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Effect of noise and inertia on modulation-induced negative differential resistance
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It is demonstrated that modulation-induced negative differential resistance can survive in the presence
of noise and inertia. In the limit of large periodic forcing, by perturbing about the overdamped, noise-
free system, analytic predictions for the effects of weak noise or small inertia are obtained. These are
shown to compare well with the results of detailed numerical simulations.

I. INTRODUCTION

During the past two decades, the transition to chaos of
deterministic, nonlinear systems has received a great deal
of attention. In contrast, prechaotic transitions in deter-
ministic and stochastic systems have been much less in-
tensively studied. Examples of the latter are noise-
induced transitions of the type found in low-order evolu-
tion equations.!”® Another example, which is the focus
of interest in the present paper, is the onset of
modulation-induced negative differential resistance
(MINDR), where the response of a periodically driven
system decreases with increasing drive amplitude.”® For
an overdamped system, in the limit of very slow changes,
this phenomenon is to some extent trivial, since paramet-
ric changes can cause the system to jump from one equi-
librium position of the instantaneous potential to anoth-
er. The situation in the limit of high-frequency forcing is
less straightforward and until now only the noise-free,
overdamped case has been studied.”® Since the neglect of
inertia and noise is often an idealization of a real situa-
tion, there is a need for a description which includes
these effects and which demonstrates that MINDR sur-
vives in their presence. The aim of the present paper is to
provide such a description.

In Ref. 8, as a paradigm of MINDR, the inertia and
noise-free equation

dx /dt=f(x)+Vyh(t)g(x) (L.1)

was studied, where the periodic modulation A (z), of
period 7, satisfies

[Tdth=0, 7' [Tarln()l=1,
0 0

and V| is the amplitude of forcing. After transients have
receded, the response x (¢) varies periodically between
two limits x, x_, whose value, in the presence of a
square wave modulation, can be determined by solving a
pair of simultaneous nonlinear equations, obtained after
dividing Eq. (1.1) by the quantity Vyh(z)g(x) and in-
tegrating over each half cycle. In the high-frequency,
large forcing regime defined by 7—0, V;— o, with
pu=Vy7/2 = finite, the sum and difference of this pair of
autonomous equations, reduce to the simple form
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[ ax fx)/g2x0=0,

fx Tdx g x)=p .

After evaluating the integrals, one is left with two simul-
taneous equations for the unknown quantities x ...

Equations (1.2) and (1.3) demonstrate that in the large-
V, limit, the response amplitude |x , —x _| depends only
on the impulse parameter 4 and not on the separate
quantities ¥, 7. Consequently, keeping V, fixed and
varying 7 yields the same result as keeping 7 fixed and
varying V,. This is in marked contrast with a harmonic
oscillator, where the response is simply scaled by V.
More important, it was also shown in Ref. 8 that if 4 (¢) is
an arbitrary waveform, whose deviation from a square
wave is characterized by a coefficient of castellation e,
then the above equations remain valid, provided f is re-
placed by the modified function

Fix,e)=f(x)—eg(x) .

This is a useful result, since it reveals that if in the pres-
ence of square wave forcing, the limits x , (u,e) and
x _(u,€) of the modified equation

(1.2)

(1.3)

(1.4)

dx /dt=f(x,e)+Vyh(t)g(x) (1.5)

are known, then they are known for all other periodic
forms of A (¢). In what follows, it will be shown that in
the limit of weak noise and/or small inertia, the response
can also be obtained from the solution of an equation of
the form (1.5).

II. THE EFFECT OF INERTIA ON MINDR

In the presence of a nonzero mass m, Eq. (1.1) general-

izes to
md?®x /dt*+dx /dt = f (x)+ Voh (g (x) . 2.1

In Ref. 8, as a specific example, the following choice of

f(x)and g (x) was made:
f(x)=—x3+Ax>—0Ox+R (2.2)

and
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g(x)=x? (2.3)

with A;=3.6, Q=3, and R=0.7. These values were
chosen to yield three real roots for f(x). To illustrate the
effect of inertia, we first adopt this particular choice for f
and g and show the results of a digital simulation of Eq.
(2.1). For convenience, we define x . >x _ and, following
Ref. 8, show results only for x .. For large ¥, provided
results are plotted against the impulse parameter p, fixing
7 and varying ¥V yields the same response as fixing V),
and varying 7. With V;=10 and varying 7, Fig. 1 shows
how curves of x, versus u change with increasing m.
These demonstrate that the regions of negative slope,
which are a signature of MINDR, not only survive in the
presence of inertia, but for this choice of parameters are
initially enhanced as m increases from zero.

