of t* calculated by ZMVB for these two kinds
of initial conditions are, of course, different. In Sec. II B
below we review briefly the ZMVB arguments and their
most important conclusions.

An alternative definition of ¢*, however, following
TSM, is that it should be the average time taken for the
system to reach x 2; we would argue that in many cases it
corresponds more closely to what is usually measured in
experiments. This definition is identical to the mean
first-passage time between x2(0) and x32, in the case of
external noise, and can be regarded as an effective MFPT
between (x2(0)) and x?2, for the internal noise case. In
Sec. II C we show how t*, defined in this different way,
may be calculated for both internal and external additive
white noise.

B. ZMVRB theory of the postponement

As already indicated, ZMVB theory distinguishes care-
fully between the two cases: internal noise (where the
system is prepared in contact with the noise source) and
external noise [where the system is prepared at x (0) for
each sweep and the noise is added only at the start of the
sweep itself]. Referring to Egs. (2.1)—(2.4), they introduce
the quantities
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The formal solution of (2.1) is

x (t)=x(0)exp folu(s)ds +fotexp ft,u(y)dy E(s)ds .
(2.6)
ZMYVB now consider the average quantities
(x(1))={x(0))exp folu(s)ds] (2.7a)
and
*‘f;u(y)dy]ds
— [ uy)dy |ds dp] : (2.7b)
P

For present purposes, it is Eq. (2.7b) that is of relevance. The stochastic integrals on the right-hand side can easily be
evaluated and it is possible to solve the resulting equation for t*, i.e., for the value of ¢ at which (x2(¢)) reaches the
predetermined threshold x%. For the external noise case [remembering that z is related to ¢* via Eq. (2.5} ZMVB find
that we should search for the roots of

—zz__ —az_‘/_ c? z — (S +C)2 i_:g — __a _;C = 2.8
ae e 2bce fa ds exp ; erf 5 erf 5 0, (2.8)
where erf(x) is the usual error function.?! For the internal noise case, noting that
D _ D _
20))=— 2 , 0)n(z) )= el /7 , (O)m(r))=Ze " ld/m , 2.9)
(x%0)) OO =1] (x(0)n(2)) H(O)e (n(0)n e
ZMVB find
1 2 c a2 V2 2 _(a+e)? z+c a+c
Be (az—ac)\/;e c—a¢ exp 5 erf Iy erf 5
~ a2z, (s +¢)? s—c a—c || _
—V 2ce€ fads exp ’—2—] [erf[ 7 }——erf 5 ] =0. (2.10

Here, in a similar way, z should be searched for as the
root of (2.10).

C. “Mean first-passage time” approach

As it is clear from the previous discussion, the ZMVB
results are obtained by consideration of the quantity
(x%(#)). In a physical system similar to a laser, for ex-
ample, this approach corresponds to signal-averaging the
intensity x(¢) while the pump parameter is being swept
through the bifurcation, and asking the question: What

f

is the value of the pump parameter when this average
crosses a predefined threshold xtzh? However, it is also
possible to ask a slightly different question, namely: what
is the value of the pump parameter at which, on average,
the laser intensity x *(¢) crosses a given threshold x3? In
contrast to the previous case, we find the value of the
pump parameter for which x2(¢t)=x32 for each individual
realization; then we average over many realizations to
determine the MFPT. This is the idea underlying the
TSM approach. Due to the nonlinear relation between x
and ¢ (and implicitly the pump parameter) these two
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averaging procedures will, in general, lead to two
different results.?? Figure 2 (obtained experimentally by
analog simulation, as explained in Sec. III) clarifies the
argument: we have plotted the probability distribution of
x%(t) as a function of t. The ZMVB average corresponds
to taking the average along the x? axis, at ¢* [Fig. 3(a)],
the MFPT average corresponds to taking the average
along the ¢ axis, at x %, [Fig. 3(b)]. As it is clear from Fig.
3(a), the tail P(x?%t*) for large x? will yield a t*(¢3yvp)
that is larger than the ¢* obtained via the MFPT average
(¢ MEpT)-

