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ABSTRACT

A new form of heterodyning is reported, related to stochastic resonance, in
which a heterodyne signal can be enhanced by adding noise.

One of the important physical problems of information processing and transfer
is how to control the signal-to-noise ratio (SNR). Usually, this ratio decreases with
increasing intensity of noise. However, under certain circumstances it behaves in
the opposite way. The phenomenon of the noise-induced increase of SNR was
called stochastic resonance (SR) [1]. It has attracted much attention recently (see
[2]). Most of the data on SR has been obtained for bistable systems driven by noise
and by a low-frequency periodic force. The onset of SR in these systems is related
to the fact that the probabilities Wy of transitions between co-existing stable
states (n,m = 1,2) increase exponentially, in the case of Gaussian noise, with
increasing noise intensity D. A low-frequency external periodic force Ag cos (M
modulates the activation energies and as a result the transition probabilities Wy
are modulated too. In turn, the modulation of Wy, gives rise to a modulation
of the populations of the stable states. For a symmetrical double-well potential,
the force periodically makes one of the wells deeper than the other, and the
system occupies it with a larger probability. As a result, the amplitude of the
oscillations is proportional to the relatively large difference z1 — 22 in the values
of the coordinate in the stable states .

When the above mechanism comes into play through the onset of fluctuational
transitions, the amplitude of the periodic signal increases with increasing noise
intensity, in a certain range of D, and the SNR increases with D, too. It works,
provided (i) the stationary populations of the states in the absence of the periodic
force are nearly equal to each other [3], and (ii) the frequency of the force 1s
much smaller than the reciprocal relaxation time ¢;* of the system, so that the
transitions are likely to occur within the period 27 /().

The frequency-selective response of bistable systems, and also the fact that
the SNR increases with increasing noise intensity, makes it interesting to apply
the idea of SR to heterodyning so as to obtain a form of the phenomenon that is
enhanced rather than suppressed by noise. In heterodyning, two high-frequency
fields, one of them a signal and the other a reference field, are mixed nonlinearly
to generate a signal at a difference frequency. In this paper we report and discuss
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a new form of the phenomenon, noise-enhanced heterodyning (NEH), that occurs
in bistable systems and is highly frequency selective. We have investigated it
theoretically and by analogue electronic simulation.

We shall illustrate the effect on a model of an overdamped bistable system
"driven by three time-dependent forces representing respectively the reference and
input signals, and the noise. The motion of the system is described by the equation

4(11_: = —U'(z) + Ares cos wot + Ain(t) cos[wot + ()] + f(¢) (1)

Here, the term o Ay is the reference signal of a given frequency wo (the corre-
sponding force is applied multiplicatively), and the term o A;n(2) is the modulated
high-frequency input signal (applied additively). The functions Aia(t) and ¢(¢)
are slowly varying as compared with coswot, and it is their variation in time that
has to be revealed via heterodyning. The heterodyning can be characterized by
the low-frequency signal at the output, z(t), for A, = const and ¢ = Q¢+ const,
with Q < wp, i.e., for a monochromatic input signal with the frequency wp + 2
slightly different from the frequency wo.

We shall assume that the double-well potential of the system U(z) has equally-
deep wells, corresponding to standard SR, and is of the form

U(z) = —%zz + %z‘ (2)
The minima of the potential (2) (the stable states of the system) lie at z, =
(=1)", n = 1,2, and the characteristic (dimensionless) relaxation time of the
system t, = 1/U"(z,) = 1/2. The analysis of heterodyning in bistable systems is
not limited to the particular form of Eqgs.(1),(2). However, the explicit expressions
take on a simple form for this model. They are further simplified in the case
where the frequencies of the input and reference signals are high compared with
the reciprocal relaxation time of the system, wo 3> t;!.

The term f(t) in (1) is a zero-mean Gaussian noise. In view of the possible
applications we will allow for noise that consists of two independent components,
of low and high frequency respectively, with the latter being randomly modulated
vibrations at frequency wo (which might result from the scattering of the signal

at frequency wy):

F&) = fuy@® + fag(®),  Fos(®) = Re (us(t) exp(—iwat)) , 3)
The power spectrum of the low-frequency noise fis(t) is assumed to be flat up to
w ~ we > 7! (w. may be small compared to wo).
For wp 3> t! the motion of the system consists of fast oscillations at frequency
wp (and its overtones) superimposed on a slower motion. To first order in wg ! the
equation for the smooth part of the coordinate, z(™)_ is of the form

A—":Ai..(t) (a)

6™ = —U'(z™) + A(t)sin g(t) + FO(t), A(t) = 57
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where fO(t) = fis(t) — (Aret/2wo)Imfis(t) is the noise which, in view of the above
comments, will be assumed white
(its correlation time ~ w;! <

