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The kinetics of a periodically driven nonlinear oscillator, bistable in a nearly resonant field, has
been investigated theoretically and through analog experiments. An activation dependence of the
probabilities of fluctuational transitions between the coexisting attractors has been observed, and
the activation energies of the transitions have been calculated and measured for a wide range of
parameters. The position of the kinetic phase transition (KPT), at which the populations of the
attractors are equal, has been established. A range of critical phenomena is shown to arise in the
vicinity of the KPT including, in particular, the appearance of a supernarrow peak in the spectral
density of the fluctuations, and the occurrence of high-frequency stochastic resonance (HFSR). The
experimental measurements of the transition probabilities, the KPT line, the multipeaked spectral
densities, the strength of the supernarrow spectral peak, and the HFSR effect are shown to be in

good agreement with the theoretical predictions.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Bistable systems are characterized both by local relax-
ation times t,;,t,; about their stable states 7,j, and by

reciprocal ¢ — j transition probabilities W;l between
them. Provided that
Wijt”-, Wiitr; <1 (1)
the concept of bistability is meaningful, because a system
will then spend most of the time fluctuating about one or
other of the stable states. If its parameters pass through
the range of bistability in a time much less than Wigl,
the system will display hysteresis: it will tend to remain
within one or the other of the stable states, depending
on the prior history. For fixed system parameters, how-
ever, over times ~ Wl-;l a stationary distribution over the
stable states is built up and the system “forgets” which
of the stable states was occupied initially.
The transition probabilities of thermal equilibrium sys-
tems are usually given by the Arrhenius law, W

*Permanent address: Research Institute for Metrological
Service, 117965 Moscow, Russia.

tPresent address: Department of Engineering, University of
Warwick, Coventry, CV47AL, United Kingdom.

1063-651X/94/49(2)/1198(18)/%06.00 49

exp(—E,/T), where T is the temperature and E, is the
characteristic activation energy of the transition; in the
case of a Brownian particle the quantity E, is simply
the depth of the potential well from which the particle
escapes [1]. For nonequilibrium systems, however, the
calculation of the transition probabilities is a nontrivial
problem. A rather general approach to its solution has
been proposed for dynamical systems driven by exter-
nal Gaussian noise (see [2] for a review). In this case
W  exp(—R/a), where a is the noise intensity, while R
is given by the solution of a certain variational problem.
In the general case of a bistable system, the character-
istic activation energies R; and R, for the transitions 1
— 2 and 2 — 1 differ from one another. Consequently,
for sufficiently weak noise, i.e., for small o [when (1) is
fulfilled and in addition W is much smaller than the re-
ciprocal correlation time of the noise], Wiz and Wy, differ
exponentially. So also do the stationary populations w;
and wo of the stable states,
wy = W wy = Wiz ) (2)
Wiz + Wy’ Wiz + W2y
For most parameter values, the ratio w; /w2 is either ex-
ponentially small (for R — R; > a) or large (for Ry —
R> > a) and the system occupies with an overwhelming
probability the state 2 or 1, respectively. Only within a
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very narrow range of parameters where |R; — Ry| ~ a are
the populations w; and w, of the same order of magni-
tude. In this range a kinetic phase transition occurs: as
we discuss below, the behavior of a noise-driven dynami-
cal system is to some extent analogous to that of a ther-
modynamic system with coexisting phases (e.g., liquid-
vapor) within the range of its first-order phase transition,
where both phases are well manifested (with comparable
molar volumes, for example).

A well-known signature of systems experiencing phase
transitions is the strong associated increase of fluctua-
tions. It is quite natural to expect that the large oc-
casional fluctuations between stable states (the analog
of the fluctuational creation of macrobubbles in a liquid-
vapor system) will give rise to intense and extremely nar-
row (with a width ~ W) peaks in the susceptibility of the
system and in the spectral density of fluctuations (SDF)
[3]. For a Brownian particle fluctuating in a symmet-
ric double-well potential (that is, exactly at the phase-
transition point, w; = wy), the corresponding peak in
the SDF at zero frequency has already been observed
[4]. The exponentially fast broadening of this peak with
increasing noise intensity gives rise [5] to low-frequency
stochastic resonance [6-8], i.e., to the increase with in-
creasing noise of the signal and the signal-to-noise ratio
in a system driven by a low-frequency periodic force.

An important class of bistable systems is those that
display bistability when driven by an intense peri-
odic field, but which are monostable otherwise. (Note
that some such systems may also display multistability,
and/or dynamical chaos, when subjected to even stronger
periodic fields.) A variety of them are investigated in, for
example, nonlinear optics (in relation to optical bistabil-
ity, see [9]). The different stable states here correspond
to periodic attractors with differing amplitudes, phases
(and sometimes frequencies) of constrained vibrations.
One well-known example [10] of such a system, the single-
well Duffing oscillator driven by a nearly resonant field, is
interesting not only as an archetypal model for the inves-
tigation of a periodic-field induced bistability, but also
because it refers directly to a peculiar and interesting
physical system, a relativistic electron trapped in a mag-
netic field and excited by resonant cyclotron radiation
[11].

In addition to its markedly nonequilibrium charac-
ter, which provides a good test for theories of fluctua-
tional transitions in thermally nonequilibrium systems,
the model also enables one to investigate specific phe-
nomena arising in systems with coexisting states of forced
vibration within the range of the kinetic phase transition.
Since there is a special frequency in such systems, namely,
the frequency of the external field wg, the fluctuational
transitions between the stable states should modulate the
response of the system at frequency wpg: extremely tall
and narrow spectral peaks near wg are therefore to be ex-
pected, both in the susceptibility [2] and in the SDF [12].
Such supernarrow spectral peaks have been observed in
an electronic analog experiment [13]. Because the widths
of such peaks increase extremely rapidly (exponentially)
with noise intensity, it is to be anticipated that the signal-
to-noise ratio for a signal at a frequency close to wr will

also increase with increasing noise intensity, i.e., that
there will be a manifestation of high-frequency stochastic
resonance (HFSR).

In the present paper we present detailed results of our
investigation of the features of the SDF in a periodically
driven system, including the onset of a supernarrow spec-
tral peak in the region of the kinetic phase transition. In
Sec. II the theory of kinetic phenomena for a periodi-
cally driven oscillator is given, including the results of
a numerical calculation of the “activation energies” of
the fluctuational transitions and explicit expressions for
the spectral density of fluctuations and for the general-
ized susceptibilities. In Sec. III the experimental simu-
lation of the oscillator by an analog electronic circuit is
described. In Sec. IV the theoretical and experimental
results are compared with each other, and the critical
phenomena, the onset of the supernarrow spectral peak
and of the high-frequency stochastic resonance, are dis-
cussed. Section V contains concluding remarks.

II. THEORY OF THE SPECTRAL DENSITY
OF FLUCTUATIONS OF AN OSCILLATOR
BISTABLE IN A PERIODIC FIELD

A. Model

In this section we explore the behavior of a nonlinear
oscillator subject to the combined influences of a peri-
odic field Fcoswpt and a weak random force f(t). The
equation of motion of the particular oscillator considered
(single-well Duffing oscillator) is

§ + 2T¢ + wiq + v¢* = Fcoswpt + f(t). (3)

The oscillator is assumed underdamped and the periodic
field nearly resonant

T, |dw| € wr, dw=wp —wp . (4)
A characteristic amplitude of vibration for which the os-
cillator will obviously be strongly nonlinear, the nonlin-
ear length [,,, is determined by the condition that the
nonlinear term <yg> in (3) should be as large as the lin-

ear one, so that I, = (w2/|y|)2. If the amplitude F of
the periodic force is sufficiently large that vibrations of
amplitude a ~ [, are excited, then the oscillator (3) in,
the absence of the random force f(t) is known [14] to
display deterministic chaotic phenomena (see also [15]),
with the boundaries of the domains of attraction to var-
ious attractors often being fractal [16].

In the case of an underdamped oscillator, strong non-
linear effects can also arise for much smaller values of F,
for which the vibration amplitudes a are correspondingly
much less than [, [10]. This is because the eigenfrequency
of the vibrations of a nonlinear oscillator depends on their
amplitude weg = w(a) and it is the interrelation between
the detuning of the field with respect to the eigenfre-
quency and the damping |wr — w(a)|/T that determines
the strength of the response. For small I', the latter ra-
tio can vary markedly with a, even while a <« [,,, and
it is this feature that can give rise to the coexistence of
different stable solutions for the amplitude a. We may
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note that, for a < [, the vibrational amplitudes at the
overtones are ~ a®/lI2 < a, and dynamical chaotic phe-
nomena do not occur. Because the noise intensities to be
considered here are relatively weak, the system seldom
strays far from the attractors and practically never goes
as far as [,,; the probability of finding it there is exponen-
tially small compared to the probabilities of transitions.