If the static Kramers escape rate to x4 can be discard-
ed (where by ‘‘static”” we mean the activation rate due

i
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solely to the stochastic force, not due to the inherent in-
stability above threshold), it is possible to obtain P(x? ¢)
and ? yppr by means of a semianalytical method: the idea
is to evaluate the stochastic integral appearing in Eq.
(2.6) with the appropriate distribution for x(0) and to
find the value ¢ =1t ypy for which (2.6) is satisfied. In the
external noise case we are led to compute the solution of

x5 —exp[2u(0)t* +vt*2][x (0)+ V' F(t*)y,*=0,
2.11)

where y| is a Gaussian variable with standard deviation
one and average zero. F(t) is given by

F(t)=f0’f0’exp ~y(0)s—i;—2—p(0)y—ﬂ’2—2 (n(s)m(y))ds dy
_ D |27 Y vy? 1 Vvy +a—c a—c
==\ foexp —T—y —T—+u(0) (erf _T/—E__l_erf(—\/?”' (2.12)
Equation (2.11) follows from
fo’exp —p(ms—i’;—sz n(s)ds =VF(1)y, (2.13)

because the integral appearing on the left-hand side of (2.13), a linear combination of Gaussian variables, can be written
as a single Gaussian variable y,; with the appropriate standard deviation F(z).
Similarly for the case of internal noise, keeping in mind that we must also satisfy Eq. (2.9), it is possible to derive

172
x & —exp[2u(0)r * +vr *2] [)’1 m J

where y, , are two independent Gaussian variables with
zero average and standard deviation one, and G (t) is
defined as

172
- Du(0) t _ _ﬂz
G (1) (0)r—1 fOexp u(0)s > ds
(2.15)

In practice, we have computed distributions of t* by
means of the following procedure: generate one (two)
Gaussian deviate(s) for the external (internal) noise case;
seek ¢* as the solution of (2.11) or (2.14) for the particular
value(s) of the random deviate(s); repeat the procedure
many times, averaging until acceptable statistical quality
has been achieved. Finally, ¢yppr is obtained in each
case as the mean of the resultant distribution.

Equations similar to our (2.14) have been obtained by
TSM (their 3.2, 3.3, and 3.4) for the external noise case
and for 7=0. In the limit 8<<1 and z>>1, TSM were
also able to derive analytic expressions for the average
and the standard deviation of z: in our notation,

z=T1/2 ,

(Azy=1T"'y'(1),

(2.16a)
(2.16b)

+G(t*)

+y,[F(t*)—G*t*)]"? |=0, (2.14)

[

where ¥'(x) is the polygamma function®! and T is defined
as

VTla
2B{1+a\/ﬁe“2[erf(a)+l]}

For the range of parameters considered in the present pa-
per, however, (2.16) cannot be applied because the condi-
tions B<<1 and z >>1 are not fulfilled. It should be not-
ed that the semianalytic treatment given above solves the
problem of the inversion of equation (3.4) of TSM for the
whole range of parameters where a MFPT approach is
meaningful.

T =In (2.17)

III. TESTS OF THE THEORY

A. Techniques used

The theory was tested by analog experiment and digital
simulation. The basis of each of these techniques®*?* has
been discussed in detail elsewhere, so only the salient
features in their present applications will be summarized
here.

For the analog experimen a suitably time-scaled
electronic circuit was built to model Egs. (2.1)—(2.4); this
is shown diagrammatically in Fig. 4. The time scaling

t,23
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t—t'/7, results in the velocity and noise intensity each
being scaled as v—v'r;, D—D’/7;, where the primed
parameters denote the quantities measured in the circuit.
For all the results reported here v =0.0618 and 7, =824
ps. The stochastic forcing 7(¢) was Gaussianly distribut-
ed and exponentially correlated with correlation time
T, =22 ps; thus the circuit perceived the stochastic forc-
ing to be white.

