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Relaxation of nonlinear systems driven by colored noise: An exact result
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An exact analytic method of calculating relaxation times of nonlinear systems driven by colored
noise, applicable to a range of systems described by separable stochastic differential equations, is
presented. Analog experiments and digital simulations performed on a quadratic model are shown
to yield results in satisfactory agreement with the theoretical predictions.

I. INTRODUCTION

Jackson et al. have recently reported! a new, exact, an-
alytic result for relaxation times in a class of stochastic
systems driven by white Gaussian noise. In the present
paper, we show how the calculations of Ref. 1 can readily
be generalized to cover the case of other Gaussian noises,
and we test the theoretical predictions against the results
of analog experiments and digital simulations.

The calculations, which are applicable to any single-
variable, separable, first-order stochastic differential
equation, were originally motivated by a consideration of
the effect of external noise on the simple quadratic model

X=Wi(x—x2/Q) (1.1

discussed by Leung.? The equation (Verhulst model) was
used by Eigen and Schuster® to describe macromolecular
self-replication under constraint, in which case x
represents the number of molecules that duplicate them-
selves precisely, and () relates to the total size of the sys-
tem. It is interesting to note in passing that the equation
is also relevant to a wide range of other situations, includ-
ing the spread of viral epidemics, the productivity of indi-
vidual scientists, writers, and composers, and the freezing
of supercooled liquids;* some examples are shown in Fig.
1.

In Ref. 1, the interest is centered on the consequence of
parametric white noise introduced through the parameter
W, such that

W=W,+§&t), (1.2)

where W, is a constant, £(¢) is a Gaussian fluctuation
with (£(¢)) =0, and
(E()E(L"))=2D8(t —t') . (1.3)

It was shown that, after normalizing (1.1) to the generic
form with W,=Q=1, the equation could be integrated
to yield the trajectory
x()={1+Bexp[—t+n(t)]} ', (1.4)
where
B =[1—x(0)]/x(0) (1.5)

is a constant that depends on the starting value x (0), and

41

7(t) is a Wiener process. The expression (1.4) is a partic-
ular example of the more general class

xHt)=f, (e*1)), (1.6)

which, provided that f(y) is analytic at y =0, can be for-
mally expanded, averaged, and Borel summed’ to yield
the moment of order a

(x*)=n"'2[" d¢ f, [26(D1)*]e =" . (1.7)
This expression can then be used to compute an appropri-
ate relaxation time. In view of the nonexponential form

of relaxation that is, in general, to be expected, we use the
nonlinear relaxation time®

LTG0 —(x%0)) Jat
(x*0))—(x% o)) ’

where x () is the final state of the system. Applying the
result (1.7) to the trajectory (1.4) and evaluating the relax-
ation time (1.8), Jackson et al. showed! that, contrary to

(1.8)
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FIG. 1. Demonstration that Eq. (1.1) provides a reasonable
description of the productivity of well-known composers and of
a young physicist (real but anonymous). In each case, the num-
ber of compositions (published papers) is plotted as a function
of time.
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prior expectation,? T varies smoothly with D through the
critical value D,=1, where a noise-induced transition
occurs in the stationary distribution.

It is, of course, the case that by means of the transfor-
mation

) (1.9)

% |

y —
Eq. (1.1) can be reduced to the linear form

y=—=y)[Wy+&0)], (1.10)

so that, in a sense, it is perhaps not particularly surpris-
ing a priori that Jackson et al. where able to obtain an
exact expression for T in respect of this particular sys-
tem.” However, though it is clearly straightforward to
derive the moments of y, the latter are of no obvious help
in obtaining the moments of x, which are the quantities
that we seek. The point which should be emphasized is
that, even where a stochastic differential equation is se-
parable, and expressions like (1.4) can be found in terms
of stochastic integrals for the quantities of interest, it still
remains a nontrivial and very much more difficult task to
obtain explicit time-dependent averages of these quanti-
ties.

II. RELAXATION WITH COLORED NOISE

In this section, we extend the analysis of Jackson et al.
to more complex systems. We consider

x=F(x,1), @.1)

where £ is now a stochastic variable of known statistical
properties, but which is not necessarily Gaussian. We in-
troduce an auxiliary variable y satisfying

y=£, (2.2)

and we suppose that the system described by (2.1) is se-
parable, i.e., that the solution can be cast in the form

=G([¢&drn) . 2.3)

If we are able to solve (2.2) for P(y,?) the time-
dependent probability distribution of y (see, for example,
Ref. 8 for the solution in the presence of quadratic
Ornstein-Uhlenbeck noise), we can, in principle, write

)= [ P(y,nG%y,0dy . (2.4)