8 L B L B IR AL t,). The noise intensity D is com-
- 3 r_r| T x 2 ] posed of a weighted sum of low
6f 3} Etgm it . and high frequency contributions.
- i [? 0o ) g - The dynamics of the sys-
o4t 4 (ﬁ” - tem described by Eqgs.(2), (4), for
| ‘E] 7 2.0 _ A(t), ¢(t) varying slowly over the
ol @ [? ¥+ oo % o & o time ¢,, has been investigated in
[Zb‘b detail in the context of stochastic
_& L | resonance. For sufficiently small
8' 0.05 0 1 0 15 0.2 0 o5 A the general analysis of the re-
D sponse can be done in terms of

linear-response theory [3]. In the
particular case of a monochro-
matic force of frequency (1, i.e.,
A(t) sin ¢(t) = Asin (2, a é-shap-
ed spike arises in the power spectrum of the coordinate z¢™ at w = Q on top of
the broad spectrum.

As in standard stochastic resonance, NEH can be characterized by the ratio
R of the intensity (area) of this spike (which is just proportional to the squared
amplitude of forced vibrations at frequency 2) to the value of the power spectrum
at the same frequency for A =0

Fig.1 NEH for white (circles) and high-
frequency (boxes) noise. The dashed and
dotted lines are theory.

A¥(zy — 1)* W2 + QH2D?
16D? W+ Q2D ’
Eq.(5) was shown in [4] to hold for arbitrary Q/W (W o exp(—AU/D) is the
probability of the interwell transitions) to lowest order in (¢, Dt,W/D<1. It
follows from (5) (and also from the more general expression for the SNR) that,
in the range of the noise intensities where QDt, & W X t71, the SNR increases
with increasing noise intensity. The fact that this increase is quite sharp - nearly
exponential - means that noise-enhanced heterodyning would be expected to arise
in a bistable system, whether driven by a low- or a high-frequency noise (or both).
The onset of NEH has been investigated experimentally by means of ana-
log electronic simulation. The design will be discussed elsewhere. In Fig.1 the
experimentally measured values of the heterodyne SNR are compared with the
theoretical predictions for low- and high-frequency noises. It is clearly seen that,
in both cases, there is an interval of noise intensities where the SNR sharply
increases with D. Below and above this interval the SNR decreases with increas-
ing noise intensity. The experimental data are in satisfactory agreement with the
linear-response theory; we note that the latter does not contain any adjustable pa-
rameters (we have used an expression [4] that allows for the corrections ~ D/AU

R=mn

D=4D/(z; — z,)72. (5)
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omitted in (5)). It has been shown experimentally that R is proportional to the

squared amplitudes of the reference and input signals, and also that R o wg? over

a broad range of wp up to wy =
2t7! as shown in Fig.2.

30 ot 7T T Of particular interest is the
Ly o - dependence of the SNR on the
ioig modulation frequency Q. It fol-
20_".“3 1 lows from (5) that in the inter-
o Ly =0 - esting range where R sharply in-
\m ""'.90 creases with noise intensity, i.e.

101 D x..'éQ"Q-Q 7 in the range D < AU, R also
. B ‘Q-O.Q,Q"Ono_"—. * increases quite sharply with £,

ol 1 | 19 R By from the val.ue that corresponds
0 2 4 6 8 10 to the SNR in the neglect of the
w? intrawell motion, R = Ry, =

x A*W/4DD for very small Q, up
to the value that corresponds to
the SNR in the neglect of the in-
terwell transitions, R ~ n A%/4D.
As in the case of SR [2], a simple
way to avoid frequency dispersion
is to apply two-state filtering where the quantities of interest are the values of the
coordinate coarse-grained over the vicinities of the stable states. For ! <« ¢! the
value of the SNR at the output of a two-state filter is given approximately by Rp.

In conclusion, we have demonstrated, theoretically and experimentally, that
bistable systems can be used to obtain heterodyning in which not only the ampli-
tude of the signal at the output, but also the signal-to-noise ratio increases with
increasing intensity of the noise.
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Fig.2 NEH dependence on the squared fre-
quency of the reference signal for {2 = 0.0031
with noise intensities D=0.015 (circles) and
D=0.14 (boxes). The dashed and dotted

lines o< 1/wd.

REFERENCES

1. R. Benzi, A. Sutera and A. Vulpiani, J. Phys. A 14, L453 (1981); C. Nicolis,
Tellus 34, 1 (1982); R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, Tellus
34, 10 (1982). .

2. Special issue of J. Stat. Phys. 70, no. 1/2 (1993).

3. M.I. Dykman, R. Mannella, P.V.E. McClintock, and N.G. Stocks, JETP
Lett. 52, 141 (1990).

4. M.I. Dykman, R. Mannella, P.V.E. McClintock, and N.G. Stocks, Phys.
Rev. Lett. 68, 2985 (1992).



