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Influence of random fluctuations on delayed bifurcations.
I1. The cases of white and colored additive and multiplicative noise
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The influence of noise on the delay of a bifurcation point in the presence of a swept control pa-
rameter has been investigated theoretically, by digital simulation and by analog electronic experi-
ment. The results obtained in an earlier paper [N. G. Stocks, R. Mannella, and P. V. E. McClin-
tock, Phys. Rev. A 40, 5361 (1989)] have thereby been extended and complemented. In particular,
exact analytic expressions have been derived for the time-dependent probability densities P(x,z),
and these have been used to obtain the mean first-passage time ?gpy for x%(z) to reach a threshold
under the influence of Gaussian fluctuations, in several contexts: additive external white noise, ad-
ditive external exponentially correlated noise, additive internal white noise, additive internal ex-
ponentially correlated noise, multiplicative white and colored noise. Based on Zeghlache, Mandel,
and Van den Broeck’s [Phys. Rev. A 40, 286 (1989)] alternative definition of the bifurcation time
t 4 omen: in terms of the evolution of the second moment {x%(¢)), an expression is derived for t ¥, ..n
for the general case of combined additive and multiplicative noises. The calculations are tested by
comparison with the results of analog experiments and digital simulations, with which they are
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shown to be in excellent agreement.

I. INTRODUCTION

In a recent paper! (hereinafter referred to as I) the
influence of additive white noise on the delay of a bifurca-
tion point in the presence of a swept control parameter
was studied by analog electronic experiment and by digi-
tal simulation. It was shown that the results were in
good agreement with theoretical predictions, on the basis
of two different kinds of comparisons. The system con-
sidered was of the form

x=pult)x (t)+&(), (1)
where the swept parameter
u(t)=py+uot , (2)

and £(1) is a Gaussian variable with zero average and
correlator

<§(r)§(s)>=€e-<‘s—'“/f. 3)

In I the case of white noise (r—0) was considered; in the
present paper we extend the investigation to the cases of
both colored noise (finite 7) and of multiplicative noise
where there is a noisy factor multiplying x (¢) in (1).

As pointed out in I (see also Refs. 2 and 3), when trying
to define the value of the control parameter at which the
bifurcation takes place, two alternative definitions are
possible.

(i) Average over x2(t). Successive realizations of x (z)
are squared and ensemble averaged together. The bifur-
cation point is defined*> as the value of the control pa-
rameter at which {(x2(¢)) crosses a chosen threshold x ..

(ii) Average over first-passage times. Each realization
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x (t) is squared; the value of the control parameter at
which x2(¢) crosses xfh is found, and a distribution is
built. The bifurcation point is defined®’ as the average
value of this distribution. We shall refer to this definition
as the mean-first-passage-time (MFPT) criterion.

It was shown that, except for very small noise intensities,
the bifurcation time defined by these two approaches was,
in general, different.

In Sec. IT we discuss the theory of the bifurcation time,
and extending the investigations of I and of Refs. 6 and 7,
we show how it may be calculated in a variety of cir-
cumstances. In Sec. III we report tests of the theory
based on analog experiments and digital simulations. Fi-
nally, in Sec. IV we try to summarize the progress made
and draw conclusions.

II. THEORY

A theoretical derivation of the bifurcation point based
on the (x%(t)) moment-average definition has been
presented in Refs. 4 and 5, hereinafter referred to collec-
tively as ZMV. A theory based on the mean first-passage
time definition has been presented in Ref. 6 for white
noise and in Ref. 7 for the case of colored noise: We will
refer to these two papers together as TSM. A brief re-
view of the various approaches was also given in I.

The theory proposed by ZMYV is quite general. It is ex-
act, and as such it ought to agree for any chosen values of
parameters with analog experiments or digital simula-
tions. The first-passage time approach, on the other
hand, does contain some approximation. (The final
theoretical result quoted by TSM, for example, while
relevant to real systems, refers to a region of parameter
space that is inaccessible to the simulations.) We now

3356 ©1990 The American Physical Society



42 INFLUENCE OF RANDOM FLUCTUATIONS ... . IL. ...

discuss how the TSM approach may be generalized to
cover as much of the parameter space as possible.