For general noise, the solution of (2.2) can be a formid-
able task. Nonetheless, if we are principally interested in
the long-time dynamics (as in the present case, where we
are studying a possible critical point), it can always be ar-
gued that the central limit theorem will allow us to write

[y —{y)N)7]?
2(y2(1))

for sufficiently large ¢. Equation (2.4) appears justified on
intuitive grounds; as we demonstrate below, it can be
proved formally for Gaussian noises of any correlation,
provided that G is of the form

P(y,t)=~N exp (2.5)

G =flexp(+ [ £dr),1) . (2.6)
Thus we treat systems for which
xHt)=fg (e, 2.7)

where 7(¢) is now a general Gaussian stochastic process
of zero mean; for the particular case of white noise, it will
be a Wiener process of standard deviation 2Dt, as defined
by (1.3). We again require that f(y) by analytic at y =0.
Equation (2.1) can be formally expanded as

f(n)
(exp[Etnn()]) , (2.8)

where f ")(0) denotes the nth derivative of f(y) evalu-
ated at y =0. The average of the exponential is defined
via its Taylor expansion. We emphasize that (2.8)
represents a formal expansion; properly, we should write

o dnf(Bei'r](t)) Bn
(x4 )= ———F—— =
x n§0 d(Bein“))n (Beinltl)=0n
X (exp[£nn(1)]) , (2.9)

and then set S=1. Let us now make a mild assumption
about the stochastic process appearing in (2.8), that

([9()]?)=2Dt*

where ¢* is some function of time. Using the fact that
7(t) is a Gaussian process, we can readily show that

(2.10)

0, for m odd
(In(O1™")={ my(De*)m”? ¢ .11
(m/n or m even .
The exponential term in (2.8) therefore becomes
(exp[tnn(H)]) =3 %([n(t)]'")
m=0 :
— wl nm *\m/2
2 G P
— OC, 1 2 /2
= D *x \m
2 G P
=exp(n’Dt*) , (2.12)
where the primes indicate sums over even m only.
Using the identity
exp(n’Dt*)
=772 [ 7 dgpexp[—¢*+26(Dt*) 0],  (2.13)

substituting (2.8), and summing the series, we obtain

(x2)y=m""2[" d¢ f126(D1*)*]e % . (2.14)
This exact expression for the time dependence of the mo-
ment of power « is of the same form as (1.7) for white
noise, except that ¢*, an arbitrary function of time, has
replaced t. For the particular case where the external
noise £(¢) in (1.2) is exponentially correlated, such that
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(§(t)§(t’))=~€—e(_|‘_"|’”, (2.15)
we have

t*=t+r(e 7—1) (2.16)

(where, as 7—0, we recover the white noise 1.7). We
thus obtain, finally,

(x*(t))
=727 dge=¥
X[1+B exp(—t —2¢V'Dt*)] ",
(2.17)

where the constant B is defined, as before, by (1.5). The
nonlinear relaxation time T can then be found from (1.8)
for any given starting position x (0), noise intensity D,
and noise correlation time 7.

In the case of harmonic noise’
Jj=—yy—oly +0iV2Df(1), (2.18)

with f(¢) white and Gaussian with zero average and stan-
dard deviation 1, (2.16) would need to be replaced by

i | (2+A) Al —D+ANe -1

t*=

A, —A, A, (AA,)? ’
(2.19)
where
— v+ 2—4602)1/2
Ay = 2 (2.20)

’ 2

In a similar way, corresponding relations could readily be
written down for any other correlation for which it was
necessary to calculate moments from Eq. (2.17).

III. ANALOG EXPERIMENT

The theoretical results of the preceding section have
been tested in part by means of an analog experiment on
an electronic circuit model of (1.1). The circuit was based
on the principles discussed in more detail elsewhere.!® It
employed two analog multipliers!! and two standard
operational amplifiers, arranged according to the (slightly
simplified) block diagram shown in Fig. 2; the trimming
and trajectory initialization circuitry was of the usual
type and has been omitted in the interest of clarity. The
output from the (differential input) multipliers was initer-
nally scaled by a factor of 0.1. This was compensated for
in one case by the prior multiplication of x by 10; in the
other case, the factor was allowed for by scaling the in-
tegrator time constant accordingly. To optimize its per-
formance, the circuit was scaled’ in both x and ¢, but the
results to be presented below have all been normalized so
as to be consistent with Egs. (1.1), (1.2), and (2.9), with
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FIG. 2. Block diagram of the analog electronic circuit model
of Eq. (1.1).

W=Q=1. The external noise, obtained from a
homemade noise generator,'?> was passed through an ac-
tive single-pole filter to provide a Gaussian exponentially
correlated output of correlation time 7 in accordance
with (2.15).

