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LARGE FLUCTUATIONS occur universally in Nature. They are responsi-

ble for e.g. nucleation at phase transitions, chemical reactions, mutations in

DNA sequences, protein transport in biological cells, and failures of electronic

devices. The idea1,2 that they provide a conceptual bridge between micro-

scopic and macroscopic motion underlies many discussions2−5 of how the irre-

versible thermodynamic behaviour of matter in bulk relates to the completely

reversible (classical or quantum) mechanical laws describing its constituent

atoms or molecules. The theory of large fluctuations has been developed

through e.g. Hamiltonian6,7 and equivalent path-integral8−12 formulations.

It remains largely untested, partly on account of the rarity of such events,

and partly because the possibility of quantitative experiments could not be

entertained until the appropriate statistical quantity (prehistory probability

distribution11) had been introduced. Recent analogue electronic experiments

have shown12, however, that there are physically observable patterns of trajec-

tories underlying the seemingly random motion. In what follows, we extend

the experimental technique to highlight a fundamental distinction between

fluctuational motion towards the remote state and ordinary relaxational mo-

tion back again towards the stable state of the system.

In a typical large fluctuation, a component x of some dynamical variable x departs

temporarily from its stable state, moves to a remote state xf , and then returns: see e.g.

Fig. 1(a). The variable x might represent the voltage(s) in an electrical circuit (see below),

or the phase of the order parameter in a SQUID (superconducting quantum interference

device)13 or in an optical bistable device14, or the number densities of species in a chemical

reaction15. Approximate theories of such phenomena have been developed6,7,9−12,15−21, the
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approach being typically as follows. Consider overdamped Brownian motion in a force

field K(x, t), assumed in general to be nonadiabatic and/or nongradient, driven by weak

white noise ξ(t) whose intensity D � 1 is considered to be the smallest parameter of the

problem

ẋ = K(x, t) + ξ(t), (1)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t).

The corresponding Fokker-Plank equation (FPE) for the probability density P (x, t) is

∂P (x, t)

∂t
= −∇ · (K(x, t)P (x, t)) +

D

2
∇2P (x, t). (2)

A large fluctuation is Brownian motion away from a stable stationary state S. It is

similar to quantum mechanical tunnelling through a potential barrier, and can be treated

in a similar way. In the limit of weak noise it can be described by the WKB (eikonal)

approximation of the FPE in the form P (x, t) = z(x, t) exp
(
−W (x,t)

D

)
. Here z(x, t) is a

prefactor, and W (x, t) is a classical action satisfying the Hamilton-Jacobi equation, which

can be solved by integrating the Hamiltonian equations of motion7

ẋ = p + K, ṗ = −∂K

∂x
p, (3)

H(x,p, t) = p K(x, t) +
1

2
p2, p ≡ ∇W,

We emphasise that (3) describe an auxiliary Hamiltonian system which should be carefully

distinguished from the microscopic Hamiltonian equations of motion in a thermal system.

Note also that the method is readily generalised, e.g. to systems driven by coloured

noise10,20,21.

The set of trajectories of (3) approaching the stable state S (x̄ = xs, p̄ = 0) for

positive time forms the stable invariant manifold of S, defined by the additional condition

p = 0. On this manifold, (3) reduces to ẋ = K, describing deterministic relaxation, so

that these trajectories must correspond to the return path of the initial system (1) from

xf to S. The set of trajectories moving away from S in positive time forms the unstable

invariant manifold of S, upon which p 6= 0 in (3); they can be identified as describing the

fluctuational paths from S to xf . In each case, the trajectories represent6,7 optimal paths
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along which the system is expected to move with overwhelming probability during the

fluctuation. But, although the decay of the fluctuation was well understood22, it remained

uncertain for a long time whether or how the growth of a fluctuation along a trajectory

of the unstable manifold might be observed experimentally. One problem was that noise

in real systems is always of finite intensity, so that the relevance of the D → 0 theory,

for which the probability of having a large fluctuation at all also → 0, was unclear. An

additional puzzle originated in the analogy with optics and quantum mechanics23 which,

supplemented by a large body of numerical results, suggested15,18−21,24−26 that patterns

of optimal fluctuational paths in general display singular features, but ones that differ

significantly18,24,25 from those familiar from optics. It was sometimes inferred that the

approximations leading to (3) would fail near the singularity points where, instead, a

complete solution of the FPE (2) would be required27.