The operation of the circuit was essentially the same
for both the internal and external noise cases and was
briefly as follows. Using additional switching circuitry
(not shown) the integrator was initialized to the value
x (0) while u(z) was held constant at the value u(0). A
triggering pulse was then applied to the switching circui-

:;t,!,[lll’[l'],[mlllm

:’":,

469
225

- I o

‘ Im,, ’,, wm'

“" "l" ,l

FIG. 2. The evolving distribution P(x?¢), as measured in an
analog experiment for the case of external noise. The system is
held at x =x (0) until r =0, at which time noise is applied and
the sweep of u simultaneously initiated according to Eq. (2.2).
Both (a) and (b) represent the same set of data, but the vertical
scale in (b) has been magnified compared to that in (a) in order
to reveal more clearly the evolution at later times where P(x?2,t)
has become small because of the relatively high velocity.
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FIG. 3. Sections taken through the evolving distribution of
Fig. 2, to clarify the differences between the ZMB and MFPT
definitions of ¢ *. (a) Section giving the P(x?) distribution at the
t* defined by ZMB. (b) Section at x4 giving the P (¢) distribu-

tion from which the MFPT definition of ¢* is derived.
R
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FIG. 4. Block diagram of the analog electronic circuit used
to model the system described by Egs. (2.1)-(2.4). Some addi-
tional circuitry employed to initialize the system, to provide the
sweep of u(t) according to (2.2) and to switch the noise input
7(t), when required, is not shown. For the case of external
noise, the circuit was initialized at x (0), and then released at
t =0 at which time the noise was simultaneously applied and
the sweep of u(t) was initiated; for the case of internal noise, the
noise was applied continuously and the system was allowed to
attain a stationary distribution centered on x =0 prior to com-
mencement of the sweep.
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try which in turn applied a ramp to the u(?) input and
“released” the circuit, the noise was also applied at this
instant [see Figs. 5(a) and 5(b)]. The triggering pulse was
also applied simultaneously to the data processor (a Nico-
let LAB-80) which, by means of ensemble averaging, con-
structed the statistical density of interest. The operation
of the circuit for the internal noise case differed slightly,
in that (x (0)) was always set equal to zero and the noise
was also present during the initialization stage.

The algorithm used for the digital simulations has al-
ready been described.?® It is an implicit algorithm for

10
(a)
M)
05|
0 1 1 1 1 J
EO S 10 15 20
__/ ‘
-0sF '
~
x2(t) (b)
2+
1
Q 1 1 J
o} 5 10 15 20
t
4
{c)
<x2(t)>
3k
2 b=
1
0 1 -
o] 5 10 15

FIG. 5(a) The sweep of u(¢). Until t =0, u is held at a fixed
negative value; for >0, it is swept linearly towards higher
values. (b) Corresponding typical trajectories of x2(¢) for the
case of external noise. Until ¢ =0, the circuit is held at a fixed
value x%(0), at t =0, the system is released and the noise is ap-
plied simultaneously. (c) Ensemble average {x2(¢)) for a set of
x (1) trajectories like those shown in (b). Note that the abscissa
scale differs from those of (a) and (b). The bifurcation time t*
for the ZMVB theory is given by the point at which {(x*(¢))
crosses x Z,.
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colored noise, which allows for an integration time step
much larger than the correlation time of the noise. The
values of v and the correlation time of noise were chosen
to be the same as the (scaled) quantities in the analog
simulation. For the external noise case, x was set at a
predetermined value and the noise was set at a value ran-
domly chosen from the appropriate distribution. For the
internal noise case, two random numbers were chosen
and combined to give the initial value for x and for the
noise, so Eq. (2.9) was satisfied. The integration time step
was varied between 0.1 and 0.01, and the number of reali-
zations per average was normally 4000 (consistency has
been checked by repeating some runs with 10 000 realiza-
tions).

B. Results for external noise

The typical experimental measurement of the evolving
distribution P(x?,¢) shown in Fig. 2, which provides a
valuable demonstration of the distinction between the
different criteria for threshold crossing, has already been
discussed. Some examples of the set of individual x%(¢)
trajectories from which Fig. 2 was derived are shown in
Fig. 5(b), and the corresponding moment average {x(¢))
is plotted in Fig. 5(c). From curves such as the latter, it is
straightforward to determine z* corresponding to the
ZMVB theory, it being simply the time at which {(x%(¢))
attains x 5. Some typical results obtained for a very small
noise intensity (b =0.01) are plotted as circular data
points in Fig. 6(a) for a number of different initial values
1(0); the data are plotted in terms of the reduced param-
eters z and a, defined by Egs. (2.5).