For finite m, Eq. (2.1) can, of course, undergo a period
doubling transition, such that x, and MINDR are no
longer defined. Since we are interested primarily in
describing MINDR, we restrict the analysis to small m
and develop a perturbative result for x,.. To this end it is
convenient to rearrange Eq. (2.1) in the form

dx /dt=f(x)+g (x)Voh(t)—md*x /dt?* . (2.4)

Differentiating this equation with respect to time and
substituting the result back into (2.4) yields, after retain-
ing terms which are at most linear in m,

dx /dt=f(x)+g(x)[Voh (t)—mV,dh (t)/dt]
—mdf/dx +Vyh(t)dg /dx]

X[f(x)+g(x)Voh(D)] . 2.5)

To isolate the leading term when g(x) is not a con-
stant, it is convenient to define the parameter 3 =mV(2),
such that when m —0, and V;— o, S is finite. In this
limit, B/V,=mV, is negligible compared with m¥V3 and
Eq. (2.5) reduces to
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FIG. 1. Numerical results for x, v u obtained with fixed
V=10 and various values of the mass m. Since for large V,, an
identical response is obtained for fixed 7 and varying ¥V, the re-
gions of negative slope indicate the presence of MINDR. The
O corresponds to m=10"% the A to m=10"% the O to
m=5X10"% the + to m=10"3, and the X to m=5X10"2.
Adopting the convention of Ref. 8, we identify MINDR with
the existence of regions of negative slope.
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dx /dt =F (x)+g (x)Voh (1), 2.6)
where

F(x)=f(x)—Bg(x)dg(x)/dx . (2.7

Hence the system with small inertia has been mapped
onto an overdamped system, but with a modified f (x).
For the simple cubic of Eq. (1.2),

F(x)=—(14+2B)x*+Ax>—Qx+R .

The analysis of Ref. 8 can now be used to obtain results
for x, in the small mass limit. An example of these re-
sults is shown in Fig. 2 for different values of 3, while in
Fig. 3, a comparison with numerical results is shown.
Shown also in Fig. 4 is a comparison between analytical
and numerical results when g(x)=x. In both cases, for
small m, good agreement is obtained.

The analysis of Ref. 8 shows that in the impulse limit,
an overdamped system cannot exhibit MINDR unless it
is multistable in the absence of forcing. Since (2.6) and
(2.7) map the system with inertia onto an equivalent over-
damped problem, the former will only exhibit MINDR if
F (x) has more than one rcot. In moving from 8=0.1 to
0.5, the number of roots changes from 3 to 1, so MINDR
disappears. More generally, the range of 8 for which
F(x) possesses more than one root will depend on the
precise form of f(x) and g (x). This range may therefore
increase or decrease upon changing g (x) from x to x 2.

The results (2.6) and (2.7) can be applied to a wide
range of functions f (x) and g (x), provided that g’'(x)+#0.
If this is not the case, the lowest-order correction is lost
when taking the limit 5/V,—0. To obtain a perturba-
tive result when g (x) is a constant, we return to (2.7) and
note that if /4 (¢) is a square wave then its derivative is of
the form

dh(t)/dt=3 [—8[t—(n+L1)r]+8(t—nT7)} .
n=0

Consequently, after integrating Eq. (2.5), we obtain
discontinuities in x (¢) at t=(n+1)r and t =n7 of mag-

nitude mV,. Hence with g(x)=1, integrating over the
half cycle for which A (¢)=1, yields

FIG. 2. Analytic results for x . vs u, obtained by solving Eq.
(1.2) and (1.3) after first replacing f(x) by F(x), defined in (2.7).
For fixed V=10, results are shown for various values of the
mass m: the O corresponds to =103, the A to B=10"2, the
O to B=5X10"2, the + to $=0.10, and the X to =0.50.
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FIG. 3. A comparison of theoretical (solid line) and numeri-
cal (X) results when g(x)=x2, for the following parameter
values: (a) B=1073, (b) 8=0.01, (c) 8=0.05, and (d) 8=0.1. In
all cases V,=10.

fx+meo dx

- S = 2 y
x_ Fio+v,

where

Fl(x)=f(x)—m—‘if—[f(x)+ Vol -
dx

Similarly, for the half cycle A ()= —1,
f x_+m V0 dx

e =T7/2,
Xy Fy(x)—V,
L -
x+
3
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FIG. 4. A comparison between theoretical (solid line) and
numerical ( X ) results when g(x)=x, ¥V;=10, and (a) 8=0.01,
(b) 3=0.10, (c) B=0.15, and (d) =0.18.
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FIG. 5. A comparison between theoretical (solid line) and
numerical () results, when g(x)=1, ¥,=10, and (a) =103,
(b) @a=10"2, and (c) a=0.1.

where
d
Fz(x)=f(x)—md—£[f(x)—Vo] .