More recently, however, the physical reality both of the paths, and of the singular

features in their pattern, have been demonstrated11,12 in analogue electronic experiments.

Note that, if the (approximate) Hamiltonian description is correct, similar behavour is

to be expected of any fluctuating system describable in terms of (1); analogue electronic

circuits are especially advantageous for such studies because their parameters are well

controlled. The technique11,28 involves building an electronic circuit to model the system of

interest, and driving it with external noise. Provided that no additional forces are applied,

the system can be considered to be in thermal equilibrium at a temperature determined

by the noise intensity and the damping constant, which are linked by the fluctuation

dissipation theorem3. The state of the system is monitored continuously until eventually,

as shown in Fig. 1(a), a large fluctuation reaches the voltage xf . The interesting region

of the path – including the fluctuational part f coming to xf , as well as the relaxational

part r leading back towards S – is then stored. An ensemble-average of such trajectories

(Fig. 1(b)), built up over a period of time (typically weeks), creates the distribution

Pf (x, t) ≡ P (xi, ti;x, t;xf , tf ), the probability of the system being at x at time t if it was

at xf at time tf , with tf = 0 and xi = xs at time ti = −∞. Unlike the original definition11

of the prehistory distribution, t > tf is considered as well as t < tf .

We now consider the application of these ideas to the fluctuations of three very different

example systems that can be used to describe a wide range of physical phenomena13−15,22,27,29.

The first (Fig. 1) is an overdamped Duffing oscillator, modelling a bistable system in ther-
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mal equilibrium near one of its stable states. Fig. 1(b) shows a meaured Pf (x, t). It was

found: (i) that the relaxational and fluctuational parts of the distribution are symmetri-

cal, which would only be expected4 under conditions of detailed balance (i.e. when every

transition between two states in one direction is on average balanced by a transition in

the opposite direction); (ii) that the ridges (modes) of the distribution follow closely the

deterministic trajectory found from (3), plotted as the full curve in Fig. 1(c); and hence

(iii) that, in the macroscopic limit, where the width of the distribution tends to zero

(because D → 0) and one observes only the positions of the ridges, the paths to/from

xf themselves become reversible in time7,15,21,26. Even in thermal equilibrium, however,

Hamiltonian theory envisages the fluctuational and relaxational trajectories as belonging

to two different manifolds of the system (3), with p 6= 0 and p = 0 respectively (see

above). In the particular case of our analogue electronic model, this feature can be illus-

trated experimentally because the noise is external and a direct determination of p during

fluctuations is therefore possible (c.f. the idea8−10,20 of the optimal force). Thus we have

been able to make simultaneous measurements of x(t) and of the corresponding noise

histories ξ(t) causing transitions between the potential wells, setting xf = 0 on the local

potential maximum: some results are shown in Fig. 1(d). Although the statistics of these

very rare events are relatively poor, the data clearly demonstrate: (i) that, as anticipated,

p 6= 0 during the fluctuational part of the trajectory; (ii) that p = 0 within experimental

error during relaxation; and (iii) that the Hamiltonian theory (curves) describes very well

both parts of the trajectory. Thus the time reversal symmetry can be regarded as arising

from a degeneracy between the projections of two different curves in an extended (by the

p-dimension(s)) phase space onto the space of the dynamical variables. Such an exten-

sion of the phase space is an unnecessary complication in equilibrium; but it provides the

key to understanding far-from-equilibrium systems, where the degeneracy is lifted by the

presence of an external field.