Our starting point (see also I) is the solution of (1) in
the form

x (£)= exp l fot,u(s)ds ]x(O)

+ fotexp

fl,u(y)dy ]g(s)ds , (4)

where x (0) can be either a random variable, whose distri-
bution is decided by the evolution equation (1) (“internal
noise” case) or a fixed value for x (¢) externally set at time
t =0 (“external noise” case). If now we are interested in
deriving the distribution of the first-passage times, a pos-
sible approach would be to choose a particular realization
{&(2)} of the noise, on the resulting trajectory x (), to
measure the time taken to reach the threshold value, and
to use this information together with the statistical
weight of the particular noise trajectory {£(¢)} to build
the distribution of first-passage times. These are indeed
some points of contact between this approach and ap-
proaches® based on path-integral formalism.

—po(s +y)“%(s2+y2)

F(n)= fot fotexp
)2

(1/7—p,
2v

2
v

_w?
2

172
I
ex
0 p

where erf is the usual error function® and where we have
adopted the definitions of Ref. 5 [¢* is the time when
x%(t) reaches x 2]:

2 12
_ %t D
a=— 2 5 b - 2 _ ’
x40) x40) | v
D 172 u
B=" |0 | a=T2%, @)
Xih [V v
_ Uot vt _ 1
Vo ™
This result follows from defining'®!!
2
VF(ie,= [ — s — 2
(0= [ exp | —pos — - |&(o)ds (8)

and noticing that V'F(t)¢,, a linear combination of
Gaussian variables, is itself a Gaussian variable with zero
average and standard derivation given by (6).

The approach followed in I (semianalytical method)
was now to generate ¢,, to solve Eq. (5) for ¢, and to build
the appropriate probability distribution from which the
mean first-passage time can in turn readily be derived.
However, we have now improved our previous results.
Let us first see the derivation for white (r—0) noise.

(&(s)E(y))ds dy

exp
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As already discussed in I, quite a lot can be understood
about the distribution function of the first-passage times
if we discard terms coming from the usual (static) Kra-
mers process. In a more formal way, we are going to sub-
stitute for the real trajectory x(z) a sort of averaged
(smoothed) trajectory which has the same statistical
properties as x (¢). As pointed out, we are then discard-
ing contributions to the distribution function of the first-
passage times stemming from ‘“bursts” in x (¢) due solely
to random noise, and not to the intrinsic instability in the
system. In effect, we are evaluating the contribution
from the dominant path in a path-integral formulation.
We now consider separately the two cases of internal and
external noise.

A. External noise

For external noise, if ¢, is a Gaussian variable with
zero average and standard deviation one, we can write

2t +ot?

x¥t)=e [x(OH—‘/FI‘)Glsl]2 > (5)

where F(¢) is given by (for colored noise)

Vo _ _
—y erf VYvyta—c —erf dy ,

1
~ Tho

S
o

Given Eq. (5) and knowing the equilibrium distribution of
¢,, it is possible to invert both to obtain the distribution
of x. We find then

_ 1 !
P(x,t)—Wexp |— fo ,u(s)ds]
2
X exp |— fotu(s)ds]—xo]
X — : , (9
P 20%4(t)
with
oA )=DV7/v e [erf(z)— erfla)] . (10)
We now introduce
wa= [ " P(x,ndx, (1n

th

representing the fraction of the population still to reach
the threshold value normalized to 1 at ¢t =0. The distri-
bution of the first-passage times is now given by — W(t),
which is the rate at which trajectories leave from within
the threshold values. The average first passage time is
then given by
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()=— ["Wnnar

0
o *th
=~ [ "1, S, Plondxdr . (12)

It is now possible to write (12) in a compact form, chang-
ing the integration variable x. We find

X+
(t)=— fow ‘/L;ta, f_lee_"zdx dt

=1 f0°° 13, {erflx, (2)]+erf[x, (1))} dt

— 1 ® o+ _"1+2 . — _"IJ
——7_; fo t(x e +x ;e )dt (13)
where
N —X, €Xp | — fol,u(s)ds b
x;(t)= Va0() (14)

For the case of colored noise, it is possible to derive ex-
actly the same Eq. (13), with the same definition of x;"(z)
but with o%(¢) defined as

oXt)=DcV 2rme'lc @’/

t [=op?2—y(1/7+p,)]
X f e 0
0

’

X |erf

Vuy +a —c
V2 J ert

(15)

This equation follows directly from the definition of F(t)
in (6).