To lowest order in mV, these equations can be written
as

X+ dx mVy
[ — =7/2
X _ Fl(x)+V0 F](x+)+VO
and
x mV,
. S— b =72,
x_ Fy(x)—Vy Fyx_)—V,

respectively. In the limit m —0, Vy— o, but a=mV,
finite, these can be combined to yield

[ Fdx —as2f (x )+ f(x)]=0 2.8)

and
x4
fx dx=u+a. (2.9)

Again one obtains simultaneous equations for x,. A
comparison between the solution of this pair of equations
and the results of a numerical simulation is shown in Fig.
5.

III. THE EFFECT OF NOISE ON MINDR

The above analysis demonstrates not only that
MINDR survives in the presence of inertia, but also that
for small m and large V|, the changes which occur can be
conveniently described by perturbing about the over-
damped limit. In this section, we examine the effect of
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noise on MINDR with large forcing and again demon-
strate that the overdamped system provides a useful
starting point for a perturbative description.

The equation of interest is the (Stratonovich) stochastic
differential equation,

dx /dt=f(x)+g(x)Voh (t)+g(x)I'(2), (3.1

where I'(¢) is Gaussian white noise, satisfying (T'(¢)) =0
and (T(£)['(¢"))=2D&(t—1t').

To demonstrate that MINDR survives when D0, we
begin by showing the results of a numerical simulation of
Eq. (3.1), carried out using the algorithm of Ref. 9, which
employs the Stratonovich prescription for stochastic in-
tegrals. All numerical results were obtained in the large-
Vo limit, using the choice of functions (2.2) and (2.3).
Since x (¢) is a random walk, the values x/, =x (i7) and
x'_ =x(iT—7/2), which arise at the switching times of a
square wave modulation / (¢), are now random variables.
After transients have disappeared, the quantities of in-
terest are the distributions or equivalently the moments
of these variables. An example of the former is given in
Fig. 6, which for D =0.01 shows the variation of the dis-
tributions of x_ with u. This demonstrates that in a pro-
babilistic sense, MINDR persists in the presence of noise.
Figure 6 is typical of the behavior we have observed for a
range of parameter values and shows that as D —0, the
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FIG. 6. (a) and (b) show the probability distributions of x
and x_, respectively, for D=0.01. Before switching on the
noise, the system was allowed to settle down, then for each
value of u, a distribution was formed from typically of order 10°
subsequent values of x .
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FIG. 7. Numerical results for {x . (u)) obtained for various
noise strengths: D=0.01 (0); D=0.1(X); D=0.2(+);
D=0.3 (O).

distributions approach & functions centered on the noise-
free values X,,X_. As D increases, the distributions
broaden and the peak positions shift. To illustrate this
behavior, we focus attention on the mean and standard
deviations of these distributions. A selection of numeri-
cal results for {x (1)) is shown in Fig. 7, which demon-
strates that, with increasing noise, the regions of negative
slope of {x (1)) are shifted. The aim now is to develop
a perturbative result which quantifies this behavior.

To obtain an analytical solution in the limit of large
forcing, we divide Eq. (3.1) by f(x)+g(x)V,h (1), in-
tegrate over each half cycle, and take the limit Vj— .
Writing

Fo(x)=[Vog(x)tf(x)]! 3.2)

yields

Xi+

f+
xi

1 .
Fotdn=7[1+u7 [ Par | + 07

(3.3)
and
fxtlp (x)dx =L [1— Y pde | +0 (572
it 2 i (i+1/2)r T ’
(3.4)

where the symbol O(7°7?)

represents terms which vanish as 7
it.

To obtain a perturbative result, Eq. (3.3) and (3.4) will
now be expanded about the noise-free values X, given by

on the right-hand sides,
5/2 in the impulse lim-

%, _pEe _T
J, axFi=[ TdxFo(0=7. (3.5)

Writing F,3=F ,(xg) yields, to second order,
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. . . , : _ (i+1/2)r
F++(x‘+“—~f+)~F+_(x’_—f“)+%F’++(x’++l—f+)2—%F+_(xL—x_)2=i B [()dt+0(77?)
(3.6)
and
. . . . (i T
Fo (xif1 =% )—F__(x'"1—x )4+ 1F_  (xif1—x P—1F_ _(x*'—5_p2="—["""" rnar+o0 (),
2u Yi+1/2)r

where F 3 =axﬁFa(xB).
Starting from these equations, it is straightforward to

develop a hierarchy of coupled moment equations. For
example, averaging Egs. (3.6) and (3.7) yields

F,,a,—F, a +1F, 0, —1F, o_=0(r"?