Under conditions for which |y|{g?) < w%, the motion
of the oscillator consists of relatively fast oscillations with
slowly varying amplitude and phase. The characteristic
scale for these variations is determined by the friction
coefficient I' and the detuning dw of the field frequency
wp with respect to the oscillator eigenfrequency wy: the
characteristic scale for the coordinate ¢ is |v/wrdw| 2.
In describing the “slow” motion it is convenient, in the
spirit of a standard averaging method (cf. [17]) to trans-
form to the rotating frame. We thus change from gq,q
to the complex dimensionless envelopes u,u* and the di-
mensionless time T,

1

2wF|6w|> 2 iwpt * —iwpt

g= | —— ue +uteFY)
( 31 ( )

2wrldw\? .
q=1iwp (———ngle) (ue“"” — u*e‘“"‘t) , (5)

T = |dwl|t.

The equation of motion in terms of the variable u follow-
ing from (3) - (5) takes the form

du -
W= w s afl), (6)
v = v(w,ut) = —nu + wu(u® -1) - i3,
where
_ _ 3y F?
n = F/Ju, B = W (7)

are, respectively, the reduced damping coefficient and the
dimensionless field intensity. Equations (7) as written
correspond to the particular case

dw > 0, v>0. (8)
The generalization to the case where the signs of w and ~
are arbitrary is straightforward. We note that bistability
can occur only for ydw > 0; simultaneous change in the
signs of v and dw will result in mirror reflection of the
spectra considered below with respect to wp.

The random force f(T) appearing in (6) is proportional

to f(t) in (3),

o) = =i (qugry) owcierse O

and, if f(t) is Gaussian white noise of characteristic in-
tensity B such that

(F(t) F(¢)) = 2TBS(t —¢) (10)

then f(T) is asymptotically a two-component white noise,

FOFE) = F @) = o,

(F(O () = 4ad(r - 7") (11)
3B

7 T6wil

The correlator (Ref(7)Imf(r')) is fast oscillating; the
slow variables u,u” therefore perceive the components
Ref(7),Imf(7) as independent white noises of equal in-
tensity, which is why the correlators (f(T)f(T’)) and
(f*(r)f*(7")) are set equal to zero in (11). We also
note that the relations (11) can be asymptotically ful-
filled even where the initial noise f(t) is not § correlated;
it suffices that its correlation time is small as compared
with the “slow” process times |dw|™,T'"! (but not nec-
essarily as compared with wz' [3]).

The dynamics of the system (6) depends on the values
of the three dimensionless parameters involved: 7, 3, and
a. We shall assume the noise to be weak, so that

aLl1. (12)

To zeroth order in f(7), Eq. (6) describes the au-
tonomous motion (note that we consider it in the {rame
rotating with the frequency of the external field) of a
system with one degree of freedom and, correspondingly,
with two dynamical variables u and u* (or Reu and Imu).
The stationary solutions of the equation du/dT = v give,
in accordance with (5), the states of steady forced vibra-
tion of the oscillator. The values of the complex envelope
u in the steady states follow from the relation v = 0 and
are given by

U; = \/B(|uj|2 -1+ in)glv ¢(lu1|2) =0,
olz) = :I:(a:—l)2 + n*z -3, (13)

where j enumerates the real roots of the cubic equation
(13) and can take on the value 1, 2, or 3. Equation (13)
is readily interpreted. As a result of nonlinearity, the
frequency of the eigenvibrations of the oscillator depends
on their amplitude a as

3
wla) ~ wo + g'yaz/wo.
On substitution of this expression into the well-known

expression for the amplitude of the forced vibrations of
a linear damped oscillator of frequency w(a)

a2 == F2
Wh — WP@))? + Wil
with account taken of  the relation a?
= %|ul*wp|éw|/|7|, which follows immediately from (5),
one simply obtains the cubic equation

o(Jul’) = 0.

In the parameter range where this equation has three real
roots, the oscillator is bistable: the forced vibrations with
the smallest [j = 1 in (13)] and the largest (j = 2) ampli-
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tudes are stable; there is also the unstable steady state j
= 3 with an intermediate value of |u;|? o a2. The phase
of the stable forced vibrations is determmed by the argu-
ment of u; in (13). The range of 3,7 for which (13) has
three solutions, and thus bistability occurs, corresponds
to the approximately triangular region bounded by the
full curves HB )( ) of Fig. 1, i.e., the bifurcation curves.

Thus, as the amplitude of the periodic force is gradu-
ally increased from a small value at fixed frequency (see,
e.g., the vertical line a — a’ in Fig. 1), the system moves
from monostability (one small limit cycle), to bistabil-
ity (two possible limit cycles of different amplitude), and
then back again to monostability (one large limit cycle).
Some analogy can be drawn between the bistability and
the liquid-gas coexistence region of a van der Waals sys-
tem. As the spinode point, which corresponds to the van
der Waals critical point, is approached, the two stable
(and one unstable) solutions of (13), and, correspond-
ingly, the amplitudes of the large and small limit cycles
(liquid and gaseous phases) approach each other, to be-
come indistinguishable at the spinode (critical point) it-
self. Consequently, just as in the van der Waals case, it is
possible to move quasistatically from an initial state that
is a small limit cycle (gaseous state) to a final state that is
a large limit cycle (liquid state) without undergoing the
analog of a first-order phase transition or passing through
a mixed-phase coexistence region: all that is necessary is
to take a route through the parameter space that passes
outside the spinode (the critical point).

The above analysis makes sense provided that the
basins of attraction are smooth and regular throughout
the region of phase space likely to be visited by the sys-
tem. The basins have been computed within the bistable
regime (see Fig. 1) in the absence of noise and are shown
as Poincaré sections (values of ¢, q for t = 27rnw;1 + ¢o)
in Fig. 2. We emphasize that the data in Fig. 2 refer to

T T T
0.3 spinode
-7 point
ﬁ monostable o
{large) s
0.2+ a =y N
T KPT line
bistable | .-
P’
01 p‘l,’ 4
Clp monostable
R4 {small)
/ a
0 1 1 1
0 01 0.2 03 04
,-]2
FIG. 1. Phase diagram for the system (3) in terms of the

reduced parameters (7). Within the approximately triangu-
lar region enclosed by the full lines, the system is bistable,
with two possible stable limit cycles of different amplitude
and phase relative to the periodic driving force. Outside this
region, the system is monostable. The dashed line represents
the calculated position of the kinetic phase transition. The
cuts a-a’ and p’-p-p” are discussed in the text.

the initial oscillator described by (3) with f(t) = 0. In
addition to the dimensionless parameters 7, 3, this sys-
tem is characterized by the parameter I'/wp which, in the
present case, was set as I'/wp = 0.0184. The results were
obtained by the usual “grid of starts” method [15], allow-
ing the system to evolve from different starting points in
the (¢, q) phase space and noting in each case the attrac-
tor to which it was drawn. Thus all starts in white areas
lead to the large amplitude attractor (the solid circle in
the white area) and all starts in black areas lead to the
small amplitude attractor (the solid circle in the black
area). Figure 2 shows the evolution of the basins with
increasing (3 for fixed n as Poincaré sections for the same
phase. It is intuitively reasonable that the black basin
(for the small amplitude attractor) should be dominant
at small G, just within the region of bistability. As 8
increases, the white basin (for the large amplitude at-
tractor) grows until the central regions of the two basins
have become equal in area. With further increase of 38
the black basin continues to shrink, finally disappearing
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FIG. 2. The evolution of the basins of attraction for (3),

computed for 7 = 0.072 in Poincaré section with the same
phase as that of the driving field. The white regions show
the basin of attraction for the large amplitude attractor and
the black regions show the basin for the small one; each at-
tractor is indicated by a e. The values of g3, first left-to-right,
then top-to-bottom, were 0.0709, 0.0811, 0.0913, 0.102, 0.112,
0.122, 0.132, 0.143, 0.153, and 0.163.
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at the upper boundary (Fig. 1) of the bistable region.

The most important feature of Fig. 2 for present pur-
poses is that it confirms the basins to be (within the range
and resolution of the computations) simple, smooth, and
regular, as already stated above. The shapes and po-
sitions of the attractors are close to those given by the
approximate equations of motion (6) in the absence of
noise; we note that the latter equations do not display
chaos or fractal boundaries. Because we are interested in
the regime of weak noise intensity for which the system
only makes occasional transitions between the attractors,
we can be confident that it spends almost all of its time
in the close vicinity of either one or other of them and
that the probability of fluctuations carrying it out to re-
gions of phase space where the basins might be irregular
or fractal (far beyond the range plotted in Fig. 2) is
exponentially small.