B. Internal noise

The case of internal noise is slightly more complicated.
We start by solving (1) in the presence of colored noise
(see also Ref. 1). If ¢, and ¢, are two Gaussian indepen-
dent variables with zero average and of standard devia-
tion unity, the solution can be cast in the form

t+vt?/2 D i
— Bt Ty
t)= —_— +G (1)
x( ) e ‘¢1 #0(“07_1) l
+¢,[F(1)—G*1)]'/?, (16)
where F (t) is defined in Eq. (8) and G (#) is given by
Du 172 25
G(= e I (17
Mot —1 0

The forms for F(¢) and G (¢) follow from the equalities

D
20 — ,
(x2(0)) rro(tar—1)
—_ D —t/T
(x(0)&(t)) —(1_“07_)e , t>0
<§(o>g(z)>=€e*'”. (18)

In Eq. (16), we now have again a linear combination of
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Gaussian variables, which is itself a Gaussian variable
with the appropriate average and standard deviation.

After some algebra it is possible to derive an equation
of the same form as (13), but with the definition

X €Xp [ — f’y(s)ds]
x1+=x,'— =0 (19)
V2a(t) ’
where
o t)=A(1)+B(t)+C(2),
D 172
A()= (a+e)s2 | T
=Tl 2
Vot+c+a a+tc
X —_— —
erf Ve rf v H R (20)
D

)=,
ol (147 o))
and

C(1)=DeV/Tmele—on/2 [ 7W 21/t u)
0

Vuy +a —c
V2

X lerf —erf a—

dy .

The case of white internal noise is identical, with only a
change in o%(¢), which would then need
172

D e lerfiz)—erfla)] . (1)

ol

s
v

o(1) +D

C. Multiplicative noise
For the case of multiplicative noise, given the equation

X =[potvt+n(t)]x ,

where
(n)=0,
D —it—=s\/T
(ntemis))=—"e "7, (22)
n

and the definitions
D

5=T’7, 7/:%, 23)

the following implicit equation for the critical control pa-
rameter has been derived:’

*
")~ lna=0 .

(24)

vt*?+2t*(ug+2D,)—4D, 7, (1—e

The derivation of the analogous equation using a mean
first-passage time approach is very simple. We start by
writing the solution of Eq. (22):!%1!

t+et2/2 2D id
et e‘/ KA (25)
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F=t+re -1,

and ¢ a Gaussian variable with average zero and stan-
dard derivation 1. We find then for the distribution
P(x,t) given in (9),

dx (%lna—uot—vtz/z)z

P(x,t)Jdx =—————exp | — —
x\/47TD,,7 4Dt

(26)

and we can compute ¢ * from Eq. (12).

Note that the theory presented above is quite general,
and, as such , it is not restricted to the particular choice
of u(t) we have studied here. It also suggests an alterna-
tive method for calculating the moments {x"(t)) than
the one used by ZMV. One can simply construct the gen-
erating function (e”?) for a given probability density
and extract the moments in the normal fashion. The ad-
vantage of this method is that higher-order moments are
accessible.

D. Combined additive and multiplicative noises

Finally, let us note that if we are interested in deriving
the critical control parameter via the {(x?) definition, it is

J

x2(t)=x3 | exp

[ wtsrds + fo‘n(s>ds] r

possible to find an expression even for the system with
mixed noises described by the equation

x=[u(t)+n(1)]x +£&1), a7)
where

D —lt—si/r
(n()=0, (qt)n(s))=—"Te le i

T7l

D (28)
(&) =0, (gnets))=—te ",

£

as long as the two Gaussian processes 7(¢) and £(¢) are
uncorrelated and D, is relatively small (the latter condi-
tion being implicit in our assumption that the dynamics is
determined by the product of a stochastic variable and a
time-dependent coefficient). If we integrate Eq. (27), we
obtain

x (t)=x,exp [ fol,u(s)ds+ forn(s)ds]

+ folexp[f;p(y)dy—k f:n(y)dylg(s)ds, (29)

and for x 2(¢) we obtain

exp

+2x4 [ folexp

+ folfotexp

Given that the two processes £(¢) and 7)(z) are independent, we can calculate the averages over them independently.
Calculating the average over 7(¢), we obtain [assuming also that x, and 7(t) are independent]

ftu(y)dy-*- f’n(y)dy]:g(s)ds

[ wisias+ [ n(s)ds}

f;u(y)dy-% f;p(y')dy'*’ f;n(y)dy-i- fsfﬁ(Y')d}"

E(s)E(s")ds ds’ . (30)

exp

(xX(n),= [xé

fol,u(s)ds +\/§Eft‘¢”2
+2x, fo’exp { [ uydy +x/‘21>—,,[\/<7—§)+\/?]¢+ fo’u(sms]g(s)ds