(3.8)
F ,a,—F__a +iF ,o0,—1F _o_=0(r"?),
3.9)

where a, =(x, —X.)and o, =((x, —%,)?).

To first order in V, ! the left-hand sides of these equa-
tions are not linearly independent and therefore for large
V, it is necessary to retain terms up to order V2.
Despite this feature, the O (7°/?) terms on the right-hand
sides do not contribute in the impulse limit and will
therefore be ignored. Consequently if o, are known,
then a . are determined and vice versa.

To obtain further moment equations, one could, for ex-
ample, square and average Egs. (3.6) and (3.7). However,
even after retaining only second-order terms, this does
not lead to a closed set of equations because higher-order
correlations are introduced. To obtain a second pair of
equations, we instead rearrange (3.6) and (3.7) to elimi-
nate (x'. —X,) from the left-hand side of Eq. (3.6) and
(x'*1—x ) from (3.7). This yields

(xit'—x_ )=6(x" —X%,)+mn,;+squared terms  (3.10)
and
(x'*!'—x_)=6(x"_—x_)+yx,;+squared terms , (3.11)
where
F__F_
g=_—F"""—+ ,
F, F__
T (i+1/2)7
P T I'(t)dt
i 2uF . fz‘r (Od
F+— iT
+ 'z
F__ ‘]‘(ifl/Z)-r (D)t |,
and

(3.7)

T (i+1)r
= I'(t)dt
Xi 2uF _ _ f(i+1/2)r @

F— i— T
o s T3

-+
F++ iT

Equations (3.10) and (3.11) can now be solved by itera-
tion. For example, if 6 is less than unity, Eq. (3.10) can
be iterated to yield

o N
(xit—x )y=6" " (x"—x,)

n
+ 3 6/m;_;+squared terms . (3.12)
=0

J

For 6<1, as n— oo, the first term on the right-hand
side vanishes. Since (7;7;) =8¢ and (x,x;)=8,¢_,
where for large V', the leading contribution to ¢, is given
by

lim ¢, —2rDgXX,),

VO —
squaring and averaging Eq. (3.12) yields, to lowest order,

oy =¢y 3 6Y=¢,/(1—6%) .
=0

J

For 6> 1, the equation obtained by dividing (3.10) by &
can be iterated to yield o, =@, /(6°—1). After applying
the same procedure to Eq. (3.11), one obtains the com-
bined result

Ui:¢i/(l1_02|) )
which, in the limit V,— 0, simplifies to
uDgX(x )
G /g E ) —f(x ) /gE ]

Finally, substituting this into Egs. (3.8) and (3.9) yields,
for the mean values,

(3.13)

sDug . , , ) ,
a,=r—F——5[fL—fx+@gL+g ) f /8%
8- g+

where s = signof (f_/g_—f./84).

A comparison with numerical results for
(x,)=X,+a, and o'/? is shown in Fig. 8. Again, for
small D, good agreement is obtained.
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L(b)

(a)

FIG. 8. Numerical ([0) and perturbative (solid lines) results
for {x ;) vs u (upper curves) and o'/? vs u (lower curves) for (a)

D=0.01, (b) D=0.1, and (c) D=0.2.

IV. DISCUSSION

The aim of this paper has been to demonstrate that
MINDR survives in the presence of noise and inertia and
to show that, in the impulse limit, the overdamped,
noise-free system provides a useful starting point for a
perturbative description of their effects. In Sec. II, it was
shown that for multiplicative forcing, the leading contri-
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bution can be obtained from an overdamped system, with
a modified force given by Eq. (2.7). The extra term on the
right-hand side of this equation is reminiscent of correc-
tions due to noise-induced drift in stochastic differential
equations subject to multiplicative white noise,® which
arise when different versions of stochastic calculus are
used. When the forcing is additive, this correction van-
ishes and the leading term is then obtained from the gen-
eralizations (2.8) and (2.9) of the inertia-free equations
(1.2) and (1.3).

In Sec. III, the effect of white noise is examined. Again
in the impulse limit, the effect of weak noise is described
by perturbing about the noise-free solutions X,.. A novel
feature of these results is that the sign of da , /du can be
changed by varying the noise strength D. For this
reason, MINDR in the presence of noise provides a new
example of a noise-induced transition in nonlinear sys-
tems.
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