Finally in this section, we draw attention to the impor-
tance of a slightly different model, closely related to (3),
that is likely to be more easily realized in experiments
on systems excited by laser radiation with a randomly
varying amplitude:

G+ 20g + wiq +v¢* = [F + f(t)] coswpt. (14)

The significance of (14) arises because of the very high
value of the driving frequencies wp in optical experi-
ments, which means that external noise f(t) introduced
from a conventional noise generator will in practice be far
from white; indeed the cutoff frequency of the generator
is likely to be much smaller than wg.

Nevertheless, transforming (14) to the rotating frame
again gives Eq. (6), except that the noise is now given
by

TR 3 2
flr)= —3 (W) f(t)

plus a term which varies as f(t) exp(2iwt). The limited
spectral width of f(t) that we have assumed implies that
this term will only have a very small effect on the equa-
tion of motion of the slow variable u(t). It is the high-
frequency components of the noise that determine the
random dynamics of a nearly-resonantly-driven under-
damped nonlinear oscillator; the components of the noise
with frequencies far from wq are filtered out. In contrast
to f(7) (9), the new f(7) has correlator

(FOF(h)y = (F () () = —ad(r = 7)
(F()f* (7)) = ad(r = 7')

i.e., instead of two independent components, the new
f(7) has only one. Nonetheless, the analysis presented
below can be easily extended to give similar results for
the system (14). Modulation of the periodic driving force
by noise has pushed the effect of low-frequency noise into
the high-frequency range.

B. Transition probabilities
and the spectral density of fluctuations

The most obvious effects of noise on the behavior of the
oscillator are, first, the onset of fluctuations about the

stable states and, second, the occurrence of fluctuation-
induced transitions between the states. Provided that
the noise is weak, in accordance with (12), the system
will spend most of its time in the close vicinity of one
of the stable states: only very rarely will a sufficiently
large fluctuation occur to cause a transition to the other
stable state. The dependences of the probabilities W;; of
the transitions on the characteristic noise intensity are of
the activation type:

Wi; = const x exp(—R;/a) . (15)

The activation energy R; for the transition from state iis
given by the solution of a variational problem: the cor-
responding variational equations and the algorithm for
their numerical solution are discussed in the Appendix.
The resultant dependences of R; on [ for the lower (¢
= 1) and higher (: = 2) amplitudes of the forced vi-
brations in the limit of small reduced damping 7 were
considered in [3]. Numerical results for four values of 7
are shown by the circles in Figs. 3(a)-3(d). It is evi-
dent that R; decreases and R, increases monotonically
with increasing 3, i.e., with the characteristic resonant
field intensity. For the values of 3 corresponding to the
upper and lower bifurcation lines ﬂg‘z) in Fig. 1, R,
and R, respectively vanish (as the states 1 and 2 coa-
lesce with the saddle point and then disappear). The
dependence of R; on 3 for 3 close to ﬁg)(ﬂ) is univer-
sal, R; = G;(n)|8 — ,Bg)(n)|3/2, and is shown by the full
lines. [The explicit form of G; has been considered ear-
lier; cf. [3(b)].] The numerical and asymptotic results are
in good agreement for not too small 7, where the optimal
path of the escape [in the rotating frame (5): see the Ap-
pendix] is not a small-step spiral. For small 5, however,
the numerical algorithm is not accurate enough and re-
sults in the discrepancies seen in Fig. 3(a); as discussed
in the Appendix, the data in this range can better be
obtained in a different way. The dependence of R; ; on
the frequency detuning 7 for 3 lying in the central part of
the interval [,Bg) (n), 61(32) (n)] is rather sharp, especially at
small 7 where [3] R, » o 71, As n approaches its critical
value (the spinode point in Fig. 1) given by

1]};1 = V3, fx = 8/27,

the values of R; » decrease rapidly (3], as (n— 1K )?. Here
too the numerical and analytic results are in good agree-
ment. It is evident that, as  approaches 7k, the range
of 3 over which R; is well described by the asymptotic

law |8 — ﬁg)(n)|3/2 increases relative to the total range
of bistability I,B(;)(n) - ﬂ(Bl)(n)|. Qualitatively, this is
related to the fact that the optimal path of the escape
is approaching a straight line on the (Reu,Imu) and it
becomes nearly straight for all 3,7 close to the spinode
point.

The analytic and calculated values of R; and R; allow
us to plot on Fig. 1 the dashed curve Bo(n) specify-
ing the points at which the activation energies are equal,
closely approximating the line of the kinetic phase tran-
sition (KPT) at which the populations are equal,

Ri(B.m) = Ra(B,m), B = Bo(n). (16)
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[Note that the criterion R; = R, differs from w; = w»
only by virtue of variations in the prefactor ~ a in (15);
the criteria become identical as « — 0.] For parame-
ter values far from this curve, the transition probabilities
Wiz and Wy, are seen from (15) to differ exponentially
strongly. Correspondingly, the stationary populations
ws, we of the states as given by (2) are also exponentially
different,

wy/wy o exp[(R1 — Rz)/q] .

Only in the close vicinity of the 8y(n) curve will the tran-
sition probabilities and stationary populations be com-
parable and it is here, therefore, that one may expect to
observe the characteristic steady-state fluctuation phe-
nomena associated with transitions between the attrac-
tors; we do not consider here the transient fluctuation
effects that arise when, for example, the parameters are
swept through the bifurcation lines in Fig. 1.

A revealing characteristic property of a fluctuating sys-
tem is its spectral density of fluctuations. The SDF of
the coordinate of a periodically driven oscillator Q(w) is
given by
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Qw) = 1 Re /:0 dt exp(iwt)Q(t) ,

™

T
G = Jim 55 [ dr lat+7) ~ falt + 7))

x[g(7) = {a(1))] -
(17)

We note that a periodically driven system is in general
nonergodic, so that Q(t) is not equal to the time corre-
lation function

(la(t +7) = {g(t + 7)Ila(r) = (g()]) ,

defined in terms of ensemble averaging (); in fact, the
latter quantity oscillates with 7 at frequency wp, as can
be seen from (5) and (6); Q(t) actually corresponds to
this quantity smoothed over 7.

The ensemble-averaged value of the coordinate (g(t))
is equal to the value of ¢(t) averaged over equal instants
of time modulo 27 /wp,
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Calculated activation energies R; for transitions between the coexisting periodic attractors of (3), as functions of

B for (a) n® = 0.033, (b) #* = 0.100, (c) 72 = 0.200, and (d) n* = 0.333. The circle data points were obtained by minimization
of the action integral R; in Eq. (A1); the curves are derived from analytic expansions [3(b)] around the relevant bifurcation
points. In each case, the falling data and curve represent R; and the rising data and curve represent R,.
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N-1
— 1 -1 -1
{q(t)) = A}me N 2 q(t + 2mnwgp’).
In the case of weak noise, two principal contributions to
Q(w) can be identified [12,18]. The first of these arises
from small fluctuations about the stable states. It is
equal to the sum over the states j of the corresponding
partial SDFs, Q;(w), weighted by the state populations
w; given by (2) (cf. also [19]). The second contribu-
tion Q¢ (w) comes from the (relatively infrequent) fluc-
tuational transitions between the states. Thus (cf. [5])

Qj(w) =

Q) = Y wiQi(w) + Qu(w). (18)
J

To calculate the partial SDF, Q;(w), for the state j when
the noise intensity « is small, it suffices to linearize the v
term on the right hand side of (6) with respect to small
deviations in (u—u;), (u* —uj}), to substitute the solution
of the resultant linear equations into (17), taking due
account of (5), and to perform averaging. The result is
of the form

dwpal? (w —wp)? +2(w —wp)Tn 71 (2] — 1) + T2 (12 + 27 2|u,|*)

3ly|m

vi =1+ 5 2@3u;|* = 1)(Ju|* — 1),

where |u;|? for j = 1,2 is given by Eq. (13). It is evident
from (19) that Q;(w) is peaked near the frequency wp
of the external field. Its intensity will be proportional to
the noise intensity. The shape of Q;(w) will be discussed
in Sec. IV.