’ 4 o P ! ’ ’ - d
+ fo’ fo‘exp [ f:,u(y)dy+ fsfy(y \dy'+1/2D, (V-5 +V -3¢ ]§<s)§(s ds ds ]e MV% :

Performing the integrations, we find

(x*(1)),=x;§

exp

2 I _

fot,u(s)ds +4D,,7H +2x, fo‘exp[f:y(y)dy-k fory(s)ds +D,,(\/z~+§ +\/T)2]§(s)ds
t t

+ fo fo exp

This equation can now be averaged over £ to obtain the value of the critical control parameter. For given 7(z) and
external noise £(¢), Eq. (32) can be simplified:

(x*(1)), ¢=x§ [exp l fot,u(s)ds +4Dnt] ]2+D§ fol [exp { f;;t(y)dy +4D, (1 —s) ] ]zds ) (33)

f'u(y)dy + ffu(y’)dy’-f—Dn(\/'t'—i +Vi—3) ]§(s)§(s’)ds ds' . (32)
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If now we take the usual

w(t)=py+ot , (34)

we can immediately write

where
a(t)=py+2D, ot . (36)

In other words, in the presence of additive and multi-
plicative white external noises, the critical control param-
eter should be given by its value for the simpler additive
external white noise case, but where p is now scaled by
the multiplicative noise according to Eq. (36).

III. TESTS OF THE THEORY

The theory was tested both by analog experiment'? and
by digital simulations.!>!* The basis of these techniques
has been described elsewhere,'>"!* and their application
to the particular system currently under study has al-
ready been discussed in I. In the present paper, there-
fore, we simply report the results obtained and compare
them with the theoretical predictions.

We consider first the case of external noise. In Figs.
1(a) and 1(b), the scaled bifurcation time z is plotted as a
function of the noise reciprocal correlation time parame-
ter ¢ for the two different bifurcation criteria, for various
values of the scaled noise intensity b, and of the scaled in-
itial curvature of the potential a. In both parts of the
figure, the solid curves (theory) and associated data points
refer to the MFPT bifurcation criterion, and the dashed
curves (theory) and associated data refer to the moment-
average criterion, as indicated in the caption. It may be
noted immediately in Fig. 1(a) that, for both criteria, the
bifurcation time z tends to its deterministic value in the
limit of highly colored noise and hence is only dependent
on a. In the white-noise limit, on the other hand, z is
dependent only on b. This behavior has been reported
previously,™ !> but it can now be seen to be the same for
both bifurcation criteria. The theoretical predictions
(curves) are strongly supported by both the analog experi-
ments and digital simulations. Good agreement between
experiment, simulation, and theory is also seen in Fig.
1(b). It may be noted that the constant value taken by z
in the highly colored limit depends on the value of a, but
not significantly on the bifurcation criterion; in the oppo-
site limit, of white noise, z depends on the bifurcation cri-
terion, but has become almost independent of a. The re-
sults obtained for the case of internal noise are shown in
Figs. 2(a) and 2(b). Again, the curves represent theory,
and the behavior predicted on the basis of the MFPT cri-
terion (solid curves) is different at all values of ¢ from that
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predicted from the moment-average criterion (dashed
curves). These predictions are fully borne out by the ana-
log and digital data, although the MFPT theoretical
curves are both a little bit higher than the measurements.
The latter discrepancy is not particularly surprising,

25 [y

0.0 e
1074 1073 107% 107!

C

FIG. 1. Theory compared with the results of analog experi-
ments and digital simulations for the case of external noise. In
terms of scaled parameters, the bifurcation time z is plotted as a
function of the reciprocal correlation time ¢ of the noise. The
solid curves are calculated from Egs. (13) and (15), derived on
the basis of the MFPT bifurcation criterion of TSM; the dashed
curves represent the result of the ZMYV theory. For both parts
of the figure, the parameter a=1.2. (a) The scaled initial cur-
vature of the potential, @ =—1.7. The upper pair of curves in
the white-noise limit (right-hand side) correspond to a scaled
noise density b =0.05; the lower pair of curves correspond to
b =0.5. The data points for the ZMV theory are lozenges, ana-
log experiment with b =0.5; squares, analog simulation with
b =0.05. The data points for the MFPT criterion are crosses,
analog with b =0.5; pluses, digital with b =0.5; squares with
added external lines, analog with b =0.05; lozenges with exter-
nal lines, digital with b =0.05. (b) Results for a scaled noise in-
tensity b =0.5. The upper pair of curves in the limit of ex-
tremely colored noise (left-hand side) correspond to a scaled ini-
tial curvature of the potential of a = —2.0; for the lower pair of
curves, a = —1.7. The data points for the ZMV theory are
lozenges, analog experiment with @ = —2; squares, analog simu-
lation with a = —1.7. The data points for the MFPT criterion
are crosses, analog with @ = —2; pluses, digital with a = —2;
squares with added external lines, analog with a =—1.7;
lozenges with lines, digital witha = —1.7.

