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The transient behavior of a quadratic model system perturbed by a multiplicative white noise
has been investigated. The relaxation time of the system, as a function of the noise intensity D,
has been determined by analog experiment and by digital simulation. The results obtained are
mutually consistent, but contradict a recent theoretical prediction by H. K. Leung [Phys. Rev. A
37, 1341 (1988)] that there should be a critical slowing down of the system near the value of D
for which a noise-induced transition occurs in the probability distribution. The discrepancy is
resolved by deriving a new analytic result for the relaxation time, applicable to a range of systems
described by separable stochastic differential equations.

Noise-induced transitions' are conventionally defined in
terms of changes in the number of extrema in the proba-
bility distribution of a system variable. In at least some
cases, for example the cubic bistable system,? it is known
that a marked increase in the relaxation time T occurs in
the vicinity of the transition, an effect that has naturally
been described as “critical slowing down” in analogy with
the well-known phenomenon associated with equilibrium
phase transitions. In general, for a given system, it is only
possible to obtain approximate results for 7, based on mo-
ment expansion or on simulations. These techniques can
produce tantalizingly different results and therefore,
whenever possible, it is of crucial importance to obtain ex-
act theoretical predictions.

In this paper, we report an exact analytic result for the
relaxation time of a class of stochastic systems and apply
it to a quadratic model discussed recently by Leung.® The
model in question, introduced* by Eigen and Schuster to
describe macromolecular self-replication under constraint
and also relevant to a wide range of other applications (in-
cluding, arguably, the spread of viral epidemics and the
productivity of individual scientists, writers, and com-
posers>), may be written

x=W(x—x2%/q). 1)

In the particular case of macromolecular self-organiza-
tion, x represents the number of molecules which dupli-
cate themselves precisely with a net replication rate W,
and Q relates to the size of the system. Leung? has con-
sidered the consequences of white noise fluctuations in W
such that

W=Wo+&@), )

where W, is a constant, £(z) is a Gaussian fluctuation
with (£(¢)) =0, and

(E@)E('))=2Ds(t —1') . 3)

To investigate the stochastic transient behavior of the sys-
tem, he employs a moment expansion approximation and
a linear stability analysis, leading to the conclusion that
the relaxation time 7 should diverge as the critical noise
intensity D, of the survival/extinction noise-induced tran-

40

sition is approached. Using the Stratonovich stochastic
calculus, which is known® to be applicable to real physical
systems, he finds that the critical value D./W is (with our
above definition of D and for @ =1) equal to 0.375.

Our motivation for deriving an analytic result for T
arose after performing both digital and analog simulations
to check this prediction. We first give a detailed compar-
ison between the simulation results and the prediction of
Leung and highlight a discrepancy between the two.
Then, for a class of stochastic systems of which Eq. (1) is
an example, by obtaining the Borel sum’ of an asymptotic
expansion for (x(z)), we derive an exact result for the re-
laxation time. This predicts, in agreement with the simu-
lation results, that there is no divergence in the relaxation
time of the system described by Eq. (1) and provides in-
sight into why an approximate calculation of T, based on
a finite moment expansion, will erroneously predict such a -
divergence.

The analog electronic simulation is based on the design
principles discussed in more detail elsewhere.® A suitably
scaled circuit was built to model Eq. (1), and its transient
response was measured under a range of different condi-
tions with the aid of a Nicolet 1080 data processor. In
practice, the circuit was set initially such that x =0.2Q
and was then allowed to evolve towards its final steady
state at x = Q. A typical trajectory measured in this way,
is shown in Fig. 1(a); both here, and in what follows, all
the results normalized to the generic form of (1) with
Wo=0 =1 in order to provide more convenient compar-
isons between the different experimental and calculated
forms of x(z), {(x(¢)), and T(D). A series of such x(¢)
trajectories was ensemble averaged until the statistical
quality of the result was considered adequate; the sensi-
tivity of the circuit to drift, causing small changes in its
parameters, meant that the number of blocks in the aver-
age was usually limited to 50. An example is shown in
Fig. 1(b). The nonlinear relaxation time,’ defined as

ST 1) = (x (ot
x(0) —{x(e0)) ’

where x(0) and x(oo) are the initial and final states, re-
spectively, was then computed from the experimental

(4)
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FIG. 1. (a) Typical trajectory of x(z) for the system de-
scribed by Eqgs. (1)-(3) with constants Wo=Q =1 and the noise
intensity D =0.71. (b) Ensemble average of 40 trajectories of
the kind shown in (a). Note that the ordinate scale is slightly
different.

(x(¢)). (In practice, of course, the final state could not be
at ¢t = oo, but was chosen to be such that x had become vir-
tually independent of T.) The procedure was repeated for
a range of values of D.

The experimental results are shown by the circled data
of Fig. 2. For more convenient comparison with theory
they have been normalized by dividing by the calculated
(exact) deterministic (D =0) relaxation time T,. The
form of T(D) predicted® by Leung is shown by the full
curve, and can be seen to be in clear disagreement with
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FIG. 2. The normalized nonlinear relaxation time 7'/ To of
the system described by Egs. (1)-(3) with W= =1, plotted
as a function of the noise intensity D, after being determined by
analog experiment (circles); digital simulation, using two vari-
ants of the algorithm (point-up and point-down triangles, see
text); and stochastic calculation based on Eq. (6) (squares).
The solid curve represents the theoretical prediction by Leung
(Ref. 3) and the dashed curve is derived from Eq. (10).
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the experimental data. In fact, we believe that Leung’s
equations lead to relaxation times that are smaller by
about an order of magnitude that those he reports [for
example, we find To= —Inxo/(1 —x¢)=2.0118 for
x0=0.2]; these discrepancies in the absolute numerical
values are of relatively minor importance, however, as
compared to the relative shapes of Leung’s result and of
the experimental T(D). The experiment suggests that T
increases approximately linearly with D from D =0,
whereas the theoretical prediction is a virtually constant T
until very close to D., where T(D) rises extremely rapidly
and diverges as D— D..