The second term in (18), Q. (w), can readily be calcu-
lated if one notes that the populations w; of the stable
states fluctuate in time with a characteristic relaxation
time (Wi + Wz1)V1-, so that

@jt(i) = = (Wi + Wa)wi(t) + Wy
wa(t) = 1 —wi(t). 20

[The values of w; appearing in (2) and (18) correspond
to the stationary solutions of (20).] In the case of weak
noise, these fluctuations can be shown [12] to result in a
contribution to Q(w) of

2 —
MKW) — (uz)|Pwiws

Qulw) = 37|

» Wiz + Way
(Wiz + War)? + (w — wr)?

(21)

Here (u); denotes the ensemble average value of v in the
state j. In the zero noise limit (u); is simply u;. For the
purposes of comparison with experiments performed at
finite noise intensity, (u); can be expanded as a pertur-
bation series in the small parameter a. To first order we
obtain

(u); = u; + (duy)
2au;

34
v

(Ouj) = { nl2n* + 3Juy|* — 6lu;[* + 2]

—(3lu;|* — 2)(n* + 2Ju;|* = 3lu;|* + 1)}

We note that the spectral peak Qi (w) is extremely nar-
row: its width is determined by the transition probabil-
ities, so that it is exponentially small and much smaller

(w—wp)? - 1121/]2]2 —+

a2 (w — wp)? ’

(19)

r

than the damping parameter I which determines the “dy-
namical” relaxation of the oscillator towards either of
its stable states. The product wiw,, which determines
the intensity of Q¢,(w), can be seen from (2) and (15)
to be exponentially small for almost all values of 3,7,
with the exception of those within the very narrow range
(the phase-transition region) where w; ~ wy ~ 1. Thus
the onset of the fluctuational transition-induced spectral
peak Qi (w) is a specific phase-transition phenomenon
(see Sec. IV).

C. The susceptibility
and the high-frequency stochastic resonance

The effect of a weak trial periodic force on thermal
equilibrium systems is the onset of vibrations at the
frequency of the force; their amplitude is characterized
by a susceptibility, which can be expressed in terms of
the SDF via the fluctuation dissipation theorem [20]. If
the system is being driven by a strong periodic force
Fcoswpt, so that it is far from thermal equilibrium, the
additional weak force A exp(—i£2t) gives rise to vibrations
not only at its own frequency €2, but also at combination
frequencies |Q £ wr|, | £ 2wp|, ....

We shall consider the linear response of the bistable
oscillator to a nearly resonant trial force with a frequency
Q close to wo.wr:

|Q —wol|, |N—wp| Kwp.

In this case, a strong response is to be expected. It will be
most pronounced at the frequency  and at the nearest
resonant combination frequency, which is 2wp — Q. Thus
one can seek the trial force-induced modification of the
ensemble-averaged coordinate ¢ in the form

3(g(t)) =~ x()A exp(—idt)
+ X(Q)A exp[i(2wp — Q)t] . (22)

That is, we may suppose that the linear response is char-
acterized by two coefficients (generalized susceptibilities)
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x(92) and X (2). The absorption (amplification) of the
trial field is characterized by Imy(f2). It was shown in
[3] that, in the vicinity of the KPT, interesting features
occur in the absorption spectrum.

To calculate the susceptibilities we transform to the
slow variables u, u* (5) in the equation of motion (3) with
the additional force A exp(—:£2t) added to the right hand
side. The resultant equations for u,u* take the form

Z—: = v(u,u®) + nf(r),

W= vt + oft(n) + i), (23)
- B 3|9 3 —i(Q —wp)T

Alr) = [sug,qswp] Aexp[ 8] ]

It is evident from (23) how the second term in (22) arises:
it is due to the addition « exp[—i(Q — wp)t] to u, which
is then multiplied by exp(iwpt) when g(t) is calculated
in (5).

If the random force f (1) is weak, the main effects of
the additional term oc A(7) in (23) are (i) to cause small
amplitude periodic vibrations of u,u* about their stable
values uj,u} and (ii) via the change in the probabilities
of fluctuational transitions to modulate periodically the
populations of the stable states. These effects give rise
to expressions for the generalized susceptibilities of the
form

x(Q) = ijXj(Q) + xa(9),

X(Q) = ijXj(Q) + Xu(Q), (24)

where x;, X; are the partial susceptibilities related to
the corresponding vibrations about the stable states and
Xtr, Xtr are related to the trial force-induced redistribu-
tion over the states.

The partial susceptibilities can readily be calculated
by linearizing (23) near the stable states, yielding

i D—i(Q—wp) —i(2u;|* — 1) (wr — wo)
xi (@) = 2wr I‘ZVJ? —2IN(Q - wp) — (- wp)?
X;@) = ylur = wo)

2wp T207 - 2i0(Q — wr) — (= wp)?
(25)

The effective modulation of the transition probabilities
by the trial field A, which gives rise to the second term
on the right hand side of each of Eq. (24), arises when
its frequency 2 is very close to wg, so that

Q—wp| € T, |wr —wol .

In this case, the trial field smoothly raises and lowers the
effective “barrier” between the stable states with the pe-

riod 27 /|Q — wr|, so that the activation energies R, R;
of the fluctuational transitions vary periodically in time
[3]. The corresponding additions to R; are given in the
Appendix. In turn, they give rise to periodic additions
to the transition probabilities W;; (15) and hence to the
populations w; of the stable states (20). The final ex-
pression for the redistribution-induced additions to the
generalized susceptibilities is

Xl @) = gt - ) (252
i(Q-wp) 17"
x [1_W12+V521] ’
Xtr(Q) = <U)1 — <u>2 Xtr(Q) ’ (26)

()i - (w);

w = VB (52)-

It is evident from (26) that the susceptibilities
Xtr (), X4 () are large only within the range of parame-
ters 3,17, close to the kinetic phase transition, where the
populations wy,wy of the stable states are of the same
order of magnitude. The characteristic range of the fre-
quency 2 of the trial field within which these suscepti-
bilities are large is determined by the transition proba-
bilities. Consequently, it increases exponentially with in-
creasing noise intensity (cf. [12]). This property gives
rise to stochastic resonance [8], i.e., to an increase of
the signal-to-noise ratio (SNR) with increasing noise [21]
which, as shown below, occurs in the present system for
a high-frequency signal 2 ~ wr > I'. To calculate the
SNR, we note from (22) that the signal induced by a real
field AcosQt is given by

5a(t)) = ARe{ x(R)exp (i)

+ X (Q)exp [i(2wp — Q)t]} . (27)

Such a signal corresponds to the appearance of §-shaped
spikes in the power spectrum of the oscillator at frequen-
cies 2 and (2wp — ). This can be seen from (17) if (27)
is added to g(t),q(t + 7) but not to (g()). [The latter
quantity is included in (17) to subtract the § function in
Q(w) at the frequency wr of the strong field.] It is evi-
dent from (16) and (17) that the ratios P and P of the
strengths (areas) of the spikes at frequency € of the trial
field, and at the combined frequency (2wr — ), to the
power spectrum in the absence of noise are given by

S S

P=—_ -
Oewr — Q) ’

o(®)’ (28)

1 1
S= ZA2|X(Q)|27 S = ZA2|X(Q)|2 .

It follows from (25) that the “partial” susceptibilities
x; (), X;(Q) are independent of noise for weak noise,
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whereas the partial contributions to the SDF Q;(Q) in-
crease linearly with the noise intensity. Far from the
phase-transition region, therefore, where the fluctua-
tional transition contributions to the susceptibilities and
SDF are small, the quantities P and P decrease with in-
creasing noise. Within the phase-transition range, on the
other hand, for small | —wpg| ~ W;;, the main contribu-
tion to x(R2), X(©2), and Q(?) comes from the transitions
(26) and (21). This is because their ratio to the corre-
sponding partial contributions is inversely proportional
to a < 1, in the case of x(Q2), X (Q), and to W;; /T « 1,
in the case of Q(R). If only xtr, Xtr, and Q4 are taken
into account in (28), one obtains the corresponding quan-
tities Py, Pir

2
Ptr — ,Pn- — A2 5 371’!7| <IJ'1 IJ’2>
32wilwr — wol? a
Wi2Way
Wia + Way

According to (29), the quantities Py, Py are inde-
pendent of frequency. At the same time, they can be
seen from (15) to increase exponentially with increasing
noise intensity. This implies the onset of high-frequency
stochastic resonance within the phase-transition range,
not only at the frequency of the trial field, but also at
the combination frequency (2wr — €2). In fact, the ratio
P is rather different from the quantity usually considered
in the context of stochastic resonance, because no force
is being applied at the frequency |2 — 2wp|: the signal is
induced by mixing, in a nonlinear system, of the forces at
frequencies 2 and wr. Inrelation to nonlinear optics [22],
the phenomenon can be regarded as a type of highly se-
lective, resonant, four-wave mixing (actually, multiwave
mixing because the effect is not just proportional to the
squared amplitude F of the strong field).

We would emphasize that stochastic resonance occurs
only within the phase-transition region. When the pa-
rameters 3,n of the oscillator are far from this region,
the contributions X4:, Xt:, Q¢r to the susceptibilities and
the SDF in the absence of the trial force are exponentially
small: P and P differ markedly from P;; and Py, there-
fore, and decrease with increasing a. The dependences
of P and P on a, as given by (18), (19), (21), (24)-(26),
and (28), will be compared with the results of the analog
electronic experiments in Sec. IV below.

(29)

III. ANALOG ELECTRONIC EXPERIMENTS
ON THE PERIODICALLY DRIVEN OSCILLATOR

In order to test the theoretical predictions of the pre-
ceding section, and to find out whether they were applica-
ble to a real physical system described by the model equa-
tion (3), a series of analog electronic experiments was
undertaken. The basis of the analog technique has been
described in detail elsewhere [23], together with a discus-
sion of its advantages and disadvantages. In essence, it is
extremely simple. An electronic model of the stochastic
differential equation under study is built using standard
analog components (operational amplifiers, multipliers,
etc.). This is then driven by stochastic and periodic
forces, as appropriate, and its response is analyzed with

the aid of a digital data processor.

The circuit used to model (3) is shown in (slightly sim-
plified) block form in Fig. 4; note that each analog mul-
tiplier yields an output equal to one-tenth of the product
of the inputs and that the output can optionally be mul-
tiplied by —1 [23]. The circuit was designed and scaled
in the standard [23] way so as to optimize use of the dy-
namic range of the active components. Thus the actual
equation simulated (see Fig. 4) was the integral form of

. R .
R,C\R4Coq + R‘lR402€1
3

+&A’ sinQ't + f(t)
R,

with
R, Ry
Ri=R;=R;=2 = = = — =100kQ2,
1= Ry = Re =2Rs = 75 = 75
R3; =25MQ ,
Cl:CQZlnF,

T = R1C1 = R4Cz 5
2I' = R1/R;3 .
Thus the equation actually simulated was

1.3 !

2.. . .
T + 2Ttz = -—a:—ﬁ-{vﬁsmwlpt

A
+ sinQ't + f(t),
which, after the scaling

t—t'/1, wp— e,
A— A'J10,

Q- Qr, F-o F')10,

goes over into (3) with wg = 1 and v = 0.1. Provision
was made for measuring either the coordinate ¢(¢) or the
energy E = 1¢* + 3¢ + 3vq¢*.

The circuit model was driven with a sinusoidal periodic
force from a Hewlett-Packard 3325B frequency synthe-
sizer. Its response, a time-varying voltage representing
q(t), was digitized (12-bit precision) typically in 1k or 2k
blocks and analyzed using a Nicolet Model LAB80 data
processor; for the experiments on high-frequency stochas-

R —>ait
A
R ik j1c2 -
Acosint) —wan 0] I R Ll R
fit) _Mgl_ &
F cos (wet) — w2 R
R

Rg

e x

Re

FIG. 4. Block diagram of the analog electronic circuit
model of Eq. (3).
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tic resonance, where larger ¢(t) data blocks were required
(see below), a Nicolet 1280 data processor was used.

As expected, the model was found to display bista-
bility within a certain range of forcing amplitude and
frequency: its response ¢(t) in the absence of noise for a
given set of parameters, shown in Fig. 5(a), could have
either of two distinct amplitudes, corresponding to the
two coexisting periodic attractors discussed in Sec. II.
An inherent experimental difficulty of the measurements
lay in the accurate determination of 3, on account of
the |wp — wo|® term in the denominator. Because, for
the region of interest, the forcing frequency wp is very
close to the natural (zero amplitude) frequency wq of the
oscillator, a very small error (typically + 1%) in wp in-
evitably results in a much larger error (typically + 40%)
in the value of 8. For this reason, rather than attempting
to determine wq from the nominal component values or,

2 (a)

0 10 20 30
t
T T T T T
(b)
3 -
Elg)
2+ 4
T 7
U .
1 ! 1 1 !
-2 -1 0 1 2
q
FIG. 5. (a) Variations of the coordinate ¢(t) with time ¢,

measured for the electronic circuit model of (3) within the
bistable regime in the absence of noise with 8 = 0.0607 and
n® = 0.033. Digitized time series for the small and large am-
plitude attractors are shown superimposed; note the phase
difference between them. In (b) the instantaneous energy E
of the system is plotted as a function of g: the lower curve is
for the small amplitude attractor and the upper curve is for
the larger one.
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directly, by a resonance experiment, its value was estab-
lished precisely by measurement of the range of bistabil-
ity at a single value of 7. Once this had been done, the
rest of the region of bistability could be mapped out over
the whole range of 7, resulting in the square data points
of Fig. 6. They are seen to be in satisfactory agreement
with the theoretical prediction of Sec. II (full curves).

The energy E = 3¢* + 3¢ + 1vg* of the oscillator
(apart from the coupling energy to the force), measured
as a function of ¢ in the absence of noise for each of the
attractors, is shown in Fig. 5(b); it is of relevance because
it provides a basis for the measurement of first-passage
times between the stable states (see Sec. IVB). Both E
and g are periodic functions of time, so that the energy
can in principle take on several values for any given ¢, de-
pending on how many times ¢ becomes zero during one
period 27 /wp. For the Duffing oscillator in the range
of parameters considered here, where the nonlinearity is
relatively small (see Sec. ITA), ¢ was zero twice within a
period and therefore E could take on not more than two
values for a given g. Since, for small enough nonlinearity,
the steady vibrations ¢(t) have components at the odd
overtones only, i.e., at the frequencies wr,3wp, 5wp, .. .,
there is an additional symmetry: q(t + 7/wp) = —q(t),
E(t4+7/wr) = E(t). Consequently, the energy is a unique
function of the coordinate ¢ on an attractor. We em-
phasize, however, that E is not conserved: the oscillator
acquires energy from the periodic driving force and dis-
sipates it through friction. It is evident from Fig. 5(b)
that the curvature of E(q) is relatively small, providing
a clear indication that the amplitudes of the harmonics
of E(t) are also small; in the approximation (6), they
have been ignored. The smearing (thickness) of the E(q)
lines in Fig. 5(b) is an experimental artifact: the values
of E and q were recorded at discrete intervals of time,
and neighboring pairs of values have been connected by
straight lines [cf. Fig. 7(b)].

When noise was applied to the driven oscillator, fluctu-
ations about the attractors and occasional transitions be-
tween them were observed. Figure 7(a) shows an experi-

I L A N yﬁ—ﬁ,vr“‘j

0.3

0.2

FIG. 6. Comparisons of the calculated region of bistability
(between the full curves; cf. Fig. 1) with that measured for
the electronic circuit model of (3) (square data points), and
between the calculated (dashed line) and measured (crosses)
kinetic phase transition line.
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mental example of one such transition; the corresponding
E(q) plot in Fig. 7(b) shows the fluctuations in energy
about each of the attractors, yielding an envelope that il-
lustrates very clearly the shape of the potential [cf. Fig.
5(b) for the noise-free energies].

Measurement of the transition probabilities between
the attractors was not completely straightforward be-
cause there was a small region of overlap between them
in terms of any single variable whether measured, for
example, in terms of g(t) or of E(g). Thus the deter-
mination of sojourn times [24] on either side of a fixed
value of ¢ or £ would not have provided the information
sought. Instead, the mean first-passage time (MFPT)
was measured between two preset criterion levels in en-
ergy, which were outside the overlap region and unam-
biguously within each of the attractors. Figure 8(a) illus-
trates how the apparent MFPT varied when one criterion
level was kept fixed within the lower energy attractor,

(a)
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q
FIG. 7. (a) Variation of the coordinate g(t) with time ¢,

measured for the electronic circuit model of (3) in the bistable
regime of the presence of noise with 3 = 0.0607 and n*> =
0.033, showing a transition between the attractors (a rare
event). (b) The corresponding variation of the instantaneous
energy E with the coordinate g (cf. Fig. 5 in the absence of
noise).

and the other level was moved through different values.
There is clearly a plateau region around the noise-free
energy level of the attractor for which the MFPT was
independent of level setting: all of the MFPT measure-
ments to be reported below refer to this region.

To determine SDF's, a standard fast Fourier transform
(FFT) routine was used to compute the power spec-
tral density of the fluctuations ¢(t) — (¢(¢)). In prac-
tice, the ensemble-averaged signal (g(t)) was determined
in a preliminary experiment for each set of parameters,
averaging a large number (typically 1000) of blocks of
¢(t) in order to obtain good statistical quality. This
was possible because of (g(t)) being strictly periodic,
with (q(t)) = (q(t + 27/wr)), and because the phase
of (g(t)) was determined with respect to that of the field
F coswpt. The resultant (¢(t)) was then subtracted from
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FIG. 8. (a) Dependence of the apparent mean first pas-

sage time on the position chosen for the upper criterion level
for crossings: the energy of the larger attractor for ¢ = 0 in
the absence of noise is shown by the dashed line. In practice,
all measurements were made in the plateau region. (b) Loga-
rithmic plots of the MFPT between the attractors measured
for the analog electronic circuit model of (3) as a function of
reciprocal noise intensity a™!, for n?> = 0.033: +, from the
small amplitude attractor with 3 = 0.0888; O, from the large
attractor with 3 = 0.047; and (), from the small attractor
with 3 = 0.0734. The fact that the data lie on straight lines
demonstrates the “thermal activation” character of the tran-
sition mechanism.
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each subsequent realization of ¢(t) before the FFT was
applied to find the SDF, which was itself ensemble aver-
aged to produce the final result.

The experiments on high-frequency stochastic reso-
nance involved the application of an additional weak trial
force Acos(€t) to the system, with Q very close to the
main forcing frequency wg. In order to resolve the ex-
pected (see above) responses at 2 and at |2wp — 2| from
the supernarrow peak at wp, it was necessary to use a
relatively large block size, which in practice was set to
8k or 16k using the Nicolet 1280 data processor.

IV. DISCUSSION OF RESULTS

We now compare the theoretical predictions of Sec. II
with the results of the analog experiments described in
Sec. III. As already noted above, all of the main features
expected on the basis of the theory have been observed
in the simulations: for example, the anticipated bistabil-
ity of the oscillator was observed and its range in terms
of 8,7 was found (see comparison of data points and
theory in Fig. 6) to be in agreement with the theoreti-
cal predictions; and with weak noise applied to the sys-
tem, fluctuational transitions were observed to be taking
place between the stable states. We now present a more
detailed comparison of experiment and theory consider-
ing, in turn, escape probabilities, spectral densities of the
fluctuations, and high-frequency stochastic resonance in

Secs. IV A, IV B, and IV C, respectively.

A. Transition probabilities

To characterize the transition probabilities, the aver-
age lifetimes (T;) of the states were measured (with the
mean time (7T;) from the initially occupied state i being
measured in the absence of backflow as described in Sec.
I1I, so that

(T) = W;' = - /0 " t(dws /d)odt

with (dw;/dt)g = —W;;w; and w;(0) = 1). Some typ-
ical measurements of the average lifetime (T3) = Wigl,
on a log plot as a function of noise intensity a, are shown
in Fig. 8(b). The fact that the data fall on straight lines
confirms that the escape process is of the activation type,
as expected on the basis of Eq. (15); the characteristic
activation energies R; of the transitions for given (3,7
can be obtained immediately from the slope in each case.
Some experimental values of R;, obtained in this way
from a large number of measurements similar to those
of Fig. 8, are presented in Fig. 9. In good qualitative
agreement with the theoretical predictions (full curves),
the value of R; for the transition from the lower ampli-
tude attractor decreases monotonically with increasing
dimensionless field intensity (3, while R, for the transi-
tion from the higher amplitude attractor correspondingly
increases. Both R; and R; increase with the increase of
the frequency detuning parameter 7 !. Note that the
experimental errors here are relatively large, due to the
problem of measuring 7, discussed above, and to the ef-
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fect of small changes ~ £0.5% in wo with ambient tem-
perature.

The values of 8, n for which R; = R, lie extremely close
to those values for which (T1) = (T) [because the effect
of the prefactor in Eq. (15) is relatively weak], defining
the kinetic phase transition. The phase-transition points
obtained from the experimental data (for (T1) = (T3),
crosses) fall close to the position of the theoretical phase-
transition line (for R; = R, dashed) in Fig. 6. The dis-
crepancy between experiment and theory becomes some-
what larger near the spinode point K where the system is
very “soft” and extremely weak noise intensities are nec-
essary to make the transition region sufficiently narrow
and the phase transition itself sufficiently sharp. The in-
fluence of uncertainties in the experimental parameters,
and of internal noise in the active circuit components,
becomes even more important here. Taking due account
of all these factors, it may be concluded that theory and
experiment are in satisfactory agreement.

B. Spectral density of fluctuations

Experimental measurements of the SDF in the vicin-
ity of the oscillator eigenfrequency (histograms) are pre-
sented and compared with theory (full curves) in Figs.
10(a)-10(c). It must be emphasized that the measure-

1.5 T
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FIG. 9. Values of the activation energies R; measured

(crosses) as functions of 3 for the analog electronic circuit
model of (3) with n? = 0.033 for (a) R; and (b) R;. The
curves are the numerical data of Fig. 3(a).
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FIG. 10. Spectral densities Q(w) of fluctuations measured
(histograms) for the analog electronic circuit model of (3) with
n = 0.219 and o = 8.69 x 1072 for (a) B = 0.048, (b) 8 =
0.078, and (c) B = 0.150. The full curve represents the theory.

ments refer to the spectral density of fluctuations about
an ensemble average; the subtraction of (g(t)) from each
realization ¢(t) prior to computation of Q(w) ensures
that, when the system remains on one particular attrac-
tor throughout, most of the é-function-shaped peak at wg
[which is the Fourier transform of (g(¢))] gets removed.
This is why there is very little sign of a spectral peak at
wp in Figs. 10(a) and 10(c). In the KPT range, how-
ever, where jumping occurs between the attractors, the
general appearance of the spectrum is entirely different.
In fact, the most striking feature of the spectrum is the
supernarrow peak [15] that rises in the phase-transition
range, where 3 ~ (y(n), as seen in Fig. 10(b). Its width
is very much smaller than either of the widths of the
other peaks, or the experimentally determined damping
constant I', or the frequency detuning wg —wg (which are
all of the same order of magnitude). For small noise in-
tensities «, this width is unresolved by the LAB80 data-
analysis system, i.e., the peak lies entirely within one
“bin” of the data processor’s memory. It was necessary
to increase the noise intensity substantially in order to
spread the peak over two or three bins.

The dependence of the intensity I of the supernarrow
peak on the distance from the phase transition line was
found to be exponential, as shown in Fig. 11. This fea-
ture can readily be understood in terms of (2), (15), and
(21). According to (21), for small noise intensities where
(u;) =~ u;,

2wp|lwp — wol 5
ful - Uzl wiws .

I= /_ wQulw) = “TEE

(30)
Not too far from, but not too close to, the phase-
transition line where, on the one hand, |8 — Go(n)| < 1
and, on the other, the transition probabilities Wy, and

W3, differ substantially from each other, the coefficient
wyws in (21) should behave, according to (2), (15) as

wiwy o exp{—|R] — Ry||8 — Bo(n)|/a} , (31)

0

I L S 4 P,

0.06 007 008  0.09 0.1
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FIG. 11. Variation of the intensity I of the supernarrow
spectral peak with distance from the kinetic phase transition
line, measured as a function of 3 for the analog electronic cir-
cuit model of (3) for n = 0.219 and @ = 8.69 x 1072, The
squares represent direct measurements; the crosses are de-
rived from (21), based on measured transition rates. The full
lines also represent (21), but for In(w;w2) given by (31) with
measured R}, R5.

0.11

where R, = (OR;/0B)3=g,(n)- Therefore, the depen-
dence of I on (8 — Bo) should indeed be exponential.
In the immediate vicinity of the phase transition, where
the exponent on the right hand side of (31) is of order
unity, this exponential dependence will be smeared. Such
smearing is clearly seen in the experimental data (squares
in Fig. 10), which are in good agreement with (30) as in-
dicated by the crosses (w;,w; having been taken from
independent measurements of the transition probabili-
ties). Agreement with (30) based on wiw, taken from
the simple estimate (31), as indicated by the full lines, is
also good: the values of R , in this case were taken from
the slopes of the experimental R; 2(3) measurements and
the prefactor in (31) was taken to be  so as to give the
correct maximum value of w,w, at the phase transition
point 3 = Bo(n) in the limit a — 0. The cusplike depen-
dence of the intensity I of the supernarrow peak in the
SDF is a characteristic feature of the peak, which itself
represents a characteristic phase-transition phenomenon
peculiar to bistable systems.

For 3,7 lying far from the phase transition line Go(n),
the supernarrow peak is not seen, but there remain (his-
tograms of Fig. 10) the much broader and less intense
peaks in the SDF corresponding to fluctuations about
the stable states. These correspond to the partial spec-
tra of the first term in (18) and are well described (full
curves) by (19). The characteristic feature is that they
each (7 = 1, 2) display a twin-peaked structure for a cer-
tain range of parameters. It can be seen from (19) that
such structure should be at its most pronounced for the
spectrum Q;(Q) when |vj| > 1, that is, for sufficiently
large frequency detuning |wg — wo| > T'. Under these
conditions, the peaks appear at (wp — wo) ~ *I'v;, and
their half width ~ T' is small compared to the distance
separating them. The twin-peaked structure can be un-
derstood intuitively in terms of the forced vibrations at
frequency wr in a given stable state being modulated by
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the relatively slow (characteristic frequency ~ wr — wp)
fluctuational vibrations about this state. We notice that
the intensities of the peaks in a doublet differ markedly
(parametrically strongly, in the case of the small ampli-
tude attractor), so that the intensity of the second peak
for the small amplitude attractor is fairly small.

In the range of the kinetic phase transition, the par-
tial spectra Q1(w), @2(w) are superimposed and the su-
pernarrow peak is also present. Thus there can be up
to five separate peaks in the spectrum. A multipeaked
structure is clearly evident in the results of Fig. 12, which
were recorded for a larger detuning and a smaller I'. A
satisfactory quantitative description of such a spectrum
cannot, however, be arrived at on the basis of (19), be-
cause it is significantly influenced by higher-order terms
in the noise intensity, i.e., by vibrations at the overtones
of T'w;, that were ignored in the derivation of (19). A
detailed investigation of such higher-order effects is cur-
rently being planned and will be the subject of a future

paper.
C. High-frequency stochastic resonance

In searching for evidence of the predicted HFSR phe-
nomenon, the circuit parameters were initially set to 2I'
= 0.0397, wo = 1.00, v = 0.1, wp = 1.07200, Q =
1.07097, F = 0.068, and A = 0.006 (these values ap-
ply to Figs. 14 and 16 below). The frequencies of the
additional weak trial force and the main periodic drive
were therefore very close to each other. A typical SDF,
measured for a 16k digitized time series in the memory of
the Nicolet 1280 data processor with input noise intensity
B = 0.040, is shown in Fig. 13. The central maximum
is the supernarrow SDF peak of Fig. 10(b), here with its
finite width clearly resolved (note the highly expanded
abscissa scale). A 4-function spike is evident, not only at
2, but also at the mirror-reflected frequency (2wr — )
just as predicted in Sec. IIC.

The signal strengths (integrated intensities) S(a),

0.08 —— , ,
0.06— -
w
Q@) 5] :
0.02 —
0.0 -
1.04 1.12 1.2 1.28
@
FIG. 12. An example of the kind of multipeaked spectral

density of fluctuations Q(w), measured in the range of the
kinetic phase transition for the analog electronic model of (3),
with relatively large frequency detuning and small damping.
The parameters are n = 0.055, 8 = 0.0303, I" = 0.0073, and
a = 0.238. Five spectral peaks — the supernarrow peak and
four peaks of the partial spectra — are clearly resolved.

100 Q]

Qw)

2wF -0
50
0-
. .08
1.06 1.07 w 1.0
FIG. 13. Spectral density Q(w) of the fluctuations of (3)

as a function of frequency w with an additional weak peri-
odic (trial) force A cos(Qt + ¢) added on the right hand side,
measured for the analog electronic circuit model. The con-
tents of each FFT memory address are shown as a separate
data point on a highly expanded abscissa (unscaled experi-
mental unit). A smooth curve has been drawn through the
background spectrum (the supernarrow peak, which has its
maximum at wr) as a guide to the eye; vertical lines indicate
the & spikes resulting from the trial force.

S(a), determined from measurements of the ¢ spikes, are
plotted (data points) as functions of the reduced noise
intensity o < B in Figs. 14(a) and 14(b). It is immedi-
ately apparent that there are well-defined maxima in the
plots of S(a),S(a), thereby confirming the occurrence of
HFSR in (3). The signal-to-noise ratio of P and P (i.e.,
the ratio of S and S to the “background” SDF in the
absence of the trial force) has also been measured. As
shown in Fig. 15, although the statistical quality of the
data is somewhat poorer (owing to the additional error
in the background SDF), there is no doubt that P, P each
fall and rise and fall again with increasing noise intensity.
The fall in P, P with increasing a at small a is, of course,
a feature that is familiar from earlier calculations and
experiments on conventional SR involving static bistable
attractors; the signal-to-noise falls initially because, for
very weak noise, the interattractor transitions are too
rare to make significant contributions either to the sus-
ceptibility or to the SDF, whereas the background SDF
in the denominator corresponding to fluctuations about
the attractors steadily increases with noise intensity.
The theoretical predictions, based on Egs. (18), (19),
(21), (24)—(26), and (28), are shown by the full curves
in Figs. 14 and 15. The agreement is not perfect, but
(given the problem with the determination of 3; see Sec.
III) it is within the experimental error and may be re-
garded as satisfactory. The onset of the observed rise
in 5,8, P,P occurs at the value ag of noise intensity for
which the width of the supernarrow peak in the SDF be-
comes comparable with the frequency difference |2 —wp|
(provided that the latter is not itself exponentially small;
cf. [5(b)] where the position of the minimum of the SNR
versus noise intensity has been discussed for stochastic



1212 M. 1. DYKMAN et al. 49

resonance in a system fluctuating in a static bistable po-
tential). It is the increasing role of fluctuational transi-
tions that is responsible for high-frequency stochastic res-
onance. These results, and the good agreement obtained
with the theory of Sec. II, demonstrate that HFSR. for
periodic attractors may be perceived as a linear response
phenomenon, in very close analogy to conventional SR
for a static bistable potential [5].

An intuitive understanding of the mechanism of HFSR
can be gained by recalling that, under the conditions
considered here with |Q — wp| very small, the system
responds to the trial force almost adiabatically. In terms
of the phase diagram Fig. 1, the beat envelope of the
combined main and trial periodic forces results in a slow
vertical oscillation of the operating point p. When this is
set (see line p’-p-p”’) to straddle the KPT line, which was
the case for present investigations, and the noise intensity
is in the appropriate range, the system will have a ten-
dency to make interattractor transitions coherently, once
per half cycle of the beat frequency. The net effect is to
increase the modulation depth of the beat envelope of the
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FIG. 14. The intensities S and S of the é-shaped peaks in
the SDF of the analog electronic model of (3) (data points)
with 8 = 0.103 and n = 0.266 induced by a weak trial force
A cos Qt, plotted as a function of noise intensity o, compared
with theory (full curves) (a) at the trial force frequency Q and
(b) at the mirror-reflected frequency (2wr — Q).

60 T T T T

0.25

FIG. 15. The signal-to-noise ratios P and P of the re-
sponses at § = 0.0814 and n = 0.236 to the trial force at fre-
quencies 2 (circle data and associated curve) and (2wr — Q)
(squares), measured as functions of noise intensity « for the
analog electronic circuit model of (3). The curves represent
the theory. For noise intensities near those of the maxima in
P(a), P(a), the asymptotic theory is only qualitative and so
the curves are shown dotted.

response, thereby amplifying its component frequencies
Q and |2 — 2wp|.

The magnitude of the signal at £ has been measured
as a function of distance, expressed in terms of 3, from
the KPT. The result is shown in Fig. 16. It exhibits
a fast cusplike (note the log scale) decrease of S as 3
moves away from its critical value, demonstrating that,
like the associated supernarrow spectral peak (see Sec.
IV B), HFSR for periodic attractors has the character of
a critical phenomenon, in agreement with the theory of
Sec. II.
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FIG. 16. Dependence of the logarithm of the intensity S
of the spectral peak induced by the trial force for the analog
electronic circuit model of (3) at a fixed noise intensity a =
0.076, plotted as a function of 8, varying across the KPT line.
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V. CONCLUSION

Studies of a very simple nonequilibrium bistable sys-
tem — a nearly resonantly driven nonlinear oscillator
— have enabled us to observe and investigate a num-
ber of phenomena of rather general applicability and, in
doing so, to test a theoretical approach to the calcula-
tion of transition probabilities in noise-driven nonequi-
librium systems. The onsets of the supernarrow peak
in the spectral density of the fluctuations and the corre-
sponding peak in the susceptibility, and the phenomenon
of high-frequency stochastic resonance, can all be viewed
as examples of critical kinetic phenomena in periodically
driven systems. They may be used not only to investigate
the character and properties of kinetic phase transitions
(as here), but also to obtain tunable noise-induced ampli-
fication of the signal-to-noise ratio and extremely narrow-
band filtering and detection of high-frequency signals.

Finally, it is interesting to note that many of the phe-
nomena discussed above provide illustrations of the cre-
ative role often played by noise in nonlinear systems. The
occurrence of the extremely strong and highly selective
four-wave mixing, for example, arises because of the noise
and does not occur in the absence of noise; the depen-
dences on noise intensity both of this effect, and of the
other critical phenomena discussed in the present paper,
are exponentially sharp.
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APPENDIX

The calculation in [3] of transition probabilities for sys-
tems driven by Gaussian noise implied an idea [25] due to
Feynman. His suggestion was that there was a direct re-
lationship between the probability density of the paths of
the noise-driven system and the noise itself. This interre-
lationship allows us to write immediately, to logarithmic
accuracy, the probability density functional for the paths
of the system and to set up the variational formulation
giving the most probable paths for first reaching a given
point in the phase space of the system and for the tran-
sitions between the stable states (see also Ref. [2]). In
the white noise case under consideration, the “activation
energy” R; characterizing the transition of the oscillator
from the stable state j to the stable state 7 is given [3] by
the following variational problem:

du* N
) (&)

1 _, . bt du
R; = Z" 2m1n/ dr (E: _
‘ (A1)

— o0

v = v(u,u”), u(—oo0) = uy, u(00) = u,,
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where v is defined by (6) and u; and u, are the values
of the “slow” variable u for the initially occupied stable
state and for the saddle point, respectively. The general
analysis of large occasional fluctuations in systems driven
by white noise was given by Wentzell and Freidlin [26].
In obtaining a variational (Euler) equation for the
problem (A1), v and u* should be varied independently.

The resulting equation can be seen to be of the form
d?u .du 2 2 2
i 21.d—7_(2|u| -1) — pw

+VBRuE+u?—1-in) =0, (A2)

V= ) = 14l - )(EE - 1)
together with the equation for u* complex conjugate to
(A2). The corresponding equations for v’ = Reu and
u” = Imu were written down explicitly in Ref. [3]. An
analytic solution can be obtained [3] in some limiting
cases. The equations (A2) describe the conservative mo-
tion of an auxiliary system with two degrees of freedom,
its coordinates being u’ and u” and its velocities %' and
4. The motion can be considered as the planar motion
of a particle of unit mass and unit electric charge in an
electric potential
2
- TIU”) )

vy 1 dg ’ ? __]_- @_
Ulw,v’) = -3 (au" +m 2 \ow
(A3)

where

1
g(u',u") — Z(ulz +u”2 _ 1)2 _ u/\/B

and a magnetic field H = [4(u'2 + ©"?) — 2| normal to
the plane. The potential U(u',u") is shown in Fig. 17.
It has three maxima of equal height (=0). They corre-
spond respectively to the stable states and the unstable
stationary state of the system. Note that we are deal-
ing with the auziliary system. Thus, not minima, but
maxima of the potential U(u’,u") correspond to the sta-
ble states of the initial system (a circumstance typical of
the instanton-type formulation that we are using). The
problem (A1) amounts to finding a path that starts on
one of the outer maxima and arrives at the maximum
corresponding to the saddle point.

The numerical solution in the general case of arbitrary
values of (3,n) can be simplified by the following proce-
dure (cf. [27]). Near the stable state j, when |u—u;| < 1,
Eq. (A2) can be linearized in u—u;, u*—u}. The solution
can then be sought in the form

u(r) —u; = Y AP exp(\7), (A4)

u'(1) —u} = ZBJ(-B)exp(A;’)T)

for 7 = —o0, with
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The three-humped potential U(u',u") of Eq. (A3) for the auxiliary system, portrayed both as a three-dimensional

surface and, below it, in the form of a contour plot; the contour altitudes are tabulated on the right hand side. (Note, however,
that the left hand potential maximum is so shallow that it is barely visible in the contour plot.) The optimal path of the
escape from the focus-1 (the small amplitude attractor) is shown by the line of ¢ points. It goes from this focus (the right hand
potential maximum) to the saddle point (central maximum). On its way from the saddle point to the focus-2 (the left-hand
potential maximum corresponding to the large amplitude attractor) the system moves, with overwhelming probability, along
the noise-free path. The ¢ points are equally spaced in time, so that the speed with which the system is traveling along different
elements of the path may be inferred from the density of the points; it moves most slowly at the three potential maxima. The
values of the dimensionless parameters for the plot were *> = 0.072 and 8 = 0.104.

() _ gl
B, = A;

) AT 20 (2fuy 2 = 1) — (7 + 5lug]* — 4luy 2 + 1)

2u2(2)u;|? — 1 —in)

The resultant characteristic equation gives four values for
the increment A

(1,2) _ (1,2) (3) _ (1) (4) _ _ (2)
/\j = a; 7, /\j =-a;, )\j =—a;", (A6)
where a!"? are the roots of the characteristic equation

for the motion of the oscillator in the vicinity of the state
7 in the absence of the random force (the latter being
described by the linearized equation du/dr = v),

(1,2)

B = i} -1)2], v

o J

= v2(uj, uj) .
(A7)

(1,2)

For the stable state, Rea;

that v7 > 0.
It is evident from (A4)—(A7) that the coeflicients A;l’z)

(and thus BJ(-l’z)) in (A4) should be set equal to zero; oth-
erwise, the path u(7) will not approach u; as 7 — —oc.
At this point we have arrived at two independent pa-
rameters in (A4): A® and A§4). However, it is their
ratio which determines the direction in which the system
will move along the extreme path (A2); accordingly, it
is this ratio that should be determined from the bound-
ary conditions u(oo) = u, (Al). We thus obtain an im-

< 0; note that this implies

(A5)

plicit equation for the single quantity A§.3) /A§-4). It can
in principle be solved numerically by a shooting method
(cf. [28]). This method works most effectively for small
damping 7 < 1, when the optimal path u'(7),u”(7) is a
spiral.

Here we adopt a relaxation method [29]. The differ-
ential equations are cast in the form of nearest neigh-
bor difference equations. The boundary values of u,u*
were chosen at u;,us. (The results were the same to the
adopted accuracy when us_; was taken instead of u,,
i.e., the optimal path for the escape from the state j was
supposed to start from u; and to arrive at the other sta-
ble position uz_;; moreover, it turned out that the path
found in this way passed through, or fairly close to, the
saddle point.) A guess at the solution was tried and then
it was successively improved by assuming, at each step,
that the true solution was close to the current one and
linearizing about the latter. Even for fairly different ini-
tial guesses, the same final solution u(t) was obtained,
implying that the method is reliable. The same results
were obtained for different integration times, which were
always very large compared to the characteristic dimen-
sionless times ~ 1,771, in (A2).

Solutions were used to compute the action integral
(Al). The results are summarized in Fig. 17. The op-
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timal path is indicated by the diamond points, which
are separated by equal intervals of time. The motion
is naturally at its slowest (points closest together) on
the maxima of the potential; because of the effect of the
“magnetic field” H, it does not pass ezxactly along the
ridges. The advantage of the relaxation method is that
it is fairly fast and convenient. On the other hand, for
small 77 where the optimal path is a small-step spiral, it
is less reliable than the method based on solving Egs.
(A4)-(A7) which was used in [28].

When, in addition to the strong field F coswpt, the
oscillator is also driven by a weak force A exp(—i2t), the
expressions for R; will change. The additions to R; can
readily be found when |2 — wp| < T, because the char-
acteristic time of the motion along the extreme path de-
scribed by (A2) is ™! (i.e.,, ! in dimensionless units
of 7); thus, when |Q — wp| < T, the weak field is not
changed while the system is moving along the path. It
is evident from (22) that the functional which should be
minimized to give R; in the presence of the field A is given

by (A1) with v* having been replaced by v* +iA(7). To
first order in A, the change in R; is thus of the form

~ i _, [ du
OR;(1) = pjA(T), p; = —" 2/ dr (————v),
—o0

(A8)

where the integral giving p; is calculated along the ex-
treme path for A = 0.

The expression for u; can be substantially simplified
if one notices that the activation energy R; (A1) is un-
changed when 32 is replaced by 3 %exp(id)) in (6) and
(A1) respectively, where % is arbitrary: such a replace-
ment corresponds simply to a shift of the time origin in
(5) by ¥/wp, which should not influence stationary char-
acteristics of the oscillator such as R;. By differentiating
R; with respect to ¥ for ¢ — 0, one finds immediately
that Imp; = 0, and it is then easy to see that

ui = /BOR;/38. (A9)
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