100 10!
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FIG. 2. Theory compared with the results of analog experi-
ments and digital simulations for the case of internal noise. In
terms of scaled parameters, the bifurcation time z is plotted as a
function of the reciprocal correlation time ¢ of the noise. The
solid curves are calculated from Egs. (13), (19), and (20), derived
on the basis of the MFPT bifurcation criterion of TSM; the
dashed lines represent the result of the ZMV theory. For both
parts of the diagram, the scaled initial curvature of the potential
a = —3.0. The lozenges are analog experimental measurements
based on the ZMV bifurcation criterion. The pluses (analog
data) and crosses (digital data) correspond to the MFPT cri-
terion of TSM. (a) With scaled noise intensity 8=0.1; (b) with
B=0.35.

however, because we expect to encounter numerical prob-
lems when evaluating (12) in the limit of large c¢. It
should be emphasized that the disagreement is a compu-
tation (numerical) one: In the limit of very large ¢, the
theoretical expression derived by taking the limit in (12)
before the numerical integration is performed was shown
in I to be in excellent agreement with the simulations.
The results obtained for multiplicative noise are shown
in Fig. 3 where, again, the solid curves represent the
MFPT-based theory and the dashed curves represent the
theory based on the moment-average criterion. In each
case, z is plotted directly against the noise correlation
time 7. The value of z measured in the analog experiment
on the basis of the MFPT criterion is almost independent
of 7, which is entirely in accord with the theory. In all
cases, for both experiment and theory, z becomes in-

5.7 ]
56 [~ —
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" e o
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Z 55 [~ o - _
o7 7 1
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s o s 4
54 |- ’ / e
// 1
o 4
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5 10 50 100
T

FIG. 3. Theory compared with the results of analog experi-
ments for the case of multiplicative noise. The scaled bifurca-
tion time z is plotted as a function of the correlation time 7 of
the noise. The solid curves are calculated from Egs. (12) and
(26) derived on the basis of the MFPT bifurcation criterion of
TSM: for the upper curve, the scaled noise intensity §=0. 1; for
the lower case, §=0.35. The dashed curves represent the result
of the ZMYV theory: upper curve, §=0.1; lower curve, §=0.35.
The pluses and crosses represent the results of analog experi-
ments with §=0.1 and 0.35, respectively, using the MFPT cri-
terion. The lozenges represent analog data based on the ZMV
criterion with §=0.1.

dependent of 7 in the limit of highly colored noise. The
agreement between our extension of the TSM approach
and the results of the simulations is clearly excellent. The
probability distributions (9) and (26) that we have ob-
tained for the different cases are also solutions of the
Fokker-Planck operator associated with the relevant
Langevin equation for appropriate initial conditions. The
limit of validity of our extension of the TSM approach is
essentially given, then, by the treatment of the boundary
conditions: In solving the Fokker-Planck operator, we
disregard the fact that, to compute a mean first-passage
time, P (x,t) should become zero at the boundary x,,. In
the treatment given here, we do not discard contributions
to P(x,t) derived from particles that recross the bound-
ary once outside the region of interest. We expect, how-
ever, that our approach should be reliable for
B<lal/In(zla|), which is always the case for the simula-
tions presented here and also of some relevance to real
systems.

IV. CONCLUSION

In this paper, we have performed two main tasks.
First, we have used analog experiments to test the appli-
cability of the ZMYV theory for colored and multiplicative
noise to real physical systems, and have confirmed the re-
sults by means of digital simulations. Just as in the case
of additive white noise, considered earlier in I, excellent
agreement has been obtained between experiment, simu-
lation, and theory.
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Second, we have considered the TSM approach to the
bifurcation problem, based on an MFPT criterion. We
have shown how the TSM approach may be generalized,
so that it is applicable to a much larger region of the pa-
rameter space, and we have tested the resultant theoreti-
cal predictions by means of the experiments and simula-
tions. Excellent agreement has been obtained, demon-
strating the veracity of the calculations.
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