In practice, the circuit was set initially to a nonequili-
brium value of x, and then released. Simultaneously, a
Nicolet 1080 data processor was triggered to digitize the
trajectory of x(¢). Many such trajectories were
ensemble-averaged to obtain the first moment (x (1)),
which was then used to compute the experimental value
of T from (1.8). The procedure was repeated for different
values of D and 7, all for an initial value of x=0.2. A
typical trajectory and its corresponding ensemble average
are shown in Fig. 3.

Some typical experimental data obtained by this
method are shown by the points in Fig. 4. The measured
values of T have been scaled by division by the deter-
ministic relaxation time T,= —Inxy/(1—x,)=2.0118
for x;=0.2, and plotted as a function of 7 for the fixed
noise intensity D=0.5. The full curve represents the
theoretical prediction derived from (2.11). Although the
data are scattered, their random error being about +5%
on top of a systematic error of about +4%, it is evident
that they are in satisfactory agreement with the theoreti-
cal prediction.

In fact, the system (1.1) is a relatively difficult one to
investigate by analog experiment. This is partly because
of its particular sensitivity to internal noise in the active
components, which tends to kick x(z) away from its
asymptotic value at large 7, and partly because of its sen-

1.0
x(t) \
<xiti> (a)
0.5
(b)
0 1 | 1
0 S 10 15

FIG. 3. Experimental results obtained from the analog elec-
tronic circuit of Fig. 2: (a) a typical trajectory, obtained for
D=0.5, 7=1.0; (b) ensemble average of 100 trajectories digi-
tized under the same conditions.
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FIG. 4. Nonlinear relaxation time T of the electronic circuit
model of Eq. (1.1), measured as a function of noise color 7 for a
noise intensity D=0.5 (points) compared with the theoretical
prediction (full curve) derived from Eq. (2.17). The results have
all been normalized by division by the deterministic relaxation
time T,. The experimental data are subject to a random error
of ~+5%, as indicated by the single bar.

sitivity to small drifts in the trimming circuitry. For the
latter reason, the number of trajectories included in each
of the ensemble averages was kept relatively small.
Despite these shortcomings, we can certainly conclude
from the results of Fig. 4 that a real physical system does
indeed behave very much in the manner predicted by the
theory presented in the previous section.

IV. DIGITAL SIMULATION

In order to test the theoretical results of Sec. II more
precisely and over a wide range of D and 7 then was pos-
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FIG. 5. Normalized nonlinear realxation time T /T, ob-
tained by digital simulation for noise correlation times 7= 10
(circles) and 7=20 (squares), plotted as a function of noise in-
tensity D. The full curves, representing the theoretical predic-
tion in each case, are derived from Eq. (2.17).

FIG. 6. Normalized nonlinear relaxation time 7 /T, ob-
tained by digital simulation for noise intensities D =1 (circles)
and D =2 (squares), plotted as a function of noise correlation
time 7. The solid curves, representing the theoretical prediction
in each case, are derived from Eq. (2.10).

sible in the analog experiments, a digital simulation of
(1.1) was also carried out. The technique, which has al-
ready been described in detail elsewhere,!® was used to
compute a sequence of x (¢) trajectories. These were then
ensemble-averaged and used to obtain T for the first mo-
ment from Eq. (1.8), in much the same way as in the ana-
log experiment of the preceding section; the trajectories
and corresponding moment averages looked very similar
to those for the electronic circuit, shown in Fig. 3. An
important difference, however, was that the number of
trajectories (400) in each ensemble average could be made
much larger because there were no problems due to pa-
rameter drift, so that the statistical quality of the final
data was correspondingly better.

Some typical digital simulation results are shown in
Figs. 5 and 6. Figure 5 plots the relaxation time 7T against
the noise intensity for two values of the noise correlation
time 7; Fig. 6 plots T against 7 for two values of D. In
each case, the results have been scaled, as before, by
division by the deterministic relaxation time T, and the
full curves represent theoretical predictions derived from
Eq. (2.17). The agreement between digital simulation
and theory is clearly excellent.

V. CONCLUSION

The theory presented in Sec. II is strongly supported
by the results of the analog experiment and digital simu-
lation for the particular case of the quadratic model (1.1).
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We conclude that Eq. (2.14) enables the time dependence
of the moments to be calculated exactly for any single-
variable, separable, stochastic differential equation, for
arbitrary intensity and correlation of the Gaussian exter-
nal noise. This result is of interest, not only for its own
sake, but also because it is rare indeed in the realms of
colored noise theory to obtain results that are exact.
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