Our second example (Fig. 2), is the archetypal nonequilibrium system considered by

Graham16,17 in his discussion of the properties of the generalised potential, and further

analysed in great detail by Dykman and Smelyanskiy (to be published): an overdamped

Duffing oscillator driven from equilibrium by a periodic force. The ridges of the fluctua-

tional and relaxational parts of the measured Pf (x, t) are narrow and differ markedly in
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shape. The paths that they trace out (data points), compared in Fig 2(a) with theoreti-

cal predictions (curves) calculated from (3), clearly demonstrate that the most probable

fluctuational trajectory to (xf , tf ) does not correspond to what one would obtain by time-

reversing the relaxational trajectory. Fig. 2(b) shows the measured Pf (x, t) when xf is

placed on the calculated switching line18, a singularity separating regions that are ap-

proached via different fluctuational paths. The relaxational tail leading back to the stable

state S is common to the two fluctuational paths that form the resultant corral12. From

Fig. 2(c) we see that the ridges of the distribution are strongly asymmetric in time, but

agree well with the fluctuational and relaxational paths predicted from (3). The observed

asymmetry of the distribution implies4 a lack of detailed balance; and it leads directly15,26

to macroscopic irreversibility in the D → 0 limit where the width of the distribution

tends to zero. In verifying the existence of the switching line, the results demonstrate the

nondifferentiability of the generalised nonequilibrium potential.

Our third example (Fig. 3) is the system suggested by Maier and Stein19,26 for analysis

of the escape problem in nonequilibrium systems. It consists of a bistable system driven

from equilibrium by a stationary field of (in general) the nongradient type. In measure-

ments near one of the stable states, the lack of detailed balance and the irreversibility

of the fluctuations become strikingly apparent. Fig. 3(a) shows the measured Pf (x, y)

distribution for fluctuations to the two different remote states xf placed symmetrically

on either side of the y axis; Pf (x, y) is the projection of Pf (xi, yi, ti;x, y, t;xf , yf , tf ) onto

the x − y plane with tf = 0 as before. When the paths traced out by the ridges are

plotted (Fig. 3(b)), it can be seen: (i) that the fluctuational trajectories are completely

different from the relaxational ones; and (ii) that they are in good agreement with the

fluctuational and relaxational trajectories predicted from (3). Fig. 3(c) shows the corre-

sponding picture measured for fluctuations to a single remote state xf on the switching

line (lying on the x axis). The two fluctuational paths to the remote state are, again,

markedly different from the common relaxational path leading back to S. Both parts of

the trajectory are well described by the corresponding optimal paths calculated from (3).

In this case too, therefore, the observations link a lack of detailed balance to macroscopic

irreversibility, and demonstrate the nondifferentiability of the generalised nonequilibrium

potential; the closed loops traversed during fluctuations verify the expected2,26,27 occur-
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rence of rotational flow in nonequilibrium systems.

Thus, after more than 60 years of “thought experiments” on large fluctuations2,3,30,

it has now become possible to do real ones, yielding quantitative results. The work has

already verified several long-standing theoretical predictions, including those of symmetry

between the growth and decay of classical fluctuations in equilibrium2,30, the breaking

of this symmetry under nonequilibrium conditions7,15,26, the relationship of symmetry-

breaking to a lack of detailed balance15−17,26 and to nondifferentiability of the generalised

nonequilibrium potential16,17,26, and the existence of an optimal force derived from the

fluctuating field and related to the momentum of an auxiliary Hamiltonian system8−10,20,21.

The technique has also enabled us to reveal new dynamical features of large fluctuations,

such as critical broadening of the prehistory probability distribution12. It will be as

applicable to future experiments on natural systems as it has been to the electronic models

studied here. Because equations (1) can, at least in some cases9,31, be related directly to

the microscopic classical equations of motion for a system interacting with a heat bath,

the approach illuminates connections between microscopic reversibility and macroscopic

irreversibility. Other open questions needing urgently to be addressed include the precise

physical meaning of the momentum p and the role of entropy and how it changes during

fluctuational motion.
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Figure Captions

1. Fluctuational behaviour measured and calculated for an electronic model system in

equilibrium: a double-well Duffing oscillator with K(x) = x − x3, for D = 0.014.