For the MFPT definition of z*, trajectories like those
in Fig. 5(b) are analyzed in a different way: the time at
which each individual trajectory attains x }, is noted; and
the corresponding distribution of passage times P(?) is
constructed, yielding a curve like that in Fig. 3(b) whose
average yields the MFPT value of ¢t*. The square data
points of Fig. 6(a) were derived in this way.

It is clear that for weak noise intensity, the precise
definition adopted for ¢t* is unimportant and that all of
the data are very well described by the ZMVB theoretical
prediction, shown by the curve in Fig. 6(a). For stronger
noise intensities the situation is, however, very different.

The results of Fig. 6(b) show what happens when the
reduced noise intensity is increased by a factor of 10, to
b =0.1, for two values of the threshold parameter a,
defined by Eq. (2.5). The upper solid curve, the dashed
curve, and the crosses, squares, and upward pointing tri-
angles all correspond to a=2; the lower solid curve and
the downward pointing triangles correspond to a=1.03.
The solid curves represent the ZMVB theory in each
case, and are clearly in excellent agreement with the tri-
angular data points derived from the {x2(¢)) definition of
t*. The other data points, corresponding to the MFPT
definition of ¢*, are obviously not at all well described by
the ZMVB theory. The analog experimental data
(crosses) and the digital simulation results (squares) for
a=2 are, however, in excellent agreement both with each
other and also with the calculation presented in Sec. II C,
which is shown as a dashed curve. For a=1.03, the
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latter approach is inapplicable because of the increased
importance of the static Kramers escape process, which
makes it probable that the system will often reach x3
while V(x,¢) still has a deep minimum and before the sys-
tem has been swept into the unstable regime. It is for this
same reason that the analog data for a=1.03 (circles)
have fallen below the ZMVB curve, whereas they would
generally, for larger values of «a, always exceed the
ZMVB prediction.

2 % T T T

o o

‘a-’f\n X b)

FIG. 6. Experiment and theory for the case of external noise.
(a) The scaled bifurcation delay z plotted as a function of the
scaled initial curvature of the potential a for a=1.2 and very
weak noise specified by b =0.01. The parameters z, a, a, and b
are defined by Egs. (2.5). The circular data points represent ex-
perimental values of z measured in the analog circuit using the
{x?*(¢)) definition of ¢*; the square data points represent mea-
surements based on the MFPT definition of ¢ *; and the curve is
the ZMVB theory (Ref. 19). (b) A similar plot to that of (a) ex-
cept that the noise is ten times stronger, with 5=0.1. The tri-
angular data points are experimental measurements based on
the (x*(#)) definition of ¢* and the associated curves represent
the ZMVB theory for a=1 and 2, respectively. The crosses
(analog experiment) and square (digital simulation) data points
are based on the MFPT definition of ¢t*, for a=2, and the
dashed curve corresponds to the calculation described in Sec.
IIC. The circular data points represent analog experimental
measurements for a=1, where calculation by the method of
Sec. II C is inapplicable. The dot-dashed curve represents the
deterministic (D =0) solution for =2, given by Eq. (3.1).

The dot-dashed curve for a=2 represents the deter-
ministic (D =0) solution for external noise,

z=(a’+na)’?, (3.1)

which follows immediately from (2.11). It is interesting
to note the existence of a range of a within which it lies
below the dashed curve implying that, under these condi-
tions, the effect of fluctuations is to increase the magni-
tude of the postponement. This at first sight astonishing
result can be accounted for in terms of the shape of P(¢)
as shown, for example, in Fig. 3(b): as D increases from
zero, P(t) broadens asymmetrically, developing a long
tail at large ¢ which then causes its average to fall beyond
the position of its maximum. The digital and analog data
of Fig. 6(b), although scattered, are not inconsistent with
this conclusion.

C. Results for internal noise

The evolving distribution P(x2%,t) measured for the
case of internal noise is similar to the one for external
noise shown in Fig. 2(a) except, of course, that the start-
ing condition on the left-hand side of the figure is an equi-
librium stationary distribution, rather than a singularity.
The measured values of z are plotted as a function of a in
Fig. 7 for two values of the reduced noise parameter S3:
the upper curves and data are for 3=0.1, and the lower
curve and data are for $=0.35. The crosses, represent-
ing analog experimental data for the {x?%(¢)) definition of
t*, are in excellent agreement with the ZMVB theory (as-
sociated solid curve) for 8=0.1. The data obtained from

v v T T T
o
z -x X X x N
; X \
B=01 v,
10} B=035 v
a “ o g o
&6 <
05} a4
A
0 1 1 1
2 -1 0

a

FIG. 7. Experiment and theory for the case of internal noise.
The scaled bifurcation delay z is plotted as a function of the
scaled initial curvature of the potential a for two values of the
noise parameter B. The definitions of z, a, and B are given in
Egs. (2.5). The crosses are experimental measurements based on
the {(x?%(¢)) definition of t* and the associated solid curve
represents the ZMVB theory (Ref. 19) for =0.1. The circular
data (analog experiment) and point-down (digital simulation)
are also for B=0.1, but are based on the MFPT definition of ¢ *;
the dashed curve corresponds to the calculation described in
Sec. I C. The square data (analog experiment) and point-up (di-
gital simulation) for B=0.35 are also based on the MFPT
definition of t*; the fact that they are in reasonably good agree-
ment with the ZMVB theory (associated solid curve) is believed
to be coincidental (see text).
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the MFPT definition of ¢* are considerably higher: the
circles are from the analog experiment and the triangles
from the digital simulation; they are, however, in good
agreement with each other and with the MFPT-based
theory of Sec. IIC, shown by the dashed curve. For
=0.35, the latter theory is inapplicable for the reasons
already stated. The fact that the MFPT analog (squares)
and digital (triangles) data are quite well described by the
ZMVB theory (lower solid curve) is probably coinciden-
tal: the data would generally be expected to fall above
the ZMVB curve, but is here being ‘“‘pulled down” by the
static Kramers process, as already discussed. As already
pointed out above, no direct comparison with (2.16) is
possible. The excellent agreement between experiment
and calculation for the MFPT definition of ¢* with
B=0.1 strongly suggests, however, that for f<<1 and
z>>1 (of relevance in real laser systems) the TSM ap-
proach should describe the experiments very well.

IV. CONCLUSION

In this paper we have used an analog electronic experi-
ment to test the main results reported by ZMB for de-
layed bifurcations in a swept parameter system with addi-
tive white noise, for the cases of both internal and exter-
nal noise. Their theory is, of course, exact and what the
present experimental data have effectively confirmed is its
applicability in the circumstances typical of a real physi-
cal system.

In addition, we have extended the discussion of ZMVB
to encompass a different, and in some ways, more realis-
tic definition of the characteristic bifurcation time ¥,
based on the MFPT approach proposed by TSM (as op-
posed to ZMVB’s moment average criterion). We have
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shown how to calculate the MFPT-derived ¢* in the limit
that will most commonly apply to real swept parameter
systems (in which contributions from the ‘“static’’ Kra-
mers escape process for u <0 can be ignored); it reduces
to the quantity calculated by TSM when B<<1 and
z>>1. We have verified the calculation by analog experi-
ment and digital simulation. Although the present exper-
iments do not cover the parameter range where TSM
were able to derive explicit theoretical expressions, we ar-
gue that their good agreement with the calculated MFPT
bifurcation delay suggests that the TSM results should
provide an excellent description of real laser systems
where B is very small. We have demonstrated that the
MFPT-derived bifurcation delay is generally larger than
that defined by ZMVB, a result that is very much in ac-
cord with what would be expected from a consideration
of the evolving distribution P(x2t). For small thresh-
olds relative to the starting value of x*0) or (x%0)),
however, the experiments clearly demonstrate that the
MFPT-derived bifurcation delay can become smaller
than the ZMVB value. The physical explanation is that
the static Kramers escape process then allows xX1) to
exceed x % with significant probability even for u <0, be-
fore inversion of the potential has occurred. We have
also shown that (astonishingly) fluctuations can some-
times serve to increase the MFPT bifurcation delay.
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