To try to resolve the disagreement, we have also carried
out digital simulations of (1), using the algorithm de-
scribed in Ref. 10. One of the resultant stochastic trajec-
tories and the corresponding moment average are shown
in Fig. 3(a). In practice, if & is the integration time step,
some of the integrations were done with the algorithm'® at
order k (A in Fig. 2), others with the algorithm '® at order
h? (V in Fig. 2). This is because, if increasing the order
makes the algorithm more “precise,” it also decreases the
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FIG. 3. Computations of the time evolution of the system de-
scribed by Egs. (1)-(3) with Wo=0q =1: (a) by digital simula-
tion, with D=1.5, and (b) by stochastic calculation based on
Eq. (6) with D =1.0. In each case, the jagged curve represents a
typical individual x(z) trajectory and the smoother curve is an
{x(1)) ensemble average over many such trajectories: 400 in (a)
and 1000 in (b). The computations actually extended out to
t =40, and the full range 0 <7 <40 was used for the calculation
of relaxation times, but the (uninteresting) 20 <z <40 range
has been omitted from the figure in order to exhibit to better
effect the region where x(¢) and (x(¢)) are changing rapidly.
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stability. In particular we wanted to check that our re-
sults were accurate for both small and large D. Figure 2
shows that, within statistical uncertainty, this is indeed
the case. For all simulations, the time step was 10 ~3, the
trajectories were followed for 40000 integration time
steps, and the final result was obtained in each case by
averaging 400 trajectories. The results obtained are con-
sistent with those from the analog experiment.

As a check on the validity of these results, we have also
calculated T by a third, quite independent, method. It can
be seen immediately by inspection that a special simplify-
ing feature of (1) is that the variables separate, so that it
is straightforward to demonstrate that for 0 =1,

x(¢)
1—x@)

1:():)()0) = exp [t-to+ J:;é(t)dt], (5)

whence, taking the initial time 7o =0, we obtain
x(@®)={1+Bexpl—t+n()1} ', (6)

where n(t) = f§dt'¢(¢') and B=[1—x(0)1/x(0). Here,
the final term in the exponent, n(¢), is of course a stochas-
tic variable (a Wiener process).'' The right-hand side of
this equation can thus be numerically integrated forward
in time in a perfectly straightforward manner, thereby
yielding the trajectory x(z); ensemble averaging a series
of such trajectories [Fig. 3(b)], as before, we can quickly
find values of T from (4). The results of this procedure
are shown by the square data points of Fig. 2 and are
clearly in excellent agreement with results obtained by
both of the other two methods. It would appear, there-
fore, that T does not diverge as predicted.?

To understand this discrepancy, we now derive an exact
result for 7, applicable to any nonlinear separable equa-
tion which, like (1), can be integrated to yield, as in Eq.
©),

x(0) =f(e T1V) @)

where f(y) is analytic at y =0. Equation (7) can formally
be expanded in the form

(x(e)) = )EO L™ (0)/n N expl £ np()]) , ®)

and the average of the exponential evaluated by averaging
its Taylor expansion term by term. Noting that ([7(¢)]1™)
vanishes for m odd and for m even is equal to
m!(Dt)™'%/(m/2)!, yields

(expl £ nn()]) =exp(Din?) .
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When substituted into Eq. (8), this yields an asymptotic
expansion for {x(¢z)) which, using the identity

exp(Dtn?) =z _’/2f_:d¢exp{ —[¢2+2¢(Dt) 20},

can be summed to yield
G =22 [ dsf120(D) P exp(—92). ©)

When substituted into Eq. (4), this yields an exact
theoretical result for the relaxation time 7.
For the model of Eq. (1), the above analysis yields

@) =22 [ dsli+Bexp(~ [t +26(Dr) 1)} !
(10

This result, if it were to be plotted in Fig. 3, would be in-
distinguishable from the digital results (apart from their
small statistical fluctuations) for {x(¢)). The exact result
for T, obtained by substituting Eq. (10) in Eq. (4), is
shown by the dashed line in Fig. 2. The remarkable
agreement between this and the simulation results pro-
vides conclusive evidence that the relaxation time does not
diverge in this system, despite the fact that the probability
density for x switches from a monomodal to a bimodal
distribution at D =1.0. The origin of Leung’s prediction
lies in the divergence of the asymptotic expansion leading
to Eq. (9). For the system of Eq. (1), keeping only the
first /V terms in the expansion leads to a divergence in T at
D.=1/N, whereas the exact sum contains no such diver-
gence. This feature expresses itself in Eq. (10), where it is
evident that the limit 7— oo and the integration do not
commute.

The results of the paper show that, for the model of Eq.
(1), the noise induced transition from a monomodal to a
bimodal distribution at D =1 is not reflected in the relaxa-
tion time 7. In deriving this result, we have obtained an
exact analytic formula which can be applied to a wide
range of separable stochastic differential equations. The
analysis may readily be extended'? to cover the case of
nonwhite Gaussian noise of arbitrary correlation.

xexp(—¢?).
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