The model was constructed28 from standard electronic components (e.g. operational

amplifiers and analogue multipliers), tested for accuracy, and then treated as an en-

tity in its own right – an object on which experiments could be performed. It was

driven by external noise (a fluctuating voltage) from a noise generator, causing it to

fluctuate about its equilibrium state at -1.0 volts, representing x̄ = xs = −1 in (1).

This response, a fluctuating voltage representing x(t), was then digitised and anal-

ysed with a digital data processor. In particular, x(t) was monitored continuously,

waiting for large fluctuations reaching a chosen preset voltage threshold represent-

ing xf . Fluctuational paths x(t) reaching xf were preserved for later analysis, and

so also were the relaxational paths x(t) from xf back towards the stable state at

x = −1. (a) Two typical fluctuations (jagged lines) from the stable state at S = −1

to the remote state xf = −0.1, and back again, are compared with the deterministic

(noise-free) relaxational path from xf to S (full, smooth, curve) and its time-reversed

(t→ −t) mirror image (dashed curve). The fluctuational and relaxational parts of

the trajectory are labelled f and r respectively. (b) The probability distribution

Pf (x, t) built up by ensemble-averaging a sequence of trajectories like those in (a).

The top-plane plots the positions of the ridges of Pf (x, t) for the fluctuational (open

circles) and relaxational (asterisks) parts of the trajectory for comparison with the-

oretical predictions (curves) based on (3). (c) Plots of the ridges of Pf (x, t), with

t → −t for the relaxational part, demonstrating the time-reversal symmetry. The

full curve is the theoretical prediction based on (3). Inset: detailed balance means

that, for every transition in one direction between any two levels (e.g. those shown

by the dashed lines), there must be a return transition in the opposite direction, i.e.

given that a relaxational trajectory exists, the corresponding fluctuational one must

be its time-inversed image in configuration space, so that detailed balance implies

time-reversal symmetry. (d) Demonstration of time-irreversible features of the fluc-

tuations. The inset shows p(x) for two typical transitional paths from x = −1 to

x = 1 (full jagged line) and in the opposite direction (dotted jagged line). The main
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figure shows the paths traced out by the ridges of the Pf (p, x) distribution created

from an ensemble average of such transitions. The transitional path from x = −1

to x = 1 is shown by squares, and the reverse transition by filled circles. The full

and dashed curves are the corresponding paths predicted from (3).

2. Fluctuational behaviour measured and calculated for an electronic model of a nonequi-

librium system with explicit time dependence: an overdamped double-well Duffing

oscillator with K(x, t) = x− x3 +A cos(ωt) and A = 0.264, D = 0.012. (a) Fluctu-

ational and relaxational paths (red circles and blue asterisks respectively) to/from

the remote state xf = −0.46, t = 0.73, found by tracing the ridges of a measured

Pf (x, t) distribution. The time-dependent stable and unstable states near x = −1

and x = 0 are shown by dashed lines. The fluctuational and relaxational paths

calculated from (3) are shown as red and blue lines respectively. (b) The measured

Pf (x, t) for a remote state xf = −0.63, t = 0.83 that lies on the switching line.

(c) Fluctuational (red circles) and relaxational (blue asterisks) paths determined by

tracing the ridges of the distribution in (b), and compared with the corresponding

(red and blue) theoretical lines predicted from (3).

3. Fluctuational behaviour measured and calculated for an electronic model of a non-

equilibrium system with a stationary nongradient field:

K(x, y) = (x − x3 − axy2,−(1 + x2)y); a = 10; D = 0.014. (a) The Pf (x, y)

distribution created by ensemble-averaging fluctuational paths leading from S =

(1, 0) to remote points at xf = (0.44,±0.35). (b) Paths traced out by the ridges

of the distribution in (a) for fluctuational motion (red circles), and by those of the

corresponding distribution for relaxational motion (blue asterisks), compared with

fluctuational (red) and relaxational (blue) optimal paths calculated from (3). (c)

As in (b), but for the single remote state xf = (0.32, 0) on the